Phase-Locked Loops

  • Jan W. M. Bergmans
Chapter

Abstract

The timing-recovery subsystem of the receiver determines the sampling instants that are used for data detection. Since these instants are discrete, any phase-locked-loop (PLL) that is embedded in the timing-recovery subsystem has fundamentally a discrete-time nature. Discrete-time PLLs have received relatively little attention in the literature (see [16] for an overview). Fortunately, their properties approach those of analog PLLs in many cases of practical interest, as we will see. This renders a range of books and review articles on analog PLLs relevant [3], [4], [8], [10], [14], [15], [20], [6], [18].

Keywords

Manifold Huygens 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E.V. Appleton, `Automatic Synchronization of Triode Oscillators’, Proc. Cambridge Phil. Soc., Vol. 21, p. 231, 1922–1923.Google Scholar
  2. [2]
    J.W.M. Bergmans, `Effect of Loop Delay on Stability of Discrete-Time PLL’, IEEE Trans. Circuits Syst.–I, Vol. CAS-42, No. 4, pp. 229–231, Apr. 1995.Google Scholar
  3. [3]
    R.E. Best, Phase-Locked Loops. New York: McGraw-Hill, 1984.Google Scholar
  4. [4]
    A. Blanchard, Phase-Locked Loops: Applications to Coherent Receiver Design. New York: John Wiley and Sons, 1976.Google Scholar
  5. [5]
    C.J. Byrne, B.J. Karafin, and D.B. Robinson, Jr., `Systematic Jitter in a Chain of Digital Repeaters’, Bell Syst. Tech. J., Vol. 42, pp. 2679–2714, Nov. 1963.Google Scholar
  6. [6]
    R.C. Den Dulk, An Approach to Systematic Phase-Lock Loop Design, Ph.D. Thesis, Delft University of Technology, The Netherlands, Nov. 1989.Google Scholar
  7. [7]
    A.W.M. van den Enden and N.A.M. Verhoeckx, Discrete-Time Signal Processing - An Introduction. Hertfordshire, U.K.: Prentice-Hall (UK) Ltd, 1989.Google Scholar
  8. [8]
    F.M. Gardner, Phaselock Techniques. New York: Wiley, 1966 (2nd ed. 1979 ).Google Scholar
  9. [9]
    S.W. Golomb, J.R. Davey, I.S. Reed, H.L. Van Trees and J.J. Stuffier, `Synchronization’, IEEE Trans. Communications Systems, Vol. CS-11, pp. 481–491, Dec. 1963.Google Scholar
  10. [10]
    S.C. Gupta, Phase-Locked Loops, Proc. IEEE, Vol. 63, No. 2, pp. 291–306, Feb. 1975.Google Scholar
  11. [11]
    Christiaan Huygens, Horologium Oscillatorum, 1673.Google Scholar
  12. [12]
    E.A. Lee and D.G. Messerschmitt, Digital Communication. Boston: Kluwer Academic Publishers, 1988.CrossRefGoogle Scholar
  13. [13]
    W.C. Lindsey and M.K. Simon (eds.), Phase-Locked Loops and their Applications. New York: IEEE Press, 1978.Google Scholar
  14. [14]
    W.C. Lindsey, Synchronization Systems in Communication and Control. Englewood Cliffs: Prentice-Hall, 1972.Google Scholar
  15. [15]
    W.C. Lindsey and M.K. Simon (Eds.), Phase-Locked Loops and Their Applications. New York: IEEE Press, 1978.Google Scholar
  16. [16]
    W.C. Lindsey and C.M. Chie, `A Survey of Digital Phase-Locked Loops’, Proc. IEEE, Vol. 69, No. 4, pp. 410–431, Apr. 1981.CrossRefGoogle Scholar
  17. [17]
    J.-Y. Lin and C.-H. Wei, `Fast Timing Recovery Scheme for Class IV Partial Response Channels’, Electron. Lett., Vol. 31, No. 3, pp. 159–161, Feb. 2, 1995.CrossRefGoogle Scholar
  18. [18]
    H. Meyr and G. Ascheid, Synchronization in Digital Communications - Volume I. New York: Wiley, 1990.Google Scholar
  19. [19]
    B. van der Pol, ‘Forced Oscillations in a Circuit with Nonlinear Resistance’, Phil.Mag., and Ire. of Science, 7th Series, Vol. 3, 1923.Google Scholar
  20. [20]
    A.J. Viterbi, Principles of Coherent Communications. New York: McGraw-Hill, 1966.Google Scholar
  21. [21]
    L.E.-Zegers, ’The Reduction of Systematic Jitter in a Transmission Chain with Digital Regenerators’, IEEE Trans. Commun., Vol. COM-15, pp. 542–551, Aug. 1967.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Jan W. M. Bergmans
    • 1
  1. 1.Philips ResearchEindhovenThe Netherlands

Personalised recommendations