Bacterial Adhesion to Biomaterial Surfaces

  • Yuehuei H. An
  • Richard J. Friedman
  • Robert A. Draughn
  • Edwin A. Smith
  • Joseph F. John


Research into bacterial adhesion and its significance is a large field involving different aspects of nature and human life, including marine science, soil and plant ecology, the food industry, and, most important, the field of biomedicine. Adhesion of bacteria to human tissue surfaces and implanted biomaterial surfaces is an important step in the pathogenesis of infection (1–3). The exact mechanism by which these foreign body infections occur still remains unclear. It is thought that certain strains of bacteria, particularly Staphylococcus epidermidis, one species of the coagulase-negative staphylococci, secrete a layer of glycocalyx once adhesion occurs on the surface, making themselves less accessible to human host defense mechanisms (4) and significantly decreasing antibiotic susceptibility (5–10). The bacteria can remain dormant on the material surface for a long period of time until the environment changes and allows them to overgrow, as occurs with decreased host immune function or poor tissue ingrowth around the prosthesis.


Total Joint Replacement Biomed Mater Microbial Adhesion Biomaterial Surface Prosthetic Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gristina AG and Kollcin J. Total joint replacement and sepsis.JBoneJointSurg 1983; 65A: 128–134.Google Scholar
  2. 2.
    Fitzgerald RH Jr. Infections of hip prostheses and artificial joints. Infect Dis Clin North Am 1989; 3: 329–338.Google Scholar
  3. 3.
    Sugarman B and Young EJ. Infections associated with prosthetic devices: magnitude of the problem. Infect Dis Clin North Am 1989; 3: 187–199.Google Scholar
  4. 4.
    Gray ED and Peters G. Effect of extracellular slime substance from Staphylococcus epidermidis on the human cellular immune response. Lancet 1984; i: 365–367.Google Scholar
  5. 5.
    Sheth NK, Franson TR, and Sohnle PG. Influence of bacterial adherence to intravascular catheters on in-vitro antibiotic susceptibility. Lancet 1985; ii: 1266–1268.Google Scholar
  6. 6.
    Gristina AG, Hobgood CD, and Webb LX. Adhesive colonization of biomaterials and antibiotic resistance. Biomaterials 1987; 8: 423–426.CrossRefGoogle Scholar
  7. 7.
    Gristina AG, Jennings RA, Naylor PT, Myrvik QN, and Webb LX. Comparative in vitro antibiotic resistance of surface-colonizing coagulasenegative staphylococci. Antimicrob Agents Chemother 1989; 33: 813–816.CrossRefGoogle Scholar
  8. 8.
    Naylor PT, Jennings R, Webb LX, and Gristina AG. Antibiotic sensitivity ofbiomaterial-adherent Staphylococcus epidermidis and Staphylococcus aureus. Trans Orthop Res Soc 1989; 14: 108.Google Scholar
  9. 9.
    Naylor PT, Ruch D, Brownlow C, Webb LX, and Gristina AG. Fibronectin binding to orthopedic biomaterials and its subsequent role in bacterial adherence. Trans Orthop Res Soc 1989; 14: 561.Google Scholar
  10. 10.
    Pascual A, de Arellano ER, Martinez LM, and Parea EJ. Effect of polyurethane catheters and bacterial biofilm on the in-vitro activity of antimicrobials against Staphylococcus epidermidis. JHosp Infect 1993; 24: 211–218.CrossRefGoogle Scholar
  11. 11.
    Cheatle MD. The effect of chronic orthopedic infection on quality oflife. Orthop Clin North Am 1991; 22: 539–547.Google Scholar
  12. 12.
    Rutter PR, Dazzo FB, Freter R, Gingell D, Jones GW, Kjelleberg S, et al. Mechanisms of adhesion, in Microbial Adhesion and Aggregation 1984; (Marshall KC, ed), Springer-Verlag, New York, pp. 5–19.Google Scholar
  13. 13.
    Dankert J, Hogt AH, and Feijen J. Biomedical polymers: bacterial adhesion, colonization, and infection. CRC Crit Rev Biocompat 1986; 2: 219–301.Google Scholar
  14. 14.
    Hussain M, Wilcox MH, and White PJ. The slime of coagulase-negative staphylococci: biochemistry and relation to adherence. FEMSMicrobiol Rev 1993; 104: 191–208.Google Scholar
  15. 15.
    Tojo M, Yamashita N, Goldmann DA, and Pier GB. Isolation and characterization of a capsular polysaccharide adhesin from Staphylococcus epidermidis. J Infect Dis 1988; 157: 713–722.CrossRefGoogle Scholar
  16. 16.
    Timmerman CP, Pleer A, Besnier JM, de Graaf L, Cremers F, and Verhoef J. Characterization of a proteinaceous adhesin of Staphylococcus epidermidis which mediates attachment to polystyrene. Infect Immunol 1991; 59: 4187–4192.Google Scholar
  17. 17.
    Hasty DL, Ofek I, Courtney HS, and Doyle RJ. Multiple adhesins of streptococci. Infect Immunol 1992; 60: 2147–2152.Google Scholar
  18. 18.
    Charnley J and Eftekhar N. Postoperative infection in total prosthetic replacement arthroplasty of the hipjoint with special reference to the bacterial content of the air of the operating room. Br J Surg 1969; 56: 641–649.CrossRefGoogle Scholar
  19. 19.
    Benson MKD and Hughes SPF. Infection following total hip replacement in a general hospital without special orthopaedic facilities. Acta Orthop Scand 1975; 46: 968–978.CrossRefGoogle Scholar
  20. 20.
    Inman RD, Gallegos KV, Brause BD, Redecha PB, and Christian CL. Clinical and microbial features of prosthetic joint infection. Am J Med 1984; 77: 47–53.CrossRefGoogle Scholar
  21. 21.
    Coventry MB. Treatment of infections ocurring in total hip surgery. Orthop Clin North Am 1975; 6: 991–1003.Google Scholar
  22. 22.
    Charnley J. Postoperative infection after total prosthetic replacement with special reference to air contamination in the operating room. Clin Orthop 1972; 87: 167–187.CrossRefGoogle Scholar
  23. 23.
    Andrews HJ, Arden GP, Hart GM, and Owen JW. Deep infection after total hip replacement. JBone Joint Surg 1981; 63B: 53–57.Google Scholar
  24. 24.
    Kamme C and Lindberg L. Aerobic and anaerobic bacteria in deep infections after total hip arthroplasty. Clin Orthop 1981; 154: 201–207.Google Scholar
  25. 25.
    Sanderson Pi. The choice between prophylactic agents for orthopaedic surgery. J Hosp Infect 1988; 11 (Suppl C): 57–67.CrossRefGoogle Scholar
  26. 26.
    Sanderson PJ. Infection in orthopaedic implants. JHosp Infect 1991; 18 (Suppl A): 367–375.CrossRefGoogle Scholar
  27. 27.
    Josefsson G and Kolmert L. Prophylaxis with systematic antibiotics versus gentamycin bone cement in total hip arthroplasty. A ten-year survey of 1688 hips. Clin Orthop 1993; 292: 210–214.Google Scholar
  28. 28.
    Merritt K, Panigutti MA, Kraay MJ, and Brown SA. Incidence of infection and analysis of contributing factors in revision joint arthroplasty. Trans Soc Biomater 1992; 15: 63.Google Scholar
  29. 29.
    Sanzén L, Carlsson AS, Joseffsson G, and Lindberg LT. Revision operations on infected total hip arthroplasties. Two-to nine-year follow-up study. Clin Orthop 1988; 229: 165–172.Google Scholar
  30. 30.
    Maderazo EG, Judson S, and Pasternak H. Late infections of total joint prostheses. Clin Orthop 1988; 229: 131–142.Google Scholar
  31. 31.
    Fitzgerald RH and Jones DR. Hip implant infection. Treatment with resection arthroplasty and late hip arthroplasty. Am J Med 1985; 78 (Suppl 6B): 225–228.CrossRefGoogle Scholar
  32. 32.
    Cherney DL and Amstutz HC. Total hip replacement in previously septic hip. J Bone Joint Surg 1983; 65A: 1256–1265.Google Scholar
  33. 33.
    Fitzgerald RH, Nolan DR, listrup DM, and van Scoy RE. Deep wound sepsis following total hip arthroplasty. JBone Joint Surg 1977; 59A: 847–855.Google Scholar
  34. 34.
    Todd RC, Lightowler CDR, and Harris J. Total hip replacement in osteoarthrosis using the Charnley prosthesis. Br Med J1972; 2: 752–755.Google Scholar
  35. 35.
    Patterson FP and Brown CS. The McKee-Farrar total hip replacement. J Bone Joint Surg 1972; 54A: 257–275.Google Scholar
  36. 36.
    Wilson PD, Amstutz HC, Czerniecki A, Salvati EA, and Mendes DG. Total hip replacement with fixation by acrylic cement. J Bone Joint Surg 1972; 54A: 207–236.Google Scholar
  37. 37.
    Lowy FD and Hammed SM. Staphylococcus epidermidis infections. Ann Intern Med 1983; 99: 834–839.Google Scholar
  38. 38.
    Parisi JT. Coagulase-negative staphylococci and the epidemiological typing of Staphylococcus epidermidis. Biomaterials 1988; 9: 285–289.CrossRefGoogle Scholar
  39. 39.
    Buchholz HW, Elson RA, Englebrecht E, Lodenkämper H, Röttger J, and Siegel A. Management of deep infection on total hip replacement. JBone Joint Surg 1981; 63B: 342–353.Google Scholar
  40. 40.
    Grogan TJ, Dorey F, Rollins J, and Amstutz HC. Deep sepsis following total knee arthroplasty. J Bone Joint Surg 1986; 68A: 226–234.Google Scholar
  41. 41.
    Hughes SPF. The role of antibiotics in preventing infections following total hip replacement. J Hosp Infect 1988; 11 (Suppl): 41–47.CrossRefGoogle Scholar
  42. 42.
    Dougherty SH. Pathobiology of infection in prosthetic devices.RevinfectDis 1988; 10: 1102–1117.Google Scholar
  43. 43.
    Dougherty SH and Simmons RL. Endogenous factors contributing to prosthetic device infections. Infect Dis Clin North Am 1989; 3: 199–209.Google Scholar
  44. 44.
    Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 1988; 237: 1588–1595.CrossRefGoogle Scholar
  45. 45.
    Gristina AG, Naylor PT, and Myrvik QN. Musculoskeletal infection, microbial adhesion, and antibiotic resistance. Infect Dis Clin North Am 1990; 4: 392–408.Google Scholar
  46. 46.
    Gristina AG, Naylor PT, and Myrvik QN. Mechanisms of musculoskeletal sepsis. Orthop Clin North Am 1991; 22: 363–371.Google Scholar
  47. 47.
    Marshall KC. Mechanisms of bacterial adhesion at solid-water interfaces, in Bacterial Adhesion. Mechanisms and Physiological Significance 1985; (Savage DC and Fletcher M, eds), Plenum, New York, pp. 133–161.Google Scholar
  48. 48.
    Marshall KC, Stout R, and Mitchell R. Mechanism of initial events in the sorption of marine bacteria to surfaces. J Gen Microbiol 1971; 68: 337–348.CrossRefGoogle Scholar
  49. 49.
    Costerton JW and Lappin-Scott HM. Behavior of bacteria in biofilm. ASM News 1989; 55: 650–654.Google Scholar
  50. 50.
    Zobell CE. The effect of solid surfaces upon bac- terial activity. JBacteriol 1943; 46: 39–56.Google Scholar
  51. 51.
    Krekeler C, Ziehr H, and Klein J. Physical methods for characterization of microbial cell surfaces. Experientia 1989; 45: 1047–1054.CrossRefGoogle Scholar
  52. 52.
    Wicken AJ. Bacterial cell walls and surfaces, in Bacterial Adhesion. Mechanisms and Physiological Significance 1985; (Savage DC and Fletcher M, eds), Plenum, New York, pp. 45–70.Google Scholar
  53. 53.
    Duguid JO. The demonstration ofbacterial capsules and slime. JPathol Bacteriol 1951; 63: 673–685.CrossRefGoogle Scholar
  54. 54.
    Sutherland IW. Microbial exopolysaccharides. Their role in microbial adhesion in aqueous systems. CRC Crit Rev Microbiol 1983;10173–201.Google Scholar
  55. 55.
    Troy FA II. The chemistry and biosynthesis selected bacterial capsular polymers. Ann Rev Microbiol 1979; 33: 519–660.CrossRefGoogle Scholar
  56. 56.
    Kröncke KD, Orskov I, Orskov F, Jann B, and Jann K. Electron microscopic study of coexpression of adhesive protein capsules and polysaccharide capsules in Escherichia coli. Infect Immunol 1990; 58: 2710–2714.Google Scholar
  57. 57.
    Fletcher M and Floodgate GD. An electron-microscopic demonstration of an acidic polysaccharide involved in the adhesion of a marine bacterium to solid surfaces. JGen Microbiol 1973; 74: 325–334.Google Scholar
  58. 58.
    Hogt AH, Dankert J, Hulstaert CE, and Feijen J. Cell surface characteristics ofcoagulase-negative staphylococci and their adherence to fluorinated poly (ethylenepropylene). Infect Immunol 1986; 51: 294–301.Google Scholar
  59. 59.
    Hogt AH, Dankert J, de Vries JA, and Feijen J. Adhesion ofcoagulase-negative staphylococci to biomaterials. J Gen Microbiol 1983; 129: 2959 2968.Google Scholar
  60. 60.
    Hogt AH, Dankert J, and Feijen J. Adhesion of Staphylococcus epidermidis and Staphylococcus saprophyticus to a hydrophobic biomaterial. J Gen Microbiol 1985; 131: 2485–2491.Google Scholar
  61. 61.
    Yoshida K, Smith MR, and Naito Y. Biological and immunological properties of encapsulated strain of Staphylococcus aureus from human sources. Infect Immunol 1970; 2: 528–532.Google Scholar
  62. 62.
    Smith MM, Vasseur PB, and Saunders HM. Bacterial growth associated with metallic implants in dogs. JAVMA 1989; 195: 765–767.Google Scholar
  63. 63.
    Ichiman Y and Yoshida K. The relationship of capsular-type of Staphylococcus epidermidis to virulence and induction of resistance in the mouse. JAppl Microbiol 1981; 51: 229–241.CrossRefGoogle Scholar
  64. 64.
    Jann K and Jann B. Capsules of Escherichia coli, expression and biological significance. Can J Microbiol 1992; 38: 705–710.CrossRefGoogle Scholar
  65. 65.
    Philips GN, Flicker PE, Cohen C, Manjula BN, and Fischetti VA. Streptococcal M protein: a-helical coiled-coil structure and arrangement on the cell surface. ProcNatlAcad Sci USA 1981; 78: 4689–4693.CrossRefGoogle Scholar
  66. 66.
    Sokatch JR. Roles of appendages and surface layers in adapation of bacteria to their environment, in The Bacteria: A Treatise on Structure and Function 1979; (Gunsalus IC, Sokatch JR, and Ormston LN, eds), Academic, New York, pp. 229–290.Google Scholar
  67. 67.
    Beveridge TJ. Ultrastructure, chemistry and function of the bacterial wall. Int Rev Cytol 1981; 72: 229–317.CrossRefGoogle Scholar
  68. 68.
    Duguid JO, Smith IW, Dempster G, and Edmunds PN. Nonflagellar filamentous appendages (“fim-briae”) and haemagglutinating activity in bacte- rium coli. JPathol Bacteriol 1955; 70: 335–348.CrossRefGoogle Scholar
  69. 69.
    Brinton CC Jr. Non-flagellar appendages of bacteria. Nature 1959; 183: 782–786.CrossRefGoogle Scholar
  70. 70.
    Brinton CC. The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram-negative bacteria. Trans NY Acad Sci 1965; 27: 1003–1054.CrossRefGoogle Scholar
  71. 71.
    Jones GW and Isaacson RE. Proteinaceous bacterial adhesins and their receptors. CRC Crit Rev Microbiol 1983; 10: 229–260.CrossRefGoogle Scholar
  72. 72.
    Orskov I and f rskov F. Serologic classification of fimbriae. Curr Top Microbiol Immunol 1990; 151: 71–90.CrossRefGoogle Scholar
  73. 73.
    Krogfelt KA. Bacterial adhesion: genetics, biogenesis, and role in pathogenesis of fimbrial adhesins ofEscherichia coli. Rev Infect Dis 1991; 13: 721–735.CrossRefGoogle Scholar
  74. 74.
    Moch T, Hoschutzky H, Hacker J, Kroncke KD, and Jann K. Isolation and characterization of the a-sialyl-13–2,3-galactosyl-specific adhesin from fimbriated Escherichia coli. Proc Natl Acad Sci USA 1987; 84: 3462–3466.CrossRefGoogle Scholar
  75. 75.
    Hoschutzky H, Lottspeich F, and Jann K. Isolation and characterization of the aGal-(1,4)-bGal(P) specific adhesin from fimbriated Escherichia coli. Infect Immunol 1989; 57: 76–87.Google Scholar
  76. 76.
    de Graaf FK. Fimbrial structures of enterotoxigenic E. coli. Atonie van Leeuwenhook J Microbiol 1988; 54: 395–404.CrossRefGoogle Scholar
  77. 77.
    Mett H, Kloetzlen L, and Vosbeck K. Properties of pili from Escherichia coli SS 142 that mediate mannose-resistant adhesion to mammalian cells. J Bacteriol 1983; 153: 1038–1044.Google Scholar
  78. 78.
    Lindahl M, Faris A, Wadstrom T, and Hjerten S. A new test based on “salting out” to measure relative surface hydrophobicity of bacterial cells. Biochim Biophys Acta 1981; 677: 471–476.CrossRefGoogle Scholar
  79. 79.
    Hacker J. Role of fimbrial adhesins in the pathogenesis of Escherichia coli infections. Can J Microbiol 1992; 38: 720–727.CrossRefGoogle Scholar
  80. 80.
    Marrie TJ and Costerton CJW. Scanning electron microscopic study of uropathogen adherence to a plastic surface. Appl Environ Microbiol 1983; 45: 1018–1024.Google Scholar
  81. 81.
    Gristina AG, Hobgood CD, and Barth E, in Pathogenesis and Clinical Significance of CoagulaseNegative Staphylococci 1987; (Pulverer G, Quie PG, and Peters G, eds), Fisher Verlag, Sturttgart, pp. 143–157.Google Scholar
  82. 82.
    Christensen GD, Simpson WA, Bisno AL, and Beachey EH. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immunol 1982; 37: 318–326.Google Scholar
  83. 83.
    Christensen GD, Simpson WA, Bisno AL, and Beachey EH. Experimental infections in mice challenged with slime-producing Staphylococcus epidermidis. Infect Immunol 1983; 40: 407–410.Google Scholar
  84. 84.
    Davenport DS, Massanari RM, Pfaller MA, Bale MJ, Streed SA, and Hierholzer WJ. Usefulness of a test slime production as a marker for clinically significant infections with coagulase-negative staphylococci. Jlnfect Dis 1986; 153: 332–339.CrossRefGoogle Scholar
  85. 85.
    Khardori N, Rosenbaum B, and Bodey GP. Evaluation of in vitro markers for clinically significant infections with coagulase-negative staphylococci. Clin Res 1987; 35: 20.Google Scholar
  86. 86.
    Hussain M, Hastings JGM, and White PJ. Isolation and composition of the extracellular slime made by coagulase-negative staphylococci in a chemically defined medium. J Infect Dis 1991; 163: 534–541.CrossRefGoogle Scholar
  87. 87.
    Hussain M, Collins C, Hastings JGM, and White PJ. Radiochemical assay to measure the biofilm produced by coagulase-negative staphylococci on solid surfaces and its use to quantitate the effects of various antibacterial compounds on the formation of biofilm. JMed Microbiol 1992; 37: 62–69.CrossRefGoogle Scholar
  88. 88.
    Orstavik D. Sorption of Streptococcusfaecium to glass. Acta Pathol Microbiol Scand 1977; 85B: 38–46.Google Scholar
  89. 89.
    Fletcher M and Marshall KC. Bubble contact angle method for evaluating substratum interfacial characteristics and its relevance to bacterial attachment. Appl Environ Microbiol 1982; 44: 184–192.Google Scholar
  90. 90.
    Satou N, Satou J, Shintani H, and Okuda K. Adherence of streptococci to surface-modified glass. J Gen Microbiol 1988; 134: 1299–1305.Google Scholar
  91. 91.
    Ofek I, Whitnack E, and Beachy EH. Hydrophobic interactions of group A streptococci with hexadecane droplets. J Bacteriol 1983; 154: 139–145.Google Scholar
  92. 92.
    Ofek I, SimpsonWA, Whitnack E, and Beachy EH. Human plasma fibronectin inhibits adherence of Streptococcus pyogenes to hexadecane. Infect Immunol 1985; 47: 341–343.Google Scholar
  93. 93.
    Denyer SP, Davies MC, Evans JA, Finch RG, Smith DGE, Wilcox MH, and Williams P. J Clin Microbiol 1990; 28: 1813–1817.Google Scholar
  94. 94.
    Gordon AS, Gerchakov SM, and Udey LR. The effect of polarization on the attachment of marine bacteria to copper and platinum surfaces. Can J Microbiol 1981; 27: 698–703.CrossRefGoogle Scholar
  95. 95.
    Harber MJ, Mackenzie R, and Asscher AW. A rapid bioluminescence method for quantifying bacterial adhesion to polystyrene. JGen Microbiol 1983; 129: 621–632.CrossRefGoogle Scholar
  96. 96.
    Pascual A, Fler A, Westerdaal NAC, and Verhoef J. Modulation of adherence of coagulase-negative staphylococci to Teflon catheters in vitro. Eur J Microbiol 1986; 6: 518–522.CrossRefGoogle Scholar
  97. 97.
    Carsenti-Etesse H, Durant J, Entenza J, Mondain V, Pradier C, Bernard E, and Dellamonica P. Effects of subinhibitory concentrations of vanco- mycin and teicoplanin on adherence of staphylo- cocci to tissue culture plates. Antimicrob Agents Chemother 1993; 37: 921–923.CrossRefGoogle Scholar
  98. 98.
    Busscher HJ, Weerkamp AH, van der Mei HC, van Pelt AWJ, de Jong HP, and Arends J. Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl Environ Microbiol 1984; 48: 980–983.Google Scholar
  99. 99.
    Gibbons RJ and Etherden I. Comparative hydrophobicities of oral bacteria and their adherence to salivary pellicles. Infect Immunol 1983; 41: 1190–1196.Google Scholar
  100. 100.
    Rosenberg M, Gutnick D, and Rosenberg E. Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 1980; 9: 29–33.CrossRefGoogle Scholar
  101. 101.
    Verheyen CCPM, Dhert WJA, de Blieck-hogervorst JMA, van der Reijden TJK, Petit PLC, and de Groot K. Adherence to a metal, polymer and composite by Staphylococcus aureus and Staphylococcus epidermidis. Biomaterials 1993; 14: 383–391.CrossRefGoogle Scholar
  102. 102.
    Rosenberg M. Bacterial adherence to polystyrene: a replica method of screening for bacterial hydrophobicity. Appl Environ Microbiol 1981; 42: 375–377.Google Scholar
  103. 103.
    Gerson DF and Scheer D. Cell surface energy, contact angle and phase partition. III. Adhesion of bacterial cells to hydrophobic surfaces. Biochim Biophys Acta 1980; 602: 506–510.CrossRefGoogle Scholar
  104. 104.
    van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, and Zehnder AJB. The role of bacterial cell wall hydrophobicity in adhesion.ApplEnviron Microbiol 1987; 53: 1893–1897.Google Scholar
  105. 105.
    Mafu AA, Roy D, Goulet J, and Savoie L. Characterization of physicochemical forces involved in adhesion ofListeria monocytigenes to surfaces. Appl Environ Microbiol 1991; 57: 1969–1973.Google Scholar
  106. 106.
    Mozes N and Rouxhet PG. Methods for measuring hydrophobicity of microorganisms. J Microbiol Meth 1987; 6: 99–112.CrossRefGoogle Scholar
  107. 107.
    Neu TR and Marshall KC. Bacterial polymers: physicochemical aspects of their interactions at interfaces. J Biomater Appl 1990; 5: 107–131.CrossRefGoogle Scholar
  108. 108.
    van Loosdrecht, MCM, Lyklema J, Norde W, Schraa G, and Zehnder AJB. Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 1987; 53: 1898–1901.Google Scholar
  109. 109.
    Westergren G and Olsson J. Hydrophobicity and adherence of oral streptococci after repeated sub- culture in vitro. Infect Immunol 1983; 40: 432–435.Google Scholar
  110. 120.
    Harden VP and Harris JO. The isoelectric point of bacterial cells. JBacteriol 1953; 65: 269–271.Google Scholar
  111. 121.
    Sherbet GV and Fisher DJ. Characterization of Escherichia coli cell surface by isoelectric equilibrium analysis. Biochim Biophys Acta 1973; 298: 50–58.CrossRefGoogle Scholar
  112. 122.
    Richmond DV and Fisher DJ. The electrophoretic mobility of microorganisms. Adv Microbiol Physiol 1973; 9: 1–29.CrossRefGoogle Scholar
  113. 123.
    Olsson J, Glantz PO, and Krasse B. Surface potential and adherence of oral streptococci to solid surfaces. Scand J Dent Res 1976; 84: 240–242.Google Scholar
  114. 124.
    Rutter PR and Abbott A. A study of the interaction between oral streptococci and hard surfaces. J Gen Microbiol 1978; 105: 219–226.CrossRefGoogle Scholar
  115. 125.
    Gilbert P, Evans DJ, Evans E, Duguid IG, and Brown MRW. Surface characteristics and adhesion ofEscherichia coli and Staphylococcus epidermidis. JAppl Bacteriol 1991; 71: 72–77.Google Scholar
  116. 126.
    Noda Y, Katayama T, and Kanemasa Y. Determination of surface charge ofMicrococcus luteus by colloid titrition. Physiol Chem Phys Med NMR 1984; 16: 29–34.Google Scholar
  117. 127.
    Pedersen K. Electrostatic interaction chromatography, a method for assaying the relative surface charges of bacteria. FEMS Microbiol Lett 1980; 12: 365–367.CrossRefGoogle Scholar
  118. 128.
    Abbot A, Rutter PR, and Berkeley RCW. The influence of ionic strength, pH and a protein layer on the interaction between Streptococcus mutans and glass surfaces. J Gen Microbiol 1983; 129: 439–445.Google Scholar
  119. 129.
    Harkes G, Feijen J, and Dankert J. Adhesion of Escherichia coli on to a series of poly (methacrylates) differing in charge and hydrophobicity. Biomaterials 1991; 12: 853–860.CrossRefGoogle Scholar
  120. 130.
    Oga M, Sugioka Y, Hobgood CD, Gristina AG, and Myrvik QN. Surgical biomaterials and differential colonization by Staphylococcus epidermidis. Biomaterials 1988; 9: 285–289.CrossRefGoogle Scholar
  121. 131.
    Barth E., Myrvik QN, Wagner W, and Gristina AG. In vitro and vivo comparative colonization of Staphylococcus aureus and Staphylococcus epidermidis on orthopedic implant materials. Biomaterials 1989; 10: 325–328.CrossRefGoogle Scholar
  122. 132.
    Reynolds EC and Wong A. Effect of adsorbed protein on hydroxyapatite zeta potential and Streptococcus mutans adherence. Infect Immunol 1983; 39: 1285–1290.Google Scholar
  123. 133.
    Annual Book of ASTM Standards 1985; Section 13. F86–76. Surface preparation and marking of metallic surgical implants. ASTM Publications, Philadelphia, pp. 15–17.Google Scholar
  124. 134.
    Pringle JH and Fletcher M. Influence of substratum hydration and adsorbed macromolecules on bacterial attachment to surfaces. Appl Environ Microbiol 1986; 51: 1321–1325.Google Scholar
  125. 135.
    Locci R, Peters G, and Pulverer G. Microbial colonization of prosthetic devices. I. Microtopographical characteristics of intravenous catheters as detected by scanning electron microscopy. Zbl Bakt Hyg I Abt Orig, B 1981; 173: 285–292.Google Scholar
  126. 136.
    Locci R, Peters G, and Pulverer G. Microbial 149 colonization of prosthetic devices. III. Adhesion of staphylococci to lumina of intravenous catheters perfused with bacterial suspension. Zbl Bakt 150 Hyg I Abt Orig. B 1981; 173: 300–307.Google Scholar
  127. 137.
    Friedman RJ, An YH, Draughn RA, Smith EA, Nicholson J, and John JF. Rapid quantification of staphylococci adhered to titanium surfaces using 151 image analyzed epifluorescence microscopy. Trans Orthop Res Soc 1993; 18: 456.Google Scholar
  128. 138.
    Chu C-C and Williams DF. Effects of physical configuration and chemical structure of suture 152 materials on bacterial adhesion. Am JSurg 1984; 147: 197–204.CrossRefGoogle Scholar
  129. 139.
    Sugarman B and Musher D. Adherence of bacte- 153 ria to suture materials. Proc Soc Exp Biol Med 1981; 167: 156–160.Google Scholar
  130. 140.
    Duran LW, Pietig JA, Driemeyer JE, Marcy JA, Melchoir MJ, Mueller SM, and Hu SP. Prevention of microbial colonization on medical devices 154 by photochemical immobilization of antimicrobial peptides. Trans Soc Biomater 1993; 16: 35.Google Scholar
  131. 141.
    Bridgett MJ and Davies MC. Control of staphylococcal adhesion to polystyrene surfaces by polymer surface modification with surfactant. 155 Biomaterials 1992; 13: 411–416.CrossRefGoogle Scholar
  132. 142.
    Speier JL and Malek JR. Destruction of microorganisms by contact with solid surfaces. JColloid Interface Sci 1982; 89: 68–76.CrossRefGoogle Scholar
  133. 143.
    Oga M, Arizono T, and Sugioka Y. Bacterial 156 adherence to bioinert and bioactive materials studied in vitro. Acta Orthop Scand 1993; 64: 273–276.CrossRefGoogle Scholar
  134. 144.
    Prewett AB, Domenick JM, Tsang N, O’Leary 157 RK, and Daniels AU. Differential adherence of three clinical isolates of staphylococcus to various metal surfaces. Trans Soc Biomater 1991; 14: 105. 158Google Scholar
  135. 145.
    An YH, Friedman RJ, Draughn RA, Smith E, Qi C, and John JF. Staphylococci adhesion to orthopaedic biomaterials. Trans Soc Biomater 1993; 16: 148.Google Scholar
  136. 146.
    McAllister EW, Carey LC, Brady PG, Heller R, 159 and Kovacs SG. The role of polymeric surface smoothness of biliary stents in bacterial adhesion, biofilm deposition, and stent occlusion. Gastrointest Endosc 1993; 39: 422–425.CrossRefGoogle Scholar
  137. 147.
    Baker AS and Greenham LW. Release of gentamicin from acrylic bone cement: elution and dif 160 fusion studies. J Bone Joint Surg 1988; 70A: 1551–1557. 161Google Scholar
  138. 148.
    Quirynen M, van der Mei HC, Bollen CML, Shotte A, Marechal M, Doornbush GI, et al. An in vivo study of the influence of the surface roughness of implants on the microbiology of supra-and subgingival plaque. J Dent Res 1993; 72: 1304–1309.CrossRefGoogle Scholar
  139. 149.
    Merritt K, Shafer JW, Brown SA. Implant site infection rates with porous and dense materials. J Biomed Mater Res 1979; 13: 101–108.CrossRefGoogle Scholar
  140. 150.
    Fletcher M, Loeb GI. Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Appl Environ Microbiol 1979; 37: 67–72.Google Scholar
  141. 151.
    Ludwicka A, Jansen B, Wadstrom T, and Pulverer G. Attachment of staphylococci to various synthetic polymers. Zbl Bakt Hyg 1984; A256: 479–489.Google Scholar
  142. 152.
    Fletcher M. The effects of proteins on bacterial attachment to polystyrene. J Gen Microb 1976; 94: 400–404.CrossRefGoogle Scholar
  143. 153.
    Vaudaux P, Suzuki R, Waldvogel FA, Morgenthaler JJ, and Nydegger UE. Foreign body infection: role of fibronectin as a ligand for the adherence of staphylococcus aureus. Jlnfect Dis 1984; 150: 546–553.CrossRefGoogle Scholar
  144. 154.
    Vaudaux PE, Waldvogel FA, Morgenthaler JJ, Nydegger UE. Adsorption of fibronectin onto polymethylmethacylate and promotion of Staphylococcus aureus adherence. Infect Immunol 1984; 45: 768–774.Google Scholar
  145. 155.
    Kuusela P, Vartio T, Vuento M, Myhre EB. Attachment of staphylococci and streptococci on fibronectin, fibronectin fragments, and fibrinogen bound to a solid phase. Infect Immunol 1985; 50: 77–85.Google Scholar
  146. 156.
    Pratt-Terpstra I, Weerkamp AH, Busschep HJ. Adhesion of oral streptococci from a flowing suspension to uncoated and albumin-coated surfaces. J Gen Microb 1987; 133: 3199–3260.Google Scholar
  147. 157.
    Muller E, Takeda S, Goldmann D, Pier GB. Blood proteins do not promote adherence of coagulase-negative staphylococci to biomaterials. Infect Immunol 1991; 59: 3323–3326.Google Scholar
  148. 158.
    Brokke P, Dankert J, Carballo J, Feijen J. Adherence of coagulase-negative staphylococci onto polyethylene catheters in vitro and in vivo: a study on the influence of various plasma protein. J Biomater Appl 1991; 5: 204–226.CrossRefGoogle Scholar
  149. 159.
    Miörner H, Myhre E, Björck L, Kronvall G. Effect of specific binding of human albumin, fibrinogen, and immunoglobulin G on surface characteristics of bacterial strains as revealed by partition experiments in polymer phase system. Infect Immunol 1980; 29: 879–885.Google Scholar
  150. 160.
    Kuusela P. Fibronectin binds to Staphylococcus aureus. Nature 1978; 276: 718–720.CrossRefGoogle Scholar
  151. 161.
    Maxe I, Rydén C, Wadström T, Rubin K. Specific attachment of Staphylococcus aureus to immobilized fibronectin. Infect Immunol 1986; 64: 695–704.Google Scholar
  152. 162.
    Vaudaux P, Pittet D, Haeberli A, Lerch PG, 175 Morgenthaler JJ, Proctor RA, et al. Fibronectin is more active than fibrin or fibrinogen in promoting Staphylococcus aureus adherence to inserted intravascular catheters. J Infect Dis 1993; 167: 633–641. 176Google Scholar
  153. 163.
    Espersen F and Clemmensen I. Isolation of a fibronectin-binding protein from Staphylococcus aureus. Infect Immunol 1982; 37: 526–531. 177Google Scholar
  154. 164.
    Rydén C, Rubin K, Speziale P, Höök M, Linberg M, and Wadström T. Fibronectin receptors from Staphylococcus aureus. JBiol Chem 1983; 258: 178 3396–3401.Google Scholar
  155. Flock JI, Fröman G, Jönsson K, Guss B, Signas C, Nilsson B, et al. Cloning and expression of the 179 gene for a fibronectin-binding protein from Staphylococcus aureus. EMBOJ 1987; 6: 2351–2357.Google Scholar
  156. 166.
    Fröman G, Switalski LM, Speziale P, Höök M. Isolation and characterization of a fibronectin 180 receptor from Staphylococcus aureus. J Biol Chem 1987; 262: 6564–6571.Google Scholar
  157. 167.
    Mosher DF and Proctor RA. Binding and factor XIIIa-mediated cross-linking of a 27kildalton fragment of fibronectin to Staphylococcus aureus. 181 Science 1980; 209: 927–929.Google Scholar
  158. 168.
    Bozzini S, Visai L, Pignatti P, Petersen TE, and Speziale P. Multiple binding sites in fibronectin and the staphylococcal fibronectin receptor. Eur JBiochem 1992; 207: 327–333. 182Google Scholar
  159. 169.
    Scheid WM, Strunk RW, Ballian G, and Calderone RA. Microbial adhesion to fibronectin in vitro correlates with production of endocarditi s 183 in rabbits (42205). Proc Soc Exp Biol Med 1985; 180: 474–482.Google Scholar
  160. 170.
    Herrmann M, Vaudaux PE, Pittit D, Auckenthaler R, Lew PD, Schumacher-Perdreau F, et al. Fibro- 184 nectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococci isolates to foreign material. Jlnfect Dis 1988; 158: 693–701.CrossRefGoogle Scholar
  161. 171.
    Espersen F, Frimodt-Moller N, Corneliussen L, Rosdahl VT, and Clemmensen I. Attachment of 185 staphylococci to silicone catheters in vitro. APMIS 1990; 98: 471–478.CrossRefGoogle Scholar
  162. 172.
    Paulsson M, Kober M, Freij-Larsson C, Stollen- 186 werk M, Wesslén B, and Ljungh A. Adhesion of staphylococci to chemically modified and native polymers, and the influence ofpreadsorbed fibronectin, vitronectin and fibrinogen. Biomaterials 187 1993; 14: 845–853.CrossRefGoogle Scholar
  163. 173.
    Gibbons RI, Etherden I. Albumin as a block- 188 ing agent in studies of Streptococcal adsorption to experimental salivary pellicles. Infectlmmunol 1985; 50: 1592–1594.Google Scholar
  164. 174.
    Flemming RG, Lai QJ, Hermann M, Proctor RA, Cooper SL. The effect of fibrinogen on bac- 189 terial adhesion to polyurethanes. Trans Soc Biomater 1993; 16: 153.Google Scholar
  165. 175.
    Herrmann M, Lai QJ, Albrecht RM, Mosher DF, and Proctor RA. Adhesion of Staphylococcus aureus to surface-bound platelets: role of fibronectin/fibrin and platelet integrins. J Infect Dis 1993; 167: 312–322.CrossRefGoogle Scholar
  166. 176.
    Cheung AL and Fischetti VA. The role of fibrinogen in staphylococcal adherence to catheters in vitro. J Infect Dis 1990; 161: 1177–1186.CrossRefGoogle Scholar
  167. 177.
    Switalski LM, Speziale P, Höök M, Wadström T, and Timpl R. Binding of Streptococcus pyogenes to laminin. JBiol Chem 1984; 259: 3734–3738.Google Scholar
  168. 178.
    Lopes JD, dos Reis M, and Brentani RR. Presence of laminin receptors in Staphylococcus aureus. Science 1985; 229: 275–277.Google Scholar
  169. 179.
    Wang I-W, Anderson JM, Marchant RE. Staphylococcus epidermidis adhesion to hydrophobic biomedical polymer is mediated by platelets. J Infect Dis 1993; 167: 329–336.CrossRefGoogle Scholar
  170. 180.
    Herrmann M, Suchard SJ, Boxer LA, Waldvogel FA, and Lew PD. Thrombospondin binds to Staphylococcus aureus and promotes staphylococcal adherence to surface. Infect Immunol 1991; 59: 279–288.Google Scholar
  171. 181.
    Franson TR, Sheth NK, Rose HD, and Sohnle PG. Quantitative adherence in vitro of coagulase-negative staphylococci to intravascular catheters: inhibition with D-mannosamine. J Infect Dis 1984; 149: 116.CrossRefGoogle Scholar
  172. 182.
    Hawthorn L and Rieid G. The effect of protein and urine on uropathogen adhesion to polymer substrata. JBiomed Mater Res 1990; 24: 1325–1332.CrossRefGoogle Scholar
  173. 183.
    Morris EJ and McBride BC. Adherence of Streptococcus sanguis to saliva-coated hydroxyapatite: evidence for two binding sites. Infect Immunol 1984; 43: 656–663.Google Scholar
  174. 184.
    Liljemark WF and Bloomquist CG. Isolation of a protein-containing cell surface component from Streptococcus sanguis which affects its adherence to saliva-coated hydroxyapatite. Infect Immunol 1981; 34: 428–434.Google Scholar
  175. 185.
    Bayer EA, Kenig R, and Lamed R. Adherence of Clostridium thermocellum to cellulose. JBacteriol 1983; 156: 818–827.Google Scholar
  176. 186.
    Gristina AG and Costerton JW. Bacterial adherence and the glycocalyx and their role in musculoskeletal infection. Orthop Clin North Am 1984; 15: 517–535.Google Scholar
  177. 187.
    Gillespie WJ. Infection in total joint replacement. Infect Dis Clin North Am 1990; 4: 465–484.Google Scholar
  178. 188.
    Simpson WA, Courtney HS, and Ofek I. Interactions of fibronectin with streptococcus: the role of fibronectin as a receptor for Streptococcus pyogenes. Rev Infect Dis 1987; 9 (Suppl): 5351–5359.Google Scholar
  179. 189.
    Costerton JW, Marrie TJ, and Cheng K-J. Phe- nomena of bacterial adhesion, in Bacterial Adhe- sion: Mechanisms and Physiological Significance1985; (Savage DC and Fletcher M, eds), Plenum, infection: description and characteristics of an New York, pp 1–43. animal model. Jlnfect Dis 1982; 146: 487–497.CrossRefGoogle Scholar
  180. 190.
    Tollefson ED, Bandyk DF, Kaebnick HW, Sea- 204 Henricks PAJ, van der Tol ME, Thyssen RMWM, brook GR, and Towne JB. Surface biofilm dis van Asbeck BS, and Verhoef J. Escherichia coli ruption. Enhanced recovery of microorganisms lipopolysaccharides diminish and enhance cell from vascular prostheses. Arch Surg 1987; 122: function of human polymorphonuclear leuko 38–43. cytes. Infect Immunol 1983; 41: 294–302.Google Scholar
  181. 191.
    Blenkinsopp SA and Costerton JW. Understand- 205 Rae T. The action of cobalt, nickel, and chromiuming bacterial biofilms. Tibtech 1991; 9: 138–142. on phagocytosis and bacterial killing by humanGoogle Scholar
  182. 192.
    Merritt K, Brown SA, Payer JH, and Ryerson DH. polymorphonuclear leukocytes. Biomaterials Influence of bacteria on corrosion of metallic 1983; 4: 175–180. biomaterials. Trans Soc Biomater 1991; 14: 106. 206 Lidwell OM. Air, antibiotics and sepsis inGoogle Scholar
  183. 193.
    Kieswetter K, Merritt K, and Myers R. Effects of replacement joints. J Hosp Infect 1988;11(Suppl infection on hydroxyapatite coating. Trans Soc C): 18–40. Biomater 1993; 16: 220. 207 Nelson JP, Glassburn AR, Talbott RD, and:27: 775–781. 167–169.Google Scholar
  184. 194.
    Verheyen CCPM, Dhert WJA, Petit PLC, Rozing McElhinney JP. The effect of previous surgery, PM, and de Groot K. In vitro study on the integ operating room environment, and preventive rity of a hydroxylapatite coating when challenged antibiotics on postoperative infection following with staphylococci. J Biomed Mater Res 1993; total hip arthroplasty. Clin Orthop 1980; 147Google Scholar
  185. 195.
    Nickel JC, Ruseska I, Wright JB, and Costertron 208 Jerry GJ, Rand JA, and llstrup D. Old sepsis prior JW. Tobramycin resistance of Pseudomonas to total knee arthroplasty. Clin Orthop 1988; 236:Google Scholar
  186. 196.
    Arizono T, Oga M, and Sugioka Y. Increased culosis of the hip. JBone Joint Surg 1988; 70B: resistance of bacteria after adherence to polym 756–760.Google Scholar
  187. 197.
    Vergères P and Blaser J. Amikacin, ceftazidine, arthroplasty. Jlnfect Dis 1992; 165: 281–289.CrossRefGoogle Scholar
  188. 198.
    Vaudaux PE, Zulian G, Huggler E, and Waldvogel FA. Attachment of Staphylococcus aureus to spire at a solid-liquid interface: a model. Arch phagocytosis in foreign body infection. Infect Immunol 1985; 50: 472–477.Google Scholar
  189. 199.
    Dobbins JJ, Seligson D, and Raff MJ. Bacterial Adherence of coagulase-negative staphylococci Acta Orthop Scand 1992; 63:Google Scholar
  190. 200.
    James RC and MacLeod CJ. Induction of staphy-lococcal infections in mice with small inocula of the adherence of Staphylococcus epidermidis to introduced on sutures. BrJExp Pathol 1961; 42:Google Scholar
  191. 201.
    Dougherty SH and Simmons RL. ethyl methacrylate. Balderston R. The infection hip after total hip patients. JBone Joint Surg 1983; 65B: 580, 581.Google Scholar
  192. 202.
    James RC and MacLeod CJ.colonization of orthopedic fixation devices in the to plastic tissue culture plates: a quantitative. Jlnfect Dis 1992; 165: 281–289.Google Scholar
  193. 203.
    Baddour LM, Barret FF, Melton DM, et al. absence of clinical infection. Jlnfect Dis 1988; model for the adherence of staphylococci to 158: 203–205.Google Scholar
  194. 204.
    James RC and MacLeod CJ. Induction of staphy-lococcal infections in mice with small inocula of the adherence of Staphylococcus epidermidis to introduced on sutures. BrJExp Pathol 1961; 42:Google Scholar
  195. 205.
    Dougherty SH and Simmons RL. Infections incellular slime bionic man: the pathobiology of infections in by Staphylococcus epidermidis during stationary prosthetic devices—Part I. CurrProb Surg 1982; 19: 221–264.Google Scholar
  196. 206.
    Klock JC and Bainton DF. Degranulation and abnormal bactericidal function of granulocytes procured by reversible adhesion to nylon wool. Blood 1976; 48: 149–161.Google Scholar
  197. 207.
    Zimmerli W, Waldvogel FA, Vaudaux P, and 661–664.Google Scholar
  198. 208.
    Vergères P and Blaser J. Amikacin, ceftazidine, arthroplasty. Jlnfect Dis 1992; 165: 281–289.CrossRefGoogle Scholar
  199. 209.
    Kim YY, Ko CU, Ahn JY, Yoon YS, and Kwak 1985; 27: 619–624.Google Scholar
  200. 210.
    Canner GC, Steinberg ME, Heppenstall RB, polymethylmethacrylate increases its resistance to Microbiol 1984; 138: 84–88.Google Scholar
  201. 211.
    Menon TJ, Thjellesen D, and Wroblewski BM. plastic by using cellular urease as a marker. Appl 266–277.Google Scholar
  202. 212.
    Kefford B and Marshall KC. Adhesion of Environ Microbiol 1991; 57: 863–866.Google Scholar
  203. 213.
    Christensen GD, Simpson WA, Younger JJ, cal devices. J Clin Microbiol 1985; 22: 996–1006.Google Scholar
  204. 214.
    Dunne WM Jr and Burd EM. In vitro measurement to implantable devices. J Clin Pathol 1990; 43:Google Scholar
  205. 215.
    Rodgers RB. Production of extra phase of growth: its association with adherence 866–870.Google Scholar
  206. 216.
    Olsson J and Krasse B. A method for studying adherence of oral streptococci to solid surfaces. Scand J Dent Res 1976; 84: 20–28.Google Scholar
  207. 217.
    Leake ES, Gridtina AG, and Wright MJ. Use of Nydegger UE. Pathogenesis of foreign body chamotaxis chambers for studying in vitro bacterial colonization ofbiomaterials.JClin Microbiol 1982; 15: 320–323.Google Scholar
  208. 218.
    Rutter PR and Leech R. The deposition of Streptococcus sanguis NCTC 7868 from a flowing suspension. J Gen Microbiol 1980; 120: 301–307.Google Scholar
  209. 219.
    Fowler HW and McKay AJ. The measurement of microbial adhesion, in Microbial Adhesion to Surfaces 1980; (Berkeley RW, Lynch JM, Melling J, Rutter PR, and Vincent B, eds), Ellis Horwood, Chichester, UK, p 143.Google Scholar
  210. 220.
    Duddridge JE, Cent CA, and Laws JF. Effect of surface shear stress on the attachment of Pseudomonas fluorescens to stainless steel under defined flow conditions. Biotech Bioeng 1982; 24: 153–164.CrossRefGoogle Scholar
  211. 221.
    McCoy WF, Bryers JD, Robbins J, Costerton JW. Observation ofbiofilm formation. CanJMicrobiol 1981; 27: 910–917.Google Scholar
  212. 222.
    Fletcher M. Methods for studying adhesion and attachment to surfaces. Meth Microbiol 1990; 22: 251–280.CrossRefGoogle Scholar
  213. 223.
    Pringle JH and Fletcher M. Influence of substratum wettability on attachment of freshwater bacteria to solid surfaces. Appl Environ Microbiol 1983; 45: 811–817.Google Scholar
  214. 224.
    van Pelt AWJ, Weerkamp AH, Uyen MHWJC, Busscher HJ, de Jong HP, and Arends J. Adhesion of Streptococcus languis CH3 to polymers with different surface free energies. Appl Environ Microbiol 1985; 49: 1270–1275.Google Scholar
  215. 225.
    Hogt AH, Dankert J, and Feijen J. Adhesion of coagulase-negative staphylococci to methacrylate polymers and copolymers. J Biomed Mater Res 1986; 20: 533–545.CrossRefGoogle Scholar
  216. 226.
    Pitt WG, McBride MO, Barton AJ, and Sagers RD. Air-water interface displaces adsorbed bacteria. Biomaterials 1993; 14: 605–608.CrossRefGoogle Scholar
  217. 227.
    Meyer-Reil LA, Dawson R, Liebezeit G, and Tiedge H. Fluctuations and interactions of bacterial activity in sandy beach sediments and overlying waters. Mar Biol 1978; 48: 161–171.CrossRefGoogle Scholar
  218. 228.
    McDaniel JA and Capone G. A comparison of procedures for the separation of aquatic bacteria from sediments for subsequent direct enumeration. JMicrobiol Meth 1985; 3: 291–302.CrossRefGoogle Scholar
  219. 229.
    Bergamini TM, Bandyk DF, Govostis D, Vetsch R, and Towne JB. Identification of Staphylococcus epidermidis vascular graft infections: a comparison of culture techniques. J Vasc Surg 1989; 9: 665–670.Google Scholar
  220. 230.
    Sugarman B. Adherence of bacteria to urinary catheters. Urol Res 1982; 10: 37–40.CrossRefGoogle Scholar
  221. 231.
    Isiklar ZU, Landon GC, Musher DM, and Watson D. Increasing diagnostic yield of bacteria in bone and implant infections. Trans Orthop Res Soc 1993; 18: 454.Google Scholar
  222. 232.
    McFeters GA, Bazin MJ, Bryers JD, Caldwell DE, Characklis WG, Lind DB, et al. Biofilm development and its consequences, in Microbial Adhesion and Aggregation 1984; (Marshall KC, ed), Springer-Verlag, New York, pp 109–124.Google Scholar
  223. 233.
    Characklis WG. Laboratory biofilm reactors, in Biofilm 1990; (Characklis WG and Marshall KC, eds), Wiley, New York, Chichester, Brisbane, Toronto, Singapore, pp 55–89.Google Scholar
  224. 234.
    Ladd TI and Costerton JW. Methods for studying biofilm bacteria. Meth Microbiol 1990; 22: 287–307.Google Scholar
  225. 235.
    Gristina AG and Costerton JW. Bacterial adherence to biomaterials and tissue. JBone Joint Surg 1985; 67A: 264–273.Google Scholar
  226. 236.
    Reid, GR, Denstedt JD, Kang YS, Lam D, and Nause C. Microbial adhesion and biofilm formation on ureteral stents in vitro and in vivo. J Urol 1992; 148: 1592–1594.Google Scholar
  227. 237.
    Prosser BLT, Taylor D, Barbara BA, and Cleeland R. Method of evaluating effects of antibiotics on bacterial biofilm. Antimicrob Agents Chemother 1987; 31: 1502–1506.CrossRefGoogle Scholar
  228. 238.
    Ladd TI, Schmiel D, Nickel JC, and Costerton JW. The use of a radiorespirometric assay for testing the antibiotic sensitivity of catheter-associated bacteria. J Uro11987; 138: 1451–1466.Google Scholar
  229. 239.
    Holmes CJ, Revans RC, and Vonesh E. Application of an empirically derived growth curve model to characterize Staphylococcus epidermidis biofilm development on silicone elastomer. Biomaterials 1989; 10: 625–629.CrossRefGoogle Scholar
  230. 240.
    Bryers J and Characklis W. Early fouling biofilm formation in a turbulent flow system: overall kinetics. Water Res 1981; 15: 483–491.CrossRefGoogle Scholar
  231. 241.
    Buret A, Ward KH, Olson ME, and Costerton JW. An in vivo model to study the pathobiology of infectious biofilms on biomaterial surfaces. J Biomed Mater Res 1991; 25: 865–874.CrossRefGoogle Scholar
  232. 242.
    Gallimore B, Gagnon RF, Subang R, and Richards GK. Natural history of chronic Staphylococcus epidermidis foreign body infection in a mousemodel. JlnfectDis 1991; 164: 1220–1223.CrossRefGoogle Scholar
  233. 243.
    Isiklar ZU, Landon GC, Daruiche R, Fernau R, and Musher D. Penetration of vancomycin into biofilm: an in-vivo orthopedic implant infection model. Trans Orthop Res Soc 1993; 18: 458.Google Scholar
  234. 244.
    Mayberry-Carson KJ, Tober-Meyer B, Smith JK, Lambe DW Jr, and Costerton JW. Bacterial adherence and glycocalyx formation in osteomyelitis experimentally induced with Staphylococcus aureus. Infect Immunol 1984; 43: 825–833.Google Scholar
  235. 245.
    Mayberry-Carson KJ, Tober-Meyer B, Gill LR, Lambe DW Jr, and Costerton JW. Osteomyelitis experimentally induced with Bacteroides thetaiotaomicron and Staphylococcus epidermidis. Influence of a foreign-body implant. Clin Orthop 1992; 280: 289–299.Google Scholar
  236. 246.
    Olson ME, Ruseska I, and Costerton JW. Colonization of n-butyl-2-cyanoacrylate tissue adhesive by Staphylococcus epidermidis. JBiomed Mater Res 1988; 22: 485–495.CrossRefGoogle Scholar
  237. 247.
    Pfaller M, Davenport D, Bale M, Barrett M, Koontz F, and Massanari RM. Development of the quantitative micro-test for slime production by coagulase-negative staphylococci. Eur J Clin Microbiol Infect Dis 1988; 7: 30–33.CrossRefGoogle Scholar
  238. 248.
    Fry JC. Direct methods and biomass estimation. Meth Microbiol 1990; 22: 41–81.CrossRefGoogle Scholar
  239. 249.
    Herbert RA. Methods for enumerating microorganisms and determining biomass in natural environments. Meth Microbiol 1990; 22: 2–35.Google Scholar
  240. 250.
    Allison DG and Sutherland IW. A staining technique for attached bacteria and its correlation to extracellular carbohydrate production. JMicrobiol Meth 1984; 2: 93–99.CrossRefGoogle Scholar
  241. 251.
    Fletcher M. Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium-substratum separation distance. JBacteriol 1988; 170: 2027–2030.Google Scholar
  242. 252.
    Szewzyk U and Schink B. Surface colonization by and life cycle of Pelobacter acidigallici studied in a continuous-flow microchamber. J Gen Microbiol 1988; 134: 183–190.Google Scholar
  243. 253.
    Caldwell DE and Germida JJ. Evaluation ofdifferent imagery for visualizing and quantitating microbial growth. Can JMicrobiol 1985; 31: 35–44.CrossRefGoogle Scholar
  244. 254.
    Caldwell DE and Lawrence JR. Growth kinetics of Pseudomonas fluorescens microcolonies within the hydrodynamic boundary layers of surface microenvironments. Microb Ecol 1986; 12: 299–312.CrossRefGoogle Scholar
  245. 255.
    Pettipher GL and Rodrigues UM. Semi-automated counting of bacteria and somatic cells in milk using epifluorescence microscopy and television image analysis. JAppl Bacteriol 1982; 63: 323–329.CrossRefGoogle Scholar
  246. 256.
    Sieracki ME, Johnson PW, and Sieburth M. Detection, enumeration, and sizing of planktonic bacteria by image-analyzed epifluorescence microscopy. Appl Environ Microb 1985; 49: 799–810.Google Scholar
  247. 257.
    Singh A, Yu FP, and Mcfeters GA. Rapid detection of chlorine-induced bacterial injury by the direct viable count method using image analysis. Appl Environ Microb 1990; 56: 389–394.Google Scholar
  248. 258.
    Fraser TW and Gilmour A. Scanning electron microscopy preparation methods: their influence on the morphology and fibril formation in Pseudomonas fragi. JAppl Bacteriol 1986; 60: 527–533.CrossRefGoogle Scholar
  249. 259.
    Mackowiak PA and Marling-Cason M. A comparative analysis of in vitro assays of bacterial adherence. JMicrobiol Meth 1984; 2: 147–158.CrossRefGoogle Scholar
  250. 260.
    Espersen F, Frimodt-Moller N, Corneliussen L, Rosdahl VT, and Clemmensen I. Attachment of staphylococci to silicone catheters in vitro. APMIS 1990; 98: 471–478.CrossRefGoogle Scholar
  251. 261.
    Stellmach J and Severin E. A fluorescent redox dye. Influence of several substrates and electron carriers on the tetrazolium salt-formazan reaction of Ehrlich ascites tumour cells. Histochem J 1987; 19: 21–26.Google Scholar
  252. 262.
    Rodriguez GG, Philipps D, Ishiguro K, and Ridgway HF. Use of a fluorescent redox probe for direct visualization o f actually respiring bacteria. Appl Environ Microbiol 1992; 58: 1801–1808.Google Scholar
  253. 263.
    Shea C and Williamson JC. Rapid analysis ofbacterial adhesion in a microplate assay. Biotechniques 1990; 8: 610, 611.Google Scholar
  254. 264.
    Kubitschek HE. Electronic counting and sizing of bacteria. Nature 1958; 182: 234, 235.Google Scholar
  255. 265.
    Smither R. Rapid screening for significant bacteriuria using a Coulter counter. J Clin Pathol 1977; 30: 1158–1162.CrossRefGoogle Scholar
  256. 266.
    Alexander MK, Khan MS, and Dow CS. Rapid screening for bacteriuria using a particle counter, pulse-height analyser, and computer. J Clin Pathol 1981; 34: 194–198.CrossRefGoogle Scholar
  257. 267.
    Chang CC and Merritt K. Microbial adherence on poly (methylmethacrylate). JBiomed Mater Res 1992; 26: 197–207.CrossRefGoogle Scholar
  258. 268.
    Robrish SA, Kemp CW, and Bowen WH. Use of extractable adenosine triphosphate to estimate the viable cell mass in dental plaque samples obtained from monkeys. Appl Environ Microbiol 1977; 35: 743–749.Google Scholar
  259. 269.
    Ludwicka A, Switalski LM, Lindin A, Pulverer G, and Wadström T. Bioluminescent assay for measurement of bacterial attachment to polyethylene. JMicrobiol Meth 1985; 4: 169–177.CrossRefGoogle Scholar
  260. 270.
    Paul JH and Loeb JI. Improved microfouling assay employing a DNA-specific fluorochrome and polystyrene as substratum. Appl Environ Microbiol 1983; 46: 338–343.Google Scholar
  261. 271.
    Watson SW, Novitsky TJ, Quinby HL, and Valois FW. Determination of bacterial number and biomass in the marine environment. Appl Environ Microbiol 1977; 33: 940–946.Google Scholar
  262. 272.
    Dahle AB and Laake M. Diversity dynamics of marine bacteria studied by immunofluorescent staining on membrane filters. Appl Environ Microbiol 1982; 43: 169–176.Google Scholar
  263. 273.
    Campbell L, Carpenter EL, and Iacono VJ. Identification and enumeration of marine chroococcoid cyanobacteria by immunofluorescence. Appl Environ Microbiol 1983; 46: 553–559.Google Scholar
  264. 274.
    Zambon JJ, Huber PS, Meyer AE, Slots J, Fornalik MS, and Baier RE. In situ identification of bacterial species in marine microfouling films by using an immunofluorescence technique. Appl Environ Microbiol 1984; 48: 1214–1220.Google Scholar
  265. 275.
    Hoff KA. Rapid and simple method for double staining of bacteria with 4’,6-diamidino-2- phenylindole and fluorescein isothiocyanate-labeled antibodies. Appl Environ Microbiol 1988; 54: 2949–2952.Google Scholar
  266. 276.
    Trulear MG and Characklis WG. Dynamics of biofilm processes. JWPCF 1982; 54: 1288–1301.Google Scholar
  267. 277.
    Bakke R and Olsson PQ. Biofilm thickness measurements by light microscopy. JMicrobiol Meth 1986; 5: 93–98.CrossRefGoogle Scholar
  268. 278.
    Hoehn RC and Ray AD. Effects of thickness on bacterial film. J WPCF 1973; 45: 2302–2320.Google Scholar
  269. 279.
    Ganderton L, Chawla J, Winters C, Wimpenny J, and Stickler D. Scanning electron microscopy of bacterial biofilms on indewelling bladder catheters. Eur J Microbiol Infect Dis 1992; 11: 789–796.CrossRefGoogle Scholar
  270. 280.
    Molin G and Nilsson I. Degradation of phenol by Pseudomonas putida ATCC 11172 in continuous culture at different ratios of biofilm surface to culture volume. Appl Environ Microbiol 1985; 50: 946–950.Google Scholar
  271. 281.
    Hoyle BD, Ezra FS, and Russell AF, inAbstr 90th Ann Meet Am Soc Microbiol, May 13–17 (1990).Google Scholar
  272. 282.
    Iwaoka T, Griffiths PR, Kitasako JT, and Geesey GG. Copper-coated cylindrical internal reflection elements for investigating interfacial phenomena. Appl Spectrosc 1986; 40: 1062–1065.CrossRefGoogle Scholar
  273. 283.
    Jolley JG, Geesey GG, Hankins MR, Wright RB, and Wichlacz PL. In situ, real-time FT-IR/CIR/ ATR study of the biocorrosion of copper by gum arabic, alginic acid, bacterial culture supernatant and Pseudomonas atlantica exopolymer. Appl Spectrosc 1989; 43: 1062–1067.CrossRefGoogle Scholar
  274. 284.
    Tsai C-L, Schurman DJ, and Smith RL. Quantitation of glycocalyx production in coagulase-negative Staphylococcus. J Orthop Res 1988; 6: 666–670.CrossRefGoogle Scholar
  275. 285.
    Kotilainen P, Mäki J, Oksman P, Viljanen MK, Nikoskelainen J, and Huovinnen P. Immunochemical analysis of extracellular slime substance of Staphylococcus epidermidis. Eur J Microbiol Infect Dis 1990; 9: 262–270.CrossRefGoogle Scholar
  276. 286.
    Pett KV, Schurman DJ, and Smith RL. Quantitative and relative distribution of extracellular matrix in Staphylococcus epidermidis biofilm. J Orthop Res 1990; 8: 321–327.CrossRefGoogle Scholar
  277. 287.
    Norden CW, Myerowitz RL, and Keleti E. Experimental osteomyelitis due to Staphylococcus aureus or Pseudomonas aeruginosa: a radiographic-pathological correlative analysis. Br J Exp Pathol 1980; 61: 451–460.Google Scholar
  278. 288.
    Norden CW. Lessons learned from animal models of osteomyelitis.RevinfectDis 1988; 10: 103–110.Google Scholar
  279. 289.
    Rissing JP. Animal models of osteomyelitis. Infect Dis Clin North Am 1991; 4: 377–390.Google Scholar
  280. 290.
    Varma S, Ferguson HL, Breen H, and Lumb WV. Comparison of seven suture materials in infected wounds-an experimental study. J Surg Res 1974; 17: 165–170.CrossRefGoogle Scholar
  281. 291.
    Mayberry-Carson KJ, Tober-Meyer B, Gill LR, Lambe DW, and Mayberry WR. Effect of ciprofloxacin on subcutaneous abscesses induced with Staphylococcus epidermidis and a foreign body implant in the mouse. Microbios 1988; 54: 45–59.Google Scholar
  282. 292.
    Espersen F, Wilkinson BJ, Gahrn-Hansen B, Rosdahl VT, and Skinhoj P. Experimental foreign body infection in mice. JAntimicrob Chemother 1993; 31 (Suppl D): 103–111.CrossRefGoogle Scholar
  283. 293.
    Southwood RT, Rice JL, McDonald PJ, Hakendorf PH, and Rozenbilds MA. Infection in experimental hip arthroplasties. J Bone Joint Surg 1985; 67B: 229–231.Google Scholar
  284. 294.
    Blomgren G. Hematogenous infection of total joint replacement. Acta Orthop Scand 1981; 52 (Suppl 187): 7–64.Google Scholar
  285. 295.
    Petty W, Spanier S, Shuster JJ, and Silverthoene C. The influence of skeletal implants on incidence of infection.JBoneJointSurg 1985; 67A: 1236–1243.Google Scholar
  286. 296.
    Petty W, Spanier S, and Shuster JJ. Prevention of infection after total joint replacement. Experiments with a canine model. J Bone Joint Surg 1988; 70A: 536–539.Google Scholar
  287. 297.
    Merritt K and Chang CC. Implant site infection rates with adherent and injected bacteria. Trans Orthop Res Soc 1991; 17: 14.Google Scholar
  288. 298.
    Zimmerli W. Experimental models in the investigation of device-related infections. JAntimicrob Chemother 1993; 31 (Suppl D): 97–102.CrossRefGoogle Scholar
  289. 299.
    Crane LR, Kapdi CC, Wolfe JN, Silberberg BK, and Lerner AM. Xeroradiographic, bacteriologic, and pathologic studies in experimental Staphylococcus osteomyelitis. Proc Soc Exp Biol Med 1977; 156: 303–314.Google Scholar
  290. 300.
    Worlock P, Slack R, Harveyand L, and Mawhinney R. An experimental model of post-traumatic osteomyelitis in rabbits. Br J Exp Pathol 1988; 69: 235–244.Google Scholar
  291. 301.
    Lidwell OM, Lowbury EJL, Whyte W, Blowers R, Stanley SJ, and Lowe D. Effect of ultraclean air in operating rooms on deep sepsis in the joint after total hip or knee replacement: a randomized study. Br Med J1982; 285: 10–14.Google Scholar
  292. 302.
    Eftekhar NS, Kiernan HA Jr, and Stinchfield FE. Systemic and local complications following low friction arthroplasty of the hip joint. Arch Surg 1976; 111: 150–155.CrossRefGoogle Scholar
  293. 303.
    Brady LP, Enneking WF, and Franco JA. The effect of operating room environment on the infection rate after Chamley low-friction total hip replacement. JBone Joint Surg 1985; 57A: 80–83.Google Scholar
  294. 304.
    Whyte W. The role of clothing and drapes in the operating room. J Hosp Infect 1988; 11 (Suppl C): 2–17.CrossRefGoogle Scholar
  295. 305.
    Fitzgerald RH, Peterson LFA, Washington JA II, van Scoy RE, and Coventry MB. Bacterial colonization of wounds and sepsis in total hip arthroplasty. JBone Joint Surg 1973; 55A: 1242–1250.Google Scholar
  296. 306.
    Hill C, Flamant R, Mazas F, and Evrard J. Prophylactic cefazolin versus placebo in total hip replacement. Lancet 1981; i: 795–796.Google Scholar
  297. 307.
    Lidwell OM, Elson RA, Lowbury EJ, Whyte W, Blowers R, Stanley SJ, and Lowe D. Ultraclean air and antibiotics for prevention of postoperative infection. A multicenter study of 8,052 joint replacement operations. Acta Orthop Scand 1987; 58: 4–13.CrossRefGoogle Scholar
  298. 308.
    Hirschmann JV and Inui TS. Antimicrobial prophylaxis: a critique of recent trials. Rev Infect Dis 1980; 2: 1–23.CrossRefGoogle Scholar
  299. 309.
    Bowers WH, Wilson FC, and Greene WB. Antibiotic prophylaxis in experimental bone infections. J Bone Joint Surg 1973; 55A: 795–807.Google Scholar
  300. 310.
    Carlsson AK, Lidgren L, and Lindberg L. Prophylactic antibiotics against early and late deep infections after total hip replacement. Acta Orthop Scand 1977; 48: 405–410.CrossRefGoogle Scholar
  301. 311.
    Pollard JP, Hughes SPF, Scott JE, Evans MJ, and Benkson MKD. Antibiotic prophylaxis in total hip replacement. Br Med J 1979; 1: 707–709.CrossRefGoogle Scholar
  302. 312.
    Wymenga AB, Hekster YA, Theeuwes A, Muytjens HL, Van Horn JR, and Slooff Ti. Antibiotic use after cefuroxine prophylaxis in hip and knee replacement. Clin Pharmacol Therapeut 1991; 50: 215–220.CrossRefGoogle Scholar
  303. 313.
    Mason JC, Dollery CT, So A, Cohen J, Bloom SR, Bulpitt C, Russell-Jones R, and Oakley CM. An infected prosthetic hip. Br Med J1992; 305: 300–302.Google Scholar
  304. 314.
    Buchholz HW and Englebrecht E. Über die Depotwirkung einiger Antibiotica bei Vermischung mit dem kunstharz Palacos (Depot effects of various antibiotics mixed with Palacos resins). Chirurgie 1970; 41: 511–515.Google Scholar
  305. 315.
    Murray WR. Use of antibiotic-containing bone cement. Clin Orthop 1984; 159: 89–95.Google Scholar
  306. 316.
    Josefsson G, Lindberg L, and Wiklander B. Systemic antibiotics and gentamycin-containing bone cement in the prophylaxis of postoperative infections in total hip arthroplasty. Clin Orthop 1981; 159: 194–200.Google Scholar
  307. 317.
    Josefsson G, Gudmundsson G, Kolmert L, and Wijkstrom S. Prophylaxis with systemic antibiotics versus gentamicin bone cement in total hip arthroplasty. A five-year survey of 1688 hips. Clin Orthop 1990; 253: 173–178.Google Scholar
  308. 318.
    Duncan CP and Beauchamp CP. The antibiotic loaded hip replacement. A valuable tool in the management of the complex infected THA. J Bone Joint Surg 1991; 73B (Suppl 2): 115.Google Scholar
  309. 319.
    Rogers JM, LaBerge M, and Barefoot SF. Fabrication and pharmacokinetic release profile of antibiotic impregnated calcium phosphate ceramic: in vitro study. Trans Soc Biomater 1993; 16: 256.Google Scholar
  310. 320.
    Siverhus DJ, Edmiston CE, Stiehl JB, and Goheen MP. Microbial adhesion and colonization of antibiotic impregnated methylmethacrylate bone cement. Trans Soc Biomater 1991; 14: 13.Google Scholar
  311. 321.
    Jansen B. New concepts in the prevention of polymer-associated foreign body infections. Intl Med Microbiol 1990; 272: 401–410.Google Scholar
  312. 322.
    Olsson J, van der Heijde Y, and Holmberg K. Plaque formation in vivo and bacterial attachment in vitro on permanently hydrophobic and hydrophilic surfaces. Caries Res 1992; 26: 28–33.CrossRefGoogle Scholar
  313. 323.
    Ackard WB, Camp RL, and Wheelwright WL. Antimicrobial polymers. J Biomed Mater Res 1975; 9: 55–68.CrossRefGoogle Scholar
  314. 324.
    Golomb G and Shpigelman A. Prevention of bacterial colonization on polyurethane in vitro by incorporated antibacterial agent. JBiomed Mater Res 1991; 25: 937–952.CrossRefGoogle Scholar
  315. 325.
    Olsson J, Carlen A, and Holmberg K. Inhibition of Streptococcus mutans adherence to hydroxyapatite with combinations of alkyl phosphates and nonionic surfactants. Caries Res 1991; 25: 51–57.CrossRefGoogle Scholar
  316. 326.
    Farber BF and Wolff AG. The use ofnonsteroidal antiinflammatory drugs to prevent adherence of Staphylococcus epidermidis to medical polymers. JInfect Dis 1992; 166: 861–865.CrossRefGoogle Scholar
  317. 327.
    Vaudaux PE, Avramoglou T, Letourneur D, Lew DP, and Jozefonvicz J. Inhibition by heparin and derivatized dextrans of staphylococcus aureus adhesion to fibronectin-coated biomaterials. J Biomater Sci Polym Ed 1992; 4: 89–97.Google Scholar
  318. 328.
    Leung JWC, Lau GTC, Sung JJY, and Costerton JW. Decreased bacterial adherence to silver-coated stent material: an in vitro study. Gastrointest Endosc 1992; 38: 338–340.CrossRefGoogle Scholar
  319. 329.
    Park K, Mosher DF, and Cooper SL. Acute surface-induced thrombosis in the canine ex vivo model: importance of protein composition of the initial monolayer and platelet activation. JBiomed Mater Res 1986; 20: 589–612.CrossRefGoogle Scholar
  320. 330.
    Chang TMS and Malave N. The development and first clinical use of semipermeable microcapsules (artificial cells) as a compact artificial kidney. Trans Am Soc Art Int Org 1970; 16: 141–149.Google Scholar
  321. 331.
    Slimann SB, Guidoin R, Marceau D, Merhi Y, King MW, and Sigot-Luizard M-F. Characteristics of polyester arterial grafts coated with albumin: the role and importance of cross-linking chemicals. Eur Surg Res 1988; 20: 18–28.CrossRefGoogle Scholar
  322. 332.
    McDowell S, An YH, and Friedman RJ. Application of a fluorescent redox dye for enumeration of metabolically active bacteria on titanium coated with cross-linked albumin. Lett Appl Microbiol 1995; 21: 1–4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Yuehuei H. An
  • Richard J. Friedman
  • Robert A. Draughn
  • Edwin A. Smith
  • Joseph F. John

There are no affiliations available

Personalised recommendations