• Richard N. Arteca


The ability of many plants and plant parts to form roots from cuttings under the proper conditions is important in the propagation of many species. Plant parts such as stems, roots, or leaves can serve as cutting sources for propagation when combined with the proper chemical, mechanical, and/or environmental conditions. One of the main benefits of using this type of asexual propagation is that the new plant produced is identical to the parent plant. There is a wide range of adventitious root-forming ability in plants which can be from very easy to root to those which will not root at all (Davis and Haissig 1994). In this chapter the adventitious root formation process in plants and how plant growth substances and/or other factors are involved will be presented.


Hairy Root Root Formation Adventitious Root Formation Root Initiation Root Cutting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arteca, R. (1990). Hormonal stimulation of ethylene biosynthesis. In Polyamines and Ethylene: Biochemistry, Physiology, and Interactions, eds., H. E. Flores, R. N. Arteca, and J. C. Shannon. American Society of Plant Physiologists, Rockville, MD, pp. 216 - 223.Google Scholar
  2. Arteca, R. N., Bachman, J. M., and Mandava, N. B. (1988). Effects of indole-3-acetic acid and brassinosteroid on ethylene biosynthesis in etiolated mung bean hypocotyl segments. J. Plant Physiol. 133: 430 - 435.CrossRefGoogle Scholar
  3. Batten, D. J. and Goodwin, P. B. (1978). Phytohormones and the induction of adventitious roots. In Phytohormones and Related Compounds—A Comprehensive Treatise. Vol. II, eds., D. S. Letham, P. B. Goodwin, and T. J. V. Higgins. Elsevier/NorthHolland Biomedical Press, Amsterdam, pp. 137 - 173.Google Scholar
  4. Berry, J. B. (1984). Rooting hormone formulations: A chance for advancement. Proc. Int. Plant Prop. Soc. 34: 486 - 491.Google Scholar
  5. Blakesley, D. and Chaldecott, M. A. (1993). The role of endogenous auxin in root initiation. II. Sensitivity and evidence from studies on transgenic plant tissues. Plant Growth Reg. 13: 77 - 84.CrossRefGoogle Scholar
  6. Blakesley, D., Weston, G. D., and Hall, J. F. (1991). The role of endogenous auxin in root initiation. I. Evidence from studies on auxin application, and analysis of endogenous levels. Plant Growth Reg. 10: 341 - 353.CrossRefGoogle Scholar
  7. Blazich, F. A. (1989). Mineral nutrition and adventitious rooting. In Adventitious Root Formation in Cuttings, eds., T. D. Davis, B. E. Haissig, and N. Sankhla. Dioscorides Press, Portland, OR, pp. 61 - 69.Google Scholar
  8. Bolhnark, M. and Eliasson, L. (1986). Effects of exogenous cytokinins on root formation in pea cuttings. Physiol. Plant. 68: 662 - 666.CrossRefGoogle Scholar
  9. Bouillenne, R. and Went, F. W. (1933). Recherches expérimentales sur la néoformation des racines dans les plantules et les boutures des plantes supérieures. Ann. Jard. Bot. Buitenzorg 43: 25 - 202.Google Scholar
  10. Breen, P. J. (1974). Effect of leaves and carbohydrate content and movement of 14C-assimilate in plum cuttings. J. Amer. Soc. Hort. Sci. 99: 326 - 332.Google Scholar
  11. Cerana, R., Bonetti, A., Marre, M. T., Romani, G., Lado, P., and Marre, E. (1983). Effects of a brassinosteroid on growth and electrogenic proton extrusion in Azuki bean epicotyls. Physiol. Plant. 59: 23 - 27.CrossRefGoogle Scholar
  12. Cline, M. N. and Neely, D. (1983). The histology and histochemistry of the wound healing process in geranium cuttings. J. Amer. Soc. Hort. Sci. 108: 452 - 456.Google Scholar
  13. Cutler, H. G., Yokota, T., and Adam, G. (1991). Brassinosteroids: Chemistry, Bioactivity and Applications, American Chemical Society, Washington, DC.Google Scholar
  14. Davies, F. T. Jr, Lazarte, J. E., and Joiner, J. N., (1982). Initiation and development of roots in juvenile and mature leaf bud cuttings of Ficus pumila L. . Am. J. Botany 69: 804 - 811.Google Scholar
  15. Davis, T. D. (1989). Photosynthesis during adventitious rooting. In Adventitious Root Formation in Cuttings, eds., T. D. Davis, B. E. Haissig, and N. Sankhla. Dioscorides Press, Portland, OR, pp. 79 - 87.Google Scholar
  16. Davis, T.D., and Haissig, B.E. (1994). Biology of Adventitious Root Formation, Plenum Press, New York.Google Scholar
  17. Din, M. A. (1981). “Rooting compounds and their use in plant propagation”. Proc. Intl. Plant Prop. Soc. 31: 472 - 479.Google Scholar
  18. Eriksen, E. N. (1973). “Root formation in pea cuttings. I. Effects of decapitation and disbudding at different development stages”. Physiol. Plant. 28: 503-506.Google Scholar
  19. Eriksen, E. N. (1974). “Root formation in pea cuttings. III. The influence of cytokinin at different developmental stages”. Physiol. Plant. 30: 163-167.Google Scholar
  20. Flygh, G., Grönroos, R., Gulin, L., and von Arnold, S. (1993). “Early and late root formation in epicotyl cuttings of Pinus sylvestris after auxin treatment”. Tree Physiol. 12: 81 - 92.CrossRefGoogle Scholar
  21. Ginzburg, C. (1967). “Organization of the adventitious root apex in Tamarix aphylla”. Amer. J. Botany 54: 4-8.Google Scholar
  22. Hansen, J. (1987). “Stock plant lighting and adventitious root formation”. HortScience 22: 746 – 749.Google Scholar
  23. Hartmann, H. T., Kester, D. E., and Davies Jr., F. T. (1990). Plant Propagation Principles and Practices. 5th Edition, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  24. Heide, O. M. (1965). “Interaction of temperature, auxin, and kinins in the regeneration ability of Begonia leaf cuttings”. Physiol. Plant. 18: 891-920.Google Scholar
  25. Hess, C. E. (1962). “Characterization of the rooting co-factors extracted from Hedera helix L. and Hibiscus rosa-sinensis L.”. Proc. Intl. Hort. Cong. 16: 382 - 388.Google Scholar
  26. Hess, C. E. (1968). “Internal and external factors regulating root initiation”. In Root Growth, ed. W. J. Whittington. Butterworth, London, pp. 42 - 53.Google Scholar
  27. Hitchcock, A. E. and Zimmerman, P. W. (1939). “Comparative activity of root inducing substances and methods for treating cuttings”. Contr. Boyce Thompson Inst. 10: 461 - 480.Google Scholar
  28. Lovell, P. H. and White, J. (1986). ”Anatomical changes during adventitious root formation“. In New root formation in plants and cuttings, ed., M. B. Jackson, Martini’s Nijhoff Publishers, Dordrecht, the Netherlands.Google Scholar
  29. Maurel, C., Barbier-Brygoo, H., Brevet, J., Spena, A., Tempé, J., and Guern, J. (1991). “Agrobacterium rhizogenes T-DNA genes and sensitivity of plant protoplasts to auxins”. In Advances in Molecular Genetics of Plant-Microbe Interactions. Volume I, eds., H. Hennecke and D. P. S. Verma, Kluwer Academic Publishers, Dordrecht, The Netherlands pp. 343 - 351.Google Scholar
  30. Meredith, W. C., Joiner, J. N., and Biggs, R. H. (1970). “Influences of indole-3-acetic acid and kinetin on rooting and indole metabolism of Feijoa sellowiana”. J. Am. Soc. Hort. Sci. 95: 49 - 52.Google Scholar
  31. Moe, R. and Anderson, A. S. (1989) “Stock plant environment and subsequent adventitious rooting”. In Adventitious Root Formation in Cuttings, eds., T. D. Davis, B. E. Haissig and N. Sankhla. Dioscorides Press, Portland, OR, pp. 214 - 234.Google Scholar
  32. Mohammed, S. (1975). “Further investigations on the effects of decapitation and dibudding at different development stages of rooting in pea cuttings”. HortScience 50: 271 - 273.Google Scholar
  33. Mok, D. W. S. and Mok, M. C. (1994). Cytokinins. Chemistry, Activity, and Function, CRC Press, Boca Raton, FL.Google Scholar
  34. Molitor, H. D. and von Hentig, W. U. (1987). “Effect of carbon dioxide enrichment during stock plant cultivation”. HortScience 22: 741 - 746.Google Scholar
  35. Mudge, K. W. (1989). “Effect of ethylene on rooting”. In Adventitious Root Formation in Cuttings, eds., T. D. Davis, B. E. Haissig, and N. Sankhla. Dioscorides Press, Portland, OR, pp. 150 - 161.Google Scholar
  36. Nemeth, G. (1979). “Benzyladenine-stimulated rooting in fruit-tree rootstocks cultured in vitro”. Z. Planzenphysiol. 95: 389 - 396.Google Scholar
  37. Okoro, O. O. and Grace, J. (1978). “The physiology of rooting Populus cuttings. II. Cytokinins activity in leafless hardwood cuttings”. Physiol. Plant. 44: 167 - 170.CrossRefGoogle Scholar
  38. Priestley, J. H. and Swingle, C. F. (1929). “Vegetative propagation from the standpoint of plant anatomy”. USDA Tech. Bull. 151.Google Scholar
  39. Reuveni, O. and Raviv, M. (1981). “Importance of leaf retention to rooting avocado cuttings”. J. Amer. Soc. Hort. Sci. 106: 127 - 130.Google Scholar
  40. Robinson, J. C. (1975). “The regeneration of plants from root cuttings with special reference to the apple”. Hort. Abst. 45: 305 - 15.Google Scholar
  41. Roddick, J. G. and Guan, M. (1991). “Brassinosteroids and root development”. In Brassinosteroids. Chemistry, Bioactivity, and Applications, eds., H. G. Cutler, T. Yokota, and G. Adam. American Chemical Society, Washington, DC, pp. 231 - 245.Google Scholar
  42. Sakurai, A. and Fujioka, S. (1993). “The current status of physiology and biochemistry of brassinosteroids”. Plant Growth Reg. 13: 147 - 159.CrossRefGoogle Scholar
  43. Sathiyamoorthy, P. and Nakamura, S. (1990). “In vitro root induction by 24-epibrassinolide on hypocotyl segments of soybean (Glycine max (L.). Merr.)”. Plant Growth Reg. 9: 73 - 76.CrossRefGoogle Scholar
  44. Shen, W. H., Petit, A., Guern, J., and Tempé, J. (1988). “Hairy roots are more sensitive to auxin than normal roots”. Proc. Natl. Acad. Sci. USA 85: 3417 - 3421.PubMedCrossRefGoogle Scholar
  45. Skoog, F. and Miller, C. O. (1957). “Chemical regulation of growth and organ formation in plant tissues culture in vitro”. Symp. Soc. Exp. Biol. 11: 118 - 131.PubMedGoogle Scholar
  46. Strobel, G. A. and Nachmias, A. (1989). “Agrobacterium rhizogenes: A root inducing bacterium”. In Adventitious Root Formation in Cuttings, eds., T. D. Davis, B. E. Haissig and Sankhla. Dioscorides Press, Portland, OR, pp. 284 - 288.Google Scholar
  47. Takahashi, N., Phinney, B. O. and MacMillan, J. (1991). Gibberellins, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  48. Thimann, K. V. (1935). “On an analysis of activity of two growth-promoting substances on plant tissues”. Proc. Kon. Ned Akad. Wet. 38: 896 - 912.Google Scholar
  49. Thimann, K. V. and Koepfli, J. B. (1935). “Identity of the growth-promoting and root-forming substances of plants”. Nature 135: 101 - 102.CrossRefGoogle Scholar
  50. Thimann, K. V. and Went, F. W. (1934). “On the chemical nature of the root forming hormone”. Proc. Kon. Ned Akad. Wet. 37: 456 - 459.Google Scholar
  51. Trewavas, A. J. (1981). “How do plant growth substances work? I”. Plant, Cell Env. 4: 203 - 228.Google Scholar
  52. Trewavas, A. J. (1991). “How do plant growth substances work? II”. Plant, Cell Env. 14: 1 - 12.CrossRefGoogle Scholar
  53. Van Staden, J. and Harty, A. R. (1989). “Cytokinins and adventitious root formation”. In Adventitious Root Formation in Cuttings, eds., T. D. Davis, B. E. Haissig, and N. Sankhla. Dioscorides Press, Portland, OR, pp. 185 - 201.Google Scholar
  54. Von Sachs, J. (1882). “Stoff und Form der Pflanzenorgane. I”. Arb. Bot. Inst. Würzburg 2: 689 - 718.Google Scholar
  55. Went, F. W. (1934). “On the pea test method for auxin, the plant growth hormone”. Proc. Kon. Ned. Akad. Wet. 37: 547 - 555.Google Scholar
  56. Zimmerman, P. W., Crocker, W., and Hitchcock, A. E. (1933). “Initiation and stimulation of roots from exposure of plants to carbon monoxide gas”. Contr. Boyce Thompson Inst. 5: 1 - 17.Google Scholar
  57. Zimmerman, P. W. and Hitchcock, A. E. (1933). “Initiation and stimulation of adventitious roots caused by unsaturated hydrocarbon gases”. Contr. Boyce Thompson Inst. 5: 351 - 369.Google Scholar
  58. Zimmerman, P. W. and Wilcoxon, F. (1935). “Several chemical growth substances which cause initiation of roots and other responses in plants”. Contrib. Boyce Thomp Inst. 7: 209 - 229.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Richard N. Arteca
    • 1
  1. 1.The Pennsylvania State UniversityUSA

Personalised recommendations