Advertisement

Physical, Chemical, and Microbiological Characteristics of Dehydrated Foods

  • Gustavo V. Barbosa-Cánovas
  • Humberto Vega-Mercado
Chapter
Part of the Dehydration of Foods book series (FSES)

Abstract

The preservation of the initial cellular structure of the material being dried is, in most cases, a function of the process applied to the food. This consideration applies not only to drying but also to blanching and freezing. In the removal of water from high-moisture containing prod­ucts such as fruits and vegetables, it is important to remember that cell membranes may or may not been dam­aged during processing (Le Maguer, 1987).

Keywords

Activity Coefficient Water Activity Food System Sorption Isotherm Osmotic Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, D. S. and Prausnitz, J. M. 1975. Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AICHE J. 21(1): 116–128.CrossRefGoogle Scholar
  2. Allen, G. 1993. A history of the glassy state. In The Glassy State in Foods, edited by J. M. V. Blanshard and P. J. Lillford. Nottingham University Press, Loughborough, Leicestershire, UK.Google Scholar
  3. Beuchat, L. R. 1983. Influence of water activity on growth, metabolic activities and survival of yeasts and molds. J. Food Prot. 46(2): 135–141.Google Scholar
  4. Bone, D. P. 1987. Practical applications of water activity and moisture relations in foods. In Water activity: Theory and Applications to Food, edited by L. B. Rockland and L. R. Beuchat. Marcel Dekker, New York.Google Scholar
  5. Boquet, R., Chirife, J., and Iglesias, H.A. 1980. Technical note: on the equivalence of isotherm equations. J. Food Technol. 15: 345–349.CrossRefGoogle Scholar
  6. Bromley, L. A. 1973. Thermodynamic properties of strong electrolytes in aqueous solutions. AICHE J. 19(2): 313–320.CrossRefGoogle Scholar
  7. Bruin, S. and Luyden, K. Ch. A. M. 1980. Drying of food materials. In Advances in Drying, Vol. 1, edited by A. S. Mujumdar. Hemisphere Publishing, New York.Google Scholar
  8. Cheftel, J. C., Cuq, J. L. and Lorient, D. 1985. Amino acids, peptides and proteins. In Food Chemistry, Second edition, edited by O. R. Fennema. Marcel Dekker, New York.Google Scholar
  9. Chirife, J. 1987. Predicción de la actividad de agua en alimentes. In Conservación de Alimentos de alta humedad per métodos combinados basados en la reducción de la actividad de agua. Programa de Ciencia y Tecnologia para el Desarrollo, V-Centenario CYTED-D, México.Google Scholar
  10. Chirife, J. and Buera, M. P. 1994. Water activity, glass transition and microbial stability in concentrate/semimoist food systems. J. Food Sci. 59(5): 921–927.CrossRefGoogle Scholar
  11. Chirife, J. and Favetto, G. J. 1992. Fundamental aspects of food preservation by combined methods. Int. Union of Food Sci. and Technol.—CYTED D—Univ. de las Americas, Puebla, México.Google Scholar
  12. Chirife, J., Ferro-Fontén, C., and Benmergui, E. A. 1980. The prediction of water activity in aqueous solutions in connection with intermediate moisture foods. IV. A,,, prediction in aqueous non-electrolyte solutions. J. Food. Technol. 15: 59–70.CrossRefGoogle Scholar
  13. Christensen, C. Sander, B., Fredenslund, A., and Basmussen, P. 1983. Towards the extention of UNIFAC to mixtures with electrolytes. Fluid Phase Equilibria 13: 297–309.CrossRefGoogle Scholar
  14. Chung, D. S. and Pfost, H. B. 1967a. Adsorption and desorption of water vapor by cereal grains and their products. I. Heat and free energy changes of adsorption and desorption. Trans. ASAE 10: 549–551.Google Scholar
  15. Chung, D. S. and Pfost, H. B. 1967b. Adsorption and desorption of water vapor by cereal grains and their products. II. Development of the general isotherm equation. Trans. ASAE 10: 552–555.Google Scholar
  16. Coumans, W. J., Kerkhof, Piet J. A. M., and Bruin, S. 1994. Theoretical and practical aspects of aroma retention in spray drying and freeze-drying. Drying Technol. 12: 99–149.CrossRefGoogle Scholar
  17. De Gois, V. A. and Cal-Vidal, J. 1986. Water sorption characteristics of freeze-dried papaya in powdered and granular forms. Can. Inst. Food Sci. Technol. J. 19(1): 7–11.Google Scholar
  18. de Man, J. M. 1982. Principles of Food Chemistry. AVI Publishing, Westport, CT.Google Scholar
  19. Erbersdobler, H. F. 1985. Loss of nutritive value on drying. In Concentration and Drying of Foods, edited by D. MacCarthy. Elsevier Applied Science Publishers, New York.Google Scholar
  20. Ferro-Fontân, C., Benmergui, E. A., and Chirife, J. 1980. The prediction of water activity in aqueous solutions in connection with intermediate moisture foods. III. A,,, prediction in multicomponent strong electrolyte aqueous solutions. J. Food. Technol. 15: 47–58.CrossRefGoogle Scholar
  21. Ferro-Fontân, C. and Chirife, J. 1981. Technical Note: a refinement of Ross’s equation for predicting the water activity of non-electrolyte mixtures. J. Food. Technol. 16: 219–221.CrossRefGoogle Scholar
  22. Ferro-Fontân, C., Chirife, J., and Boquet, R. 1981. Water activity in multicomponent non-electrolyte solutions. J. Food. Technol. 18: 553–559.Google Scholar
  23. FPI, 1982. Alimentos Enlatados. Principios del Control del Procesamiento Térmico, Acidificación y Evaluación del Cierre de los Envases, Second edition. Spanish version by N. Diaz and J. R. Cruz Cay. The Food Processor Institute, Washington, D.C.Google Scholar
  24. Fredenslund, A., Jones, R. L., and Prausnitz, J. M. 1975. Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 21(6): 1086–1099.CrossRefGoogle Scholar
  25. Henderson, S. M. 1952. A basic concept of equilibrium moisture. Agric. Eng. 33: 29–32.Google Scholar
  26. Iglesias, H. A. and Chirife, J. 1978. An empirical equation for fitting water sorption isotherms of fruit and related products. Can. Inst. Food Sci. Technol. J. 11(1): 12–15.Google Scholar
  27. Jowitt, R., Escher, E, Hallstrom, B., Meffert, H. E Th., Spiess, W., and Vos, G. 1981. Physical Properties of Foods. Applied Science Publishers, London, UK.Google Scholar
  28. Kapsalis, J. G. 1987. Influences of hysteresis and temperature on moisture sorption isotherms. In Water Activity: Theory and Applications to Food, edited by L. B. Rockland and L. R. Beuchat. Marcel Dekker, New York.Google Scholar
  29. Karel, M. 1975a. Water activity and food preservation. In Principle of Food Science. Part II: Physical Principles of Food Preservation, edited by M. Karel, O. R. Fennema, and D. B. Lund. Marcel Dekker, New York.Google Scholar
  30. Karel, M. 1975b. Freeze dehydration of foods. In Principle of Food Science. Part II: Physical Principles of Food Preservation, edited by M. Karel, O. R. Fennema, and D. B. Lund. Marcel Dekker, New York.Google Scholar
  31. Karel, M. 1975c. Dehydration of foods. In Principle of Food Science. Part II: Physical Principles of Food Preservation, edited by M. Karel, O. R. Fe; nema, and D. B. Lund. Marcel Dekker, New York.Google Scholar
  32. Karel, M. 1985. Control of lipid oxidation in dried foods. In Concentration and Drying of Foods, edited by D. MacCarthy. Elsevier Applied Science Publishers, New York.Google Scholar
  33. Karel, M., Buera, M. P., and Roos, Y. 1993. Effect of glass transition on processing and storage. In The Glassy State in Foods, edited by J. M. V. Blanshard and P. J. Lillford. Nottingham University Press, Loughborough, Leicestershire, UK.Google Scholar
  34. Kitic, D., Pereira, D. C., Favetto, G., Resnik, S., and Chirife, J. 1986. Theoretical prediction of the water activity of standard saturated salt solutions at various temperatures. J. Food Sci. 51(4): 1037–1040.CrossRefGoogle Scholar
  35. Kumar, M. 1974. Water vapor adsorption on whole corn flour, degermed corn flour, and germ flour. J. Food Technol. 9: 433–444.CrossRefGoogle Scholar
  36. Labuza, T. P. 1968. Sorption phenomena in foods. Food Technol. 22(3): 263–266.Google Scholar
  37. Labuza, T. P., McNally, L., Gallaghe, D., Hawkes, J., and Hurtado, F. 1972. Stability of intermediate moisture foods. 1. Lipid Oxidation. J. Food Sci. 37: 154–159.CrossRefGoogle Scholar
  38. Lang, K. W. and Steinberg, M. P. 1981. Predicting water activity from 0.30 to 0.95 of a multicomponent food formulation. J. Food Sci. 46: 670–672, 680.CrossRefGoogle Scholar
  39. Le Maguer, M. 1987. Mechanics and influence of water binding on water activity. In Water Activity: Theory and Applications to Food, edited by L. B. Rockland and L. R. Beuchat. Marcel Dekker, New York.Google Scholar
  40. Leung, H. K. 1986. Water activity and other colligative properties of foods. In Physical and Chemical Properties of Foods, edited by M. R. Okos. American Society of Agricultural Engineers, St. Joseph, MI.Google Scholar
  41. Leung, H. K. 1987. Influence of water activity on chemical reactivity. In Water Activity: Theory and Applications to Food, edited by L. B. Rockland and L. R. Beuchat. Marcel Dekker, New York.Google Scholar
  42. Lima, A. W. O. and Cal-Vidal, J. 1983. Hygroscopic behavior of freeze dried bananas. J. Food Technol. 18: 687–696.CrossRefGoogle Scholar
  43. Lindsay, R. C. 1985. Food Additives. In Food Chemistry, Second edition, edited by O. R. Fennema. Marcel Dekker, New York.Google Scholar
  44. Money, R. W. and Born, R. 1951. Equilibrium humidity of sugar solutions. J. Sci. Food Agric. 2: 180–185.CrossRefGoogle Scholar
  45. Monsalve-Gonzalez, A., Barbosa-Cânovas, G., and Cavalieri, R. P. 1993a. Mass transfer and textural changes during processing of apples by combined methods. J. Food Sci. 58(5): 1118–1124CrossRefGoogle Scholar
  46. Monsalve-Gonzalez, A., Barbosa-Cânovas, G. V., Cavalieri, R. P., McEvily, A. J., and Iyengan, R. 1993b. Control of browning during storage of apple slices preserved by combined methods. 4-Hexylresorcinol as anti-browning agent. J. Food Sci. 58(4): 797–800, 826.CrossRefGoogle Scholar
  47. Nawar, W. W. 1985. Lipids. In Food Chemistry, Second edition, edited by O. R. Fennema. Marcel Dekker, New York.Google Scholar
  48. Norrish, R. S. 1966. An equation for the activity coefficients and equilibrium relative humidities of water in confectionery syrups. J. Food. Technol. 1: 25–39.CrossRefGoogle Scholar
  49. Okos, M. R., Narsimhan, G., Singh, R. K., and Weitnauer, A. C. 1992. Food dehydration. In Handbook of Food Engineering, edited by D. R. Heldman and D. B. Lund. Marcel Dekker, New York.Google Scholar
  50. Pitzer, K. S. 1973. Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77(2): 268–277.CrossRefGoogle Scholar
  51. Pitzer, K. S. 1979. Theory: ion interaction approach. In Activity Coefficients in Electrolyte Solutions, Vol. I, edited by R. M. Pytkowicz. CRC Press, Boca Raton, FL.Google Scholar
  52. Pitzer, K. S. and Kim, J. J. 1974. Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 96: 5701–5707.CrossRefGoogle Scholar
  53. Pitzer, K. S. and Mayorga, G. 1973. Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77(19): 2300–2308.CrossRefGoogle Scholar
  54. Rockland, L.B. 1960. Saturated salt solutions for static control of relative humidity between 5 and 40 °C. Anal. Chem. 32(9): 1375–1377.CrossRefGoogle Scholar
  55. Rockland, L. B. 1969. Water activity and storage stability. Food Technol. 23(10): 11–17.Google Scholar
  56. Rockland, L. B. and Nishi, S. K. 1980. Influence of water activity on food product quality and stability. Food Technol. 34(4): 42–51.Google Scholar
  57. Roman, G. N., Urbicain, M. J., and Rotstein, E. 1982. Moisture equilibrium in apples at several temperatures: experimental data and theoretical considerations. J. Food Sci. 47: 1484–1488.CrossRefGoogle Scholar
  58. Roos, Y. H. 1992. Phase transition and transformations in food systems. In Handbook of Food Engineering, edited by D. R. Heldman and D. B. Lund. Marcel Dekker, New York.Google Scholar
  59. Salwin, H. and Slawson, V. 1959. Moisture transfer in combinations of dehydrated foods. Food Technol. 13: 715–718.Google Scholar
  60. Scorza, Q. C., Chirife, J., Cattaneo, P., Vigo, M. S., Bertoni, M. H., and Sarraih, P. 1981. Factores que condicionan el crecimiento microbiano en alimentos de humedad intermedia. La alimentación Latinoamericana 127: 62–67.Google Scholar
  61. Slade, L. and Levine, H. 1991. Beyond water activity: recent advances based on an alternative approach to the assesment of food quality and safety. Crit. Rev. Food Sci. Nutr. 30(2,3): 115–360.CrossRefGoogle Scholar
  62. Slade, L. and Levine, H. 1993. Glass transitions and water—food structure interactions. Personal communication.Google Scholar
  63. Smith, P. R. 1947. The sorption of water vapor by high polymers. J. Am. Chem. Soc. 69: 646–651.CrossRefGoogle Scholar
  64. Stokes, R. H. 1979. Thermodynamics of solutions. In Activity Coefficients in Electrolyte Solutions, Vol. I, edited by R. M. Pytkowicz. CRC Press, Boca Raton, FL.Google Scholar
  65. Tant, M. R. and Wilkes, G. L. 1981. An overview of the nonequilibrium behavior of polymer glasses. Polym. Eng. Sci. 21: 874–895.CrossRefGoogle Scholar
  66. Teng, T. T. and Seow, C. C. 1981. A comparative study of methods for prediction of water activity of multicomponent aqueous solutions. J. Food. Technol. 16: 409–419.CrossRefGoogle Scholar
  67. Toledo, R. T. 1991. Fundamentals of Food Process Engineering, Second edition. Van Nostrand Reinhold, New York.CrossRefGoogle Scholar
  68. Troller, J. A. 1987. Adaptation and growth of microorganisms in environments with reduced water activity. In Water Activity: Theory and Applications to Food, edited by L. B. Rockland and L. R. Beuchat. Marcel Dekker, New York.Google Scholar
  69. Troller, J. A. and Christian, J. H. B. 1978. Water Activity in Food. Academic Press, New York.Google Scholar
  70. Van den Berg, C. 1985. Water activity. In Concentration and Drying of Foods, edited by D. MacCarthy. Elsevier Applied Science Publishers, New York.Google Scholar
  71. Van den Berg, C. and Bruin, S. 1981. Water activity and its estimation in food systems: theoretical aspects. In Water Activity: Influences on food quality, edited by L. B. Rockland and G. F. Steward. Academic Press, New York.Google Scholar
  72. Van Ness, H. C. and Abbott, M. M. 1982. Classical thermodynamics of non-electrolyte solutions with applications to phase equilibria. McGraw-Hill Chemical Eng. Series. McGraw-Hill, New York.Google Scholar
  73. Vega-Mercado, H. and Barbosa-Cânovas, G. V. 1993a. Comparison of moisture sorption isotherm models in freeze-dried pineapple pulp. J. Agric. Univ. Puerto Rico 77(3–4): 113–128.Google Scholar
  74. Vega-Mercado, H. and Barbosa-Cânovas, G. V. 1993b. Heat of sorption and free energy change of freeze-dried pineapple pulp. J. Agric. Univ. Puerto Rico 77(3–4): 101–112.Google Scholar
  75. Villar, T. and Silvera, C. 1987. Alimentos de Humedad Intermedia. Universidad de la República, Facultad de Química, Montevideo, Uruguay.Google Scholar
  76. Whistler, R. L. and Daniel, J. R. 1985. Carbohydrates. In Food Chemistry, Second edition, edited by O.R. Fennema. Marcel Dekker, New York.Google Scholar
  77. Williams, M. L., Landel, R. F., and Ferry, J. D. 1955. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass forming liquids. J. Am. Chem. Soc. 77: 3701–3707.CrossRefGoogle Scholar
  78. Wolf, W., Spiess, W., Jung, G., Weisser, H., Bizot, H., and Duckworth, R.B. 1984. The water vapour sorption isotherms of microcrystalline cellulose (MCC) and of purified potato starch. Results of a collaborative study. J. Food Eng. 3: 51–73.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Gustavo V. Barbosa-Cánovas
    • 1
  • Humberto Vega-Mercado
    • 2
  1. 1.Washington State UniversityUSA
  2. 2.Merck Sharp & Dohme Ouímica de Puerto RicoUSA

Personalised recommendations