Skip to main content

Chemistry, Biological Effects, and Mechanism of Action of Plant Growth Substances

  • Chapter

Abstract

Dose-response curves for all of the known plant growth substances are bell-shaped, as shown in Figure 3.1. At lower concentrations the effects are typically stimulatory reaching a maximum beyond which they become inhibitory. There are two general classes of hormones found in animal systems, steroid and peptide, both of which probably also occur in plant systems. The steroid class forms a hormone/receptor (defined as those molecules that specifically recognize and bind the hormone and, as a consequence of this recognition, can lead to other changes or series of changes which ultimately result in the biological response) complex in the cytoplasm, which is then transported into the nucleus where mRNA is synthesized, resulting in a given response (Figure 3.2a). The second class are peptide hormones which bind to a receptor at the plasmamembrane, altering the enzyme adenylate cyclase and activating cyclic AMP from ATP, which acts as a secondary messenger for a given response (Figure 3.2b). In order for hormone binding in either class to be specific, the following criteria must be met (Cuatrecasas et al. 1977):

  1. 1.

    There must be strict structural and steric specificity.

  2. 2.

    The response must be saturable, thereby indicating a finite and limited number of binding sites.

  3. 3.

    The response must be tissue-specific.

  4. 4.

    The hormone must bind with a high affinity in order to show physiological relevance.

  5. 5.

    Hormone binding must be reversible showing kinetics consistent with a physiological response observed and biological activity.

A typical dose-response curve for the known plant growth substances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles, F. B., Morgan, P. W., and Saltveit Jr., M. E. (1992). Ethylene in Plant Biology. Second Edition, Academic Press, Inc., San Diego, CA.

    Google Scholar 

  • Andreae, W. A. and Good, N. E. (1957). “Studies in indoleacetic acid metabolism. IV: Conjugation with aspartic acid and ammonia as processes in the metabolism of carboxylic acid”. Plant Physiol. 32: 566–572.

    Article  PubMed  CAS  Google Scholar 

  • Andreae, W. A. and van Ysselstein, M. W. (1960). “Studies of indoleacetic acid metabolism. VI: Indoleacetic acid uptake and metabolism by pea roots and epicotyls”. Plant Physiol. 35: 225–232.

    Article  PubMed  CAS  Google Scholar 

  • Arteca, J. M., Botella, J. R., and Arteca, R. N. (1993). “Effects of plant hormones on ACC synthase gene expression in etiolated mung beans”. Plant Physiol. 102S: 131.

    Google Scholar 

  • Arteca, R. N. (1990). “Hormonal stimulation of ethylene biosynthesis”. In Polyamines and Ethylene: Biochemistry, Physiology, and Interactions, eds., H. E. Flores, R. N. Arteca, and J. C. Shannon, American Society of Plant Physiologists, Rockville, MD, pp. 216–223.

    Google Scholar 

  • Arteca, R. N., Bachman, J. M., Yopp, J. H., and Mandava, N. B. (1985). “Relationship of steroidal structure to ethylene production by etiolated mung bean segments”. Physiol. Plant. 64: 13–16.

    Article  CAS  Google Scholar 

  • Bach, T. J., Roth, P. S., and Thompson, M. J. (1991). “Brassinosteroids specifically inhibit growth of tobacco tumor cells”. In Brassinosteroids. Chemistry, Bioactivity, and Applications, eds., H. G. Cutler, T. Yokota, and G. Adam, American Chemical Society, Washington, DC, pp. 176–188.

    Google Scholar 

  • Bandurski, R. S. (1984). “Metabolism of indole-3-acetic acid”. In The Biosynthesis and Metabolism of Plant Hormones, eds., A. Crozier and J. R. Hillman, Cambridge University Press, Cambridge, U.K., pp. 183–200.

    Google Scholar 

  • Bandurski, R. S., Schulze, A., and Reinecke, D. M. (1986). “Biosynthetic and metabolic aspects of auxins”. In Plant Growth Substances, eds., M. Bopp, Springer-Verlag, Berlin, pp. 83–91.

    Chapter  Google Scholar 

  • Bellincampi, D. and Morpurgo, G. (1991). “Stimulation of growth induced by brassinosteroid and conditioning factors in plant cell cultures”. In Brassinosteroids. Chemistry, Bioactivity, and Applications, eds., H. G. Cutler, T. Yokota, and G. Adam, American Chemical Society, Washington, DC, pp. 189–199.

    Google Scholar 

  • Bleecker, A. B., Estelle, M. A., Somerville, C., and Kende, H. (1988). “Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana”. Science 231: 1086–1089.

    Google Scholar 

  • Botella, J. R., Arteca, J. M., Schlagnhaufer, C. D., Arteca, R. N., and Phillips, A. T. (1992). “Identification and characterization of a full-length cDNA encoding for an auxin-induced 1-aminocyclopropane 1-carboxylate synthase from etiolated mung bean hypocotyl segments and expression of its mRNA in response to indole-3-acetic acid”. Plant Mol. BioL 20: 425–436.

    Article  CAS  Google Scholar 

  • Briggs, W. R. and Baskin, T. I. (1988). “Phototropism in higher plants — controversies and caveats”. Botanica Acta 101: 133–139.

    CAS  Google Scholar 

  • Brown, P. H. and Ho, T-H. D. (1986). “Barley aleurone layers secrete a nuclease in response to gibberellic acid. Purification and partial characterization of the associated ribonuclease, deoxyribonuclease, and 3 ’-nucleotidase activities”. Plant Physiol. 82: 801–806.

    Article  PubMed  CAS  Google Scholar 

  • Chacko, E. K., Kohli, R. R., and Randhawa, G. S. (1974). “Investigations on the use of (2-chloroethyl)phosphonic acid (ethephon, CEPA) for the control of biennial bearing in mango”. Sci. Hort. 2: 389–398.

    Article  CAS  Google Scholar 

  • Chen, W.-S. and Ku, M.-L. (1988). “Ethephon and kinetin reduce shoot length and increase flower bud formation in lychee”. HortSci. 23: 1078.

    CAS  Google Scholar 

  • Chibnall, A. C. (1954). “Protein metabolism in rooted runner-bean leaves”. New Phytol. 53: 31.

    Article  CAS  Google Scholar 

  • Cleland, R. E. (1987). “Auxin and cell elongation”. In Plant Hormones and Their Role in Plant Growth and Development, ed., P. J. Davies, Martinus Nijhoff Publishers, Boston, pp. 132–148.

    Google Scholar 

  • Clouse, S. D., Hall, A. F., Langford, M., McMorris, T. C., and Baker, M. E. (1993). “Physiological and molecular effects of brassinosteroids on Arabidopsis thaliana”. J. Plant Growth Reg. 12: 61–66.

    Article  CAS  Google Scholar 

  • Clouse, S. D., Zurek, D. M., McMorris, T. C. and Baker, M. E. (1992). “Effect of brassinolide on gene expression in elongating soybean epicotyls”. Plant Physiol. 100: 1377–1383.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J. D. and Bialek, K. (1984). “The biosynthesis of indole-3-acetic acid in higher plants”. In The Biosynthesis and Metabolism of Plant Hormones, eds., A. Crozier and J. R. Hillman, Cambridge University Press, Cambridge, pp. 165–181.

    Google Scholar 

  • Crane, J. C. (1949). “Controlled growth of fig fruits by synthetic hormone applications”. Proc. Amer. Soc. Hort. Sci. 54: 102–108.

    CAS  Google Scholar 

  • Cuatrecasas, P., Hollenberg, M. D., Chang, K., and Bennett, V. (1977). “Hormone receptor complexes and their modulation of membrane function”. Recent Progress in Hormone Research 31: 37–52.

    Google Scholar 

  • Cutler, H. G., Yokota, T., and Adam, G. (1991). Brassinosteroids: Chemistry, Bioactivity and Applications, American Chemical Society, Washington, DC.

    Google Scholar 

  • Danielli, J. F. (1954). “Morphological and molecular aspects of active transport”. Soc. Exp. Biol. 8: 502–515.

    CAS  Google Scholar 

  • Davies, W. J. and Jones, H. G. (1991). Abscisic Acid: Physiology and Biochemistry, Bios Scientific Publishers, Oxford.

    Google Scholar 

  • Davis, T. D. and Curry, E. A. (1991). “Chemical regulation of vegetative growth”. Critical Reviews in Plant Science 10: 151–188.

    Article  CAS  Google Scholar 

  • De Greef, J. A., De Proft, M. P., Mekers, O., Van Dijck, R., Jacobs, L., and Philippe, L. (1989). “Floral induction of bromeliads by ethylene”. In Biochemical and Physiological Aspects of Ethylene Production in Lower and Higher Plants, eds., H. Clijster, M. De Proft, R. Marcelle and M. Van Poucke, Kluwer Academic Publishers, Dordrecht, pp. 313–322.

    Chapter  Google Scholar 

  • Dong, C.-N. and Arteca, R. N. (1982). “Changes in photosynthetic rates and growth following root treatments of tomato plants with phytohormones”. Photosynthesis Research 3: 45–52.

    Article  CAS  Google Scholar 

  • Eagles, C. F. and Wareing, P. F. (1963). “Experimental induction of dormancy in Betula pubescens”. Nature 199: 874.

    Article  CAS  Google Scholar 

  • Eliasson, L., Bertell, G., and Bolander, E. (1989). “Inhibitory action of auxin on root elongation not mediated by ethylene”. Plant Physiol 91: 310–314.

    Article  PubMed  CAS  Google Scholar 

  • Evans, M. L. (1985). “The action of auxin on plant cell elongation”. CRC Critical Reviews in Plant Sciences 2: 317–365.

    Article  PubMed  CAS  Google Scholar 

  • Farmer, E. E. and Ryan, C. A. (1992). “Octadecanoid prescursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors”. Plant Cell 4: 129–134.

    PubMed  CAS  Google Scholar 

  • Filner, P. and Varner, J. E. (1967). “A test for de novo synthesis of enzymes: Density labeling with H1O of barley a-amylase induced by gibberellic acid”. Proc. NatL Acad. Sci. USA 58: 1520–1526.

    Article  PubMed  CAS  Google Scholar 

  • Fries, N. (1960). “The effect of adenine and kinetin on growth and differentiation of Lupinus”. Physiol. Plant. 13: 468.

    Article  CAS  Google Scholar 

  • Gmelin, R. and Virtanen, A. I. (1961). “Glucobrassicin, the precursor of indolylacetylnitrile, ascorbigen and SCN in Brassica oleracea”. Suomen Kern. 34: 15–18.

    Google Scholar 

  • Grossmann, K. (1990). “Plant growth retardants as tools in physiological research”. Physiol. Plant. 78: 640–648.

    Article  CAS  Google Scholar 

  • Guo, L., Arteca, R. N., Phillips, A. T., and Liu, Y. (1992). “Purification and characterization of 1-aminocyclopropane-1-carboxylate N-malonyltransferase from etiolated mung bean hypocotyls”. Plant PhysioL 100: 2041–2045.

    Article  PubMed  CAS  Google Scholar 

  • Guo, L. G., Phillips, A. T., and Arteca, R. N. (1993). “Amino acid N-malonyltransferases in mung beans: Action on 1-aminocyclopropane-1-carboxylic acid and Dphenylalanine”. J. BioL Chem. 268:25,389–25,394.

    Google Scholar 

  • Guy, C. L. (1990). “Cold acclimation and freezing stress tolerance: Role of protein metabolism”. Annu. Rev. Plant PhysioL Plant Mol. BioL 41: 187–233.

    Article  CAS  Google Scholar 

  • Haberlandt, G. (1902). “Über die Statolithefunktion der Stärkekörner (about the statolith function of starch grains)”. Berichte der Deutschen Botanisches Gesellschaft 20: 189–195.

    Google Scholar 

  • Hamilton, A. J., Lycett, G. W., and Grierson, D. (1990). “Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants”. Nature 346: 284–287.

    Article  CAS  Google Scholar 

  • Harris, M. J. and Outlaw Jr., W. H. (1990). “Histochemical technique: A low-volume, enzyme-amplified immunoassay with sub-fmol sensitivity. Application to measurement of abscisic acid in stomatal guard cells”. PhysioL Plant. 78: 495–500.

    Article  CAS  Google Scholar 

  • Hillman, J. R. (1984). “Apical dominance”. In Advanced Plant Physiology, eds., M. B. Wilkins, Pitman, London, pp. 127–148.

    Google Scholar 

  • Iwahori, S., Tominaga, S., and Higuchi, S. (1990). “Retardation of abscission of citrus leak and fruitlet explants by brassinolide”. Plant Growth Reg. 9: 119–125.

    Article  CAS  Google Scholar 

  • Jablonski, J. R. and Skoog, F. (1954). “Cell enlargement and cell division in excised tobacco pith tissue”. Physiol. Plant. 7: 16–24.

    Article  CAS  Google Scholar 

  • Jacobs, M. and Gilbert, S. F. (1983). “Basal localization of the presumptive auxin transport carrier in pea stem cells”. Science 220: 1297–1300.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, W. P. (1961). “The polar movement of auxin in the shoots of higher plants: Its occurrence and physiological significance”. In Plant Growth Regulation, ed., R. M. Klein, Iowa State University Press, Ames, IA, pp. 397–409.

    Google Scholar 

  • Kalinich, J. F., Mandava, N. B., and Todhunter, J. A. (1985). “Relationship of nucleic acid metabolism to brassinolide-induced responses in beans”. J. Plant Physiol. 120: 207–214.

    Article  CAS  Google Scholar 

  • Kaminek, M., Mok, D. W. S., and Zazimalova, E. (1992). Physiology and Biochemistry of Cytokinins in Plants, SPB Academic Publishing, Hague, The Netherlands.

    Google Scholar 

  • Kamuro, Y. and Inada, K. (1991). “The effect of brassinolide on the light-induced growth inhibition in mung bean epicotyl”. Plant Growth Reg. 10: 37–43.

    Article  CAS  Google Scholar 

  • Kende, H. (1993). “Ethylene biosynthesis”. Annu. Rev. Plant PhysioL Plant Mol. Biol. 44: 283–307.

    Article  CAS  Google Scholar 

  • Klee, H. J. (1993). “Ripening physiology of fruit from transgenic tomato (Lycopersicon esculentum) plants with reduced ethylene synthesis”. Plant PhysioL 102: 911–916.

    PubMed  CAS  Google Scholar 

  • Klee, H. J., Hayford, M. B., Kretzmer, K. A., Barry, G. F., and Kishore, G. M. (1991). “Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants”. Plant Cell 3: 1187–1193.

    PubMed  CAS  Google Scholar 

  • Kulaeva, O. N., Burkhanove, E. A., Fedina, A. B., Khokhlova, V. A., Bokebayeva, G. A., Vorbrodt, H. M., and Adam, G. (1991). “Effect of brassinosteroids on protein synthesis and plant cell ultrastructure under stress conditions”. In Brassinosteriods. Chemistry, Bioactivity and Applications, eds., H. G. Cutler, T. Yokota, and G. Adam, American Chemical Society, Washington, DC, pp. 141–157.

    Google Scholar 

  • Lamarck J. B. (1778). Flore Francaise 3, L’Imprimerie Royale, Paris.

    Google Scholar 

  • Leopold, A. C. and Kawase, M. (1964). “Benzyladenine effects on bean leaf growth and senescence”. Am. J. Botany 51: 294–298.

    Article  CAS  Google Scholar 

  • Li, W. and Assmann, S. M. (1993). “Characterization of a G-protein regulated outward K+ current in mesophyll cells of Vicia faba L.”. Proc. Natl. Acad. Sci. USA 90: 262–266.

    Article  PubMed  CAS  Google Scholar 

  • Libbert, E., Wichner, S., Schiewer, U., Risch, H., and Kaiser, W. (1966). “The influence of epiphytic bacteria on auxin metabolism”. Planta 68: 327–334.

    Article  CAS  Google Scholar 

  • Ludford, P. M. (1987). “Postharvest hormone changes in vegetables and fruit”. In Plant Hormones and Their Role in Plant Growth and Development, ed., P. J. Davies, Martinus Nijhoff, Boston, pp. 574–592.

    Google Scholar 

  • Mandava, N. B. (1988). “Plant growth-promoting brassinosteroids”. Annu. Rev. Plant Physiol. Plant Mol. BioL 39: 23–52.

    Article  CAS  Google Scholar 

  • Medford, J. I., Horgan, R., El-Sawi, Z., and Klee, H. J. (1989). “Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene”. The Plant Cell 1: 403–413.

    PubMed  CAS  Google Scholar 

  • Miller, C. O. (1956). “Similarity of some kinetin and red light effects”. Plant Physiol. 31: 318.

    Article  PubMed  CAS  Google Scholar 

  • Mok, D. W. S. and Mok, M. C. (1994). Cytokinins. Chemistry, Activity, and Function, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Morgan, P. W. and Hall, W. C. (1964). “Effect of 2,4-D on the production of ethylene by cotton and grain sorghum”. Physiol. Plant. 15: 308–311.

    Google Scholar 

  • Mothes, K. and Engelbrecht, L. (1961). “Kinetin-induced directed transport of substances in excised leaves in the dark”. Phytochem. 1: 58–62.

    Article  CAS  Google Scholar 

  • Muir, R. M. and Lantican, B. P. (1968). “Purification and properties of the enzyme system forming indoleacetic acid”. In Biochemistry and Physiology of Plant Growth Substances, eds., F. Wightman and G. Setterfield, Runge Press, Ottawa, pp. 259–272.

    Google Scholar 

  • Neljubow, D. N. (1901). “über die horizontale nutation der stengel von Pisum sativum und einiger anderen”. Pflanzen Beitrage Botanik Zentralblatt 10: 128–139.

    Google Scholar 

  • Nemec, B. (1901). “Über die Wahrnehmung des Schwerkraftreizes bei den Pflanzen. (About the perception of gravity by plants)”. Jahrb. Wiss. Bot. 36: 80–178.

    Google Scholar 

  • Nitsch, C. and Nitsch, J. P. (1969), Floral induction in a short-day plant. “Plumbago indica L., by 2-chloroethanephosphonic acid”. Plant Physiol. 44: 1747–1748.

    Article  PubMed  CAS  Google Scholar 

  • Nitsch, J. P. (1950). “Growth and morphogenesis of the strawberry as related to auxin”. Am. J. Bot. 37: 211–215.

    Article  CAS  Google Scholar 

  • Oehler, P. W., Min-Wong, L., Taylor, L. P., Pike, D. A. and Theologis, A. (1991). “Reversible inhibition of tomato fruit senescence by antisense RNA”. Science 254: 437–439.

    Article  Google Scholar 

  • Osborne, D. J. (1989). “Abscission”. CRC Critical Reviews in Plant Sciences 8: 103–129.

    Article  CAS  Google Scholar 

  • Paleg, L. G. (1960a). “Physiological effects of gibberellic acid: I. On carbohydrate metabolism and amylase activity of barley endosperm”. Plant Physiol. 35: 293.

    Article  PubMed  CAS  Google Scholar 

  • Paleg, L. G. (1960b). “Physiological effects of gibberellic acid: II. On starch hydrolyzing enzymes of barley endosperm”. Plant Physiol. 35: 902.

    Article  PubMed  CAS  Google Scholar 

  • Paleg, L. G. (1965). “Physiological effects of gibberellins”. Annu. Rev. Plant Physiol. 16: 291–322.

    Article  CAS  Google Scholar 

  • Parthier, B. (1979). “The role of phytohormones (cytokinins) in chloroplast development (a review)”. Biochemie Physiologie Pflanzen 174: 173–214.

    CAS  Google Scholar 

  • Rai, V. K. and Laloraya, M. M. (1967). “Correlative studies on plant growth and metabolism II. Effect of light and of gibberellic acid on the changes in protein and soluble nitrogen in lettuce seedlings”. Plant Physiol. 42: 440–444.

    Article  PubMed  CAS  Google Scholar 

  • Raschke, K. (1987). “Action of abscisic acid on guard cells”. In Stomata! Function, eds., E. Zeiger, G. D. Farquhar and I. R. Cowan, Stanford University Press, Stanford, CA, pp. 253–270.

    Google Scholar 

  • Raskin, I. (1992). “Role of salicylic acid in plants”. Annu. Rev. Plant Physiol. Plant Mol. Biot 43: 439–463.

    Article  CAS  Google Scholar 

  • Raven, J. A. (1975). “Transport of indoleacetic acid in plant cells in relation to pH and electrical gradients, and its significance for polar IAA transport”. New Phytol 74: 163.

    Article  CAS  Google Scholar 

  • Ray, P. M. (1987). “Principles of plant cell growth”. In Physiology of Cell Expansion During Plant Growth, eds., D. J. Cosgrove and D. P. Knievel, American Society of Plant Physiology, Rockville, MD, pp. 1–17.

    Google Scholar 

  • Rayle, D. L. and Purves, W. K. (1967). “Conversion of indole-ethanol to indoleacetic acid in cucumber seedling shoots”. Plant Physiol. 42: 1091–1093.

    Article  PubMed  CAS  Google Scholar 

  • Reid, J. B. (1990). “Phytohormone mutants in plant research”. J. Plant Growth Reg. 9: 97–111.

    Article  CAS  Google Scholar 

  • Reid, M. S. (1985). “Ethylene and abscission”. HortSci. 20: 45–50.

    CAS  Google Scholar 

  • Reinecke, D. M. and Bandurski, R. S. (1987). “Auxin biosynthesis and metabolism”. In Plant Hormones and Their Role in Plant Growth and Development, ed., P. J. Davies, Martinus Nijhoff Publishers, Boston, pp. 24–42.

    Google Scholar 

  • Richter, K. and Koolman, J. (1991). “Antiecdysteroid effects of brassinosteriods in insects”. In Brassinosteroids. Chemistry, Bioactivity, and Applications, eds., H. G. Cutler, T. Yokota and G. Adam, American Chemical Society, Washington, DC, pp. 265–279.

    Google Scholar 

  • Roddick, J. G. and Guan, M. (1991). “Brassinosteroids and root development”. In Brassinosteroids. Chemistry, Bioactivity, and Applications, eds., H. G. Cutler, T. Yokota and G. Adam, American Chemical Society, Washington, DC, pp. 231–245.

    Google Scholar 

  • Rubery, P. H. and Sheldrake, A. R. (1974). “Carrier mediated auxin transport”. Planta 118: 101–121.

    Article  CAS  Google Scholar 

  • Sachs, J. (1880). “Stoff und Form der Pflanzenorgane. I”. Arb. Bot. Inst. Wurzburg 2: 452–488.

    Google Scholar 

  • Salisbury, F. B. and Ross, C. W. (1992). Plant Physiology, Fourth Edition, Wadworth Publishing Co., Belmont, CA.

    Google Scholar 

  • Sasse, J. M. (1991). “Brassinosteroids-Are they endogenous plant hormones?” PGRSA Quarterly 19: 1–18.

    CAS  Google Scholar 

  • Schlagnhaufer, C. and Arteca, R. N. (1985). “Brassinosteroid-induced epinasty in tomato plants”. Plant Physiol. 78: 300–303.

    Article  PubMed  CAS  Google Scholar 

  • Schlagnhaufer, C. D. and Arteca, R. N. (1991). “The uptake and metabolism of brassinosteroid by tomato (Lycopersicon esculentum) plants”. J. Plant Physiol. 138: 191–194.

    Article  CAS  Google Scholar 

  • Scott, I. M. (1990). “Plant hormone response mutants”. PhysioL Plant. 78: 147–152.

    Article  CAS  Google Scholar 

  • Sembdner, G. and Parthier, B. (1993). “The biochemistry and the physiological and molecular actions of jasmonates”. Annu. Rev. Plant PhysioL Plant Mol. Biol. 44: 569–589.

    Article  CAS  Google Scholar 

  • Shiver, K. and Mundy, J. (1990). “Gene expression in response to abscisic acid and osmotic stress”. The Plant Cell 2: 503–512.

    Google Scholar 

  • Staswick, P. E. (1992). “Jasmonate, genes, and fragrant signals”. Plant Physiol. 99: 804–807.

    Article  PubMed  CAS  Google Scholar 

  • Stuart, N. W. and Cathey, H. M. (1961). “Applied aspects of the gibberellins”. Ann. Rev. Plant Physiol. 12: 369.

    Article  CAS  Google Scholar 

  • Takahashi, N., Phinney, B. O. and MacMillan, J. (1991). Gibberellins, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Takasuto, S., Yazawa, N., Ikekawa, N., Takematsu, T., Takeuchi, Y., and Koguchi, M. (1983). “Structure-activity relationship of brassinosteroids”. Phytochem. 22: 2437–41.

    Article  Google Scholar 

  • Tamas, I. A. (1987). “Hormonal regulation of apical dominance”. In Plant Hormones and Their Role in Plant Growth and Development, ed., P. J. Davies, Martinus Nijhoff Publishers, Boston, pp. 393–410.

    Google Scholar 

  • Tang, Y. W. and Bonner, J. (1947). “The enzymatic inactivation of indoleacetic acid”. Arch. Biochem. Biophys. 3: 11–25.

    Google Scholar 

  • Tanino, K., Weiser, C. J., Fuchigami, L. H. and Chen, T. T. H. (1990). “Water content during abscisic acid induced freezing tolerance in bromegrass cells”. Plant Physiol. 93: 460–464.

    Article  PubMed  CAS  Google Scholar 

  • Theologis, A. (1992). “One rotten apple spoils the whole bushel: The role of ethylene in fruit ripening”. Cell 70: 181–184.

    Article  PubMed  CAS  Google Scholar 

  • Thimann, K. V. (1935). “On the plant growth hormone produced by Rhizopus sinuis”. J. BioL Chem. 109: 279–291.

    CAS  Google Scholar 

  • Thimann, K. V. (1987). “Plant senescence: A proposed integration of the constituent processes”. In Plant Senescence: Its Biochemistry and Physiology, eds., W. W. Thomson and E. A. Nothnagel, American Society of Plant Physiologists, Rockville, MD, pp. 1–19.

    Google Scholar 

  • Thimann, K. V. and Mahadevan, S. (1958). “Enzymatic hydrolysis of indoleacetonitrile”. Nature 181: 1466–1467.

    Article  PubMed  CAS  Google Scholar 

  • Thimann, K. V. and Skoog, F. (1934). “On the inhibition of bud development and other functions of growth substance in Vicia faba”. Proc. Royal Soc. B114: 317–339.

    Article  CAS  Google Scholar 

  • Thompson, M. J., Mandava, N. B., Meudt, W. J., Lusby, W. R., and Spaulding, D. W. (1981). “Synthesis and biological activity of brassinolide and its 22,23-isomer. Novel plant growth promoting steroids”. Steroids 38: 567–580.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, M. J., Meudt, W. J., Mandava, N. B., Dutky, S. R., Lusby, W. R. and Spaulding D. W. (1982). “Synthesis of brassinosteroids and relationship of structure to plant growth-promoting effects”. Steroids 39: 89–105.

    Article  PubMed  CAS  Google Scholar 

  • Torrey, J. G. (1962). “Auxin and purine interactions in lateral root initiation in isolated pea root segments”. Physiol Plant. 15: 177.

    Article  CAS  Google Scholar 

  • Traub, H. P., Cooper, W. C., and Reece, P. C. (1940). “Inducing flowering in the pineapple, Ananas sativus”. Proc. Amer. Soc. Hort. Sci. 37: 521–525.

    CAS  Google Scholar 

  • van Herk, A. W. H. (1937). “Die chemischen Vorgange im Sauromatum Kolben III. Mitteilung”. Proc. K. Ned. Akad. Wet. 40: 709–719.

    CAS  Google Scholar 

  • van Staden, J., Bayley, A. D., Upfold, S. J., and Drewes, F. E. (1990). “Cytokinins in cut carnation flowers. VIII. Uptake, transport and metabolism of benzyladenine and the effect of benzyladenine derivatives on flower longevity”. J. Plant Physiol. 703–707.

    Google Scholar 

  • van Staden, J., Cook, E. L. and Noodén, L. D. (1988). “Cytokinins and senescence”. In Senescence and Aging in Plants, eds., L. D. Noodén and A. C. Leopold, Academic Press, New York, pp. 281–328.

    Google Scholar 

  • Varner, J. E. (1964). “Gibberellic acid-controlled synthesis of a-amylase in barley endosperm”. Plant Physiol. 39: 413–415.

    Article  PubMed  CAS  Google Scholar 

  • von Sachs, R. M. and Kofranek, A. M. (1963). “Comparative cytohistological studies on inhibition and promotion of stem growth in Chrysanthemum morifolium”. Am. J. Bot. 50: 772.

    Article  Google Scholar 

  • Wang, T.-W., Cosgrove, D. J., and Arteca, R. N. (1993). “Brassinosteroids stimulation of hypocotyl elongation and wall relaxation in pakchoi (Brassica chinensis cv Lei-Choi)”. Plant Physiol. 101: 965–968.

    PubMed  CAS  Google Scholar 

  • Weaver, R. J. (1972). Plant Growth Substances in Agriculture, W. H. Freeman and Company, San Francisco.

    Google Scholar 

  • Went, F. W. (1934). “On the pea test method for auxin, the plant growth hormone”. K Akad. Wetenschap. Amsterdam Proc. Sect. Sci. 37: 547.

    CAS  Google Scholar 

  • Wickson, M. and Thimann, K. V. (1958). “The antagonism of auxin and kinetin in apical dominance”. Physiol. Plant. 11: 62.

    Article  CAS  Google Scholar 

  • Wightman, F., Schneider, E. A. and Thimann, K. V. (1980). “Hormonal factors controlling the initiation and development of lateral roots. II. Effects of exogenous growth factors on lateral root formation in pea roots”. Physiol. Plant. 49: 304–314.

    Article  CAS  Google Scholar 

  • Wildman, S. G., Ferri, M. G., and Bonner, J. (1947). “The enzymatic conversion of tryptophan to auxin by spinach leaves”. Arch. Biochem. Biophys. 13: 131.

    CAS  Google Scholar 

  • Yalpani, N., Len, J., Lawton, M. A., and Raskin, I. (1993). “Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco”. Plant Physiol. 103: 315–321.

    PubMed  CAS  Google Scholar 

  • Yokota, T., Ogino, Y., Suzuki, H., Takahashi, N., Saimoto, H., Fujioka, S., and Sakurai, A. (1991). “Metabolism and biosynthesis of brassinosteroids”. In Brassinosteroids. Chemistry, Bioactivity, and Applications, eds., H. G. Cutler, T. Yokota and G. Adam ). American Chemical Society, Washington, DC, pp. 86–96.

    Google Scholar 

  • Yomo, H. (1960). “Studies on the a-amylase activity substance. IV. On the amylase activating action of gibberellin”. Hakko Kyokaishi 18: 600–602.

    CAS  Google Scholar 

  • Yopp, J. H., Aung, L. H. and Steffens, G. L. (1986). Bioassays and Other Special Techniques for Plant Hormones and Plant Growth Regulators, Plant Growth Regulator Society of America, Lake Alfred, FL.

    Google Scholar 

  • Yopp, J. H., Mandava, N. B., Thompson, M. J., and Sasse, J. M. (1981). Brassinosteroids in Selected Bioassays, Proc. Plant Growth Reg. Soc. Am., Plant Growth Regular Society of America, St. Petersburg, FL.

    Google Scholar 

  • Zenk, M. H. (1968). “The action of light on the metabolism of auxin in relation to phototropism”. In Biochemistry and Physiology of Plant Growth Substances, eds., F. Wightman and G. Setterfield, Runge Press, Ottawa, pp. 1109–1128.

    Google Scholar 

  • Zenk, M. H. (1962). “Aufnahme and Stoffwechsel von Naphthylessigsäure durch Erbsenepicotyle”. Planta 58: 75–94.

    Article  CAS  Google Scholar 

  • Zenk, M. H. (1961). “Indoleacetyl glucose, a new compound in the metabolism in indoleacetic acid in plants”. Nature 191: 493–494.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, P. W. and Hitchcock, A. E. (1942). “Substituted phenoxy and benzoic acid growth substances and the relation of structure to physiological activity”. Contrib. Boyce Thompson Inst. 12: 321–343.

    CAS  Google Scholar 

  • Zimmerman, P. W. and Wilcoxon, F. (1935). “Several chemical growth substances which cause initiation of roots and other responses in plants”. Contrib. Boyce Thompson Inst. 7: 209–229.

    CAS  Google Scholar 

  • Zurek, D. M. and Clouse, S. D. (1994). “Molecular cloning and characterization of a brassinosteroid-regulated gene from elongating soybean (Glycine max L.) epicotyls”. Plant Physiol. 104: 161–170.

    Article  PubMed  CAS  Google Scholar 

  • Zurek, D. M., Rayle, D. L., McMorris, T. C., and Clouse, S. D. (1994). “Investigation of gene expression, growth kinetics, and wall extensibility during brassinosteroidregulated stem elongation”. Plant Physiol. 104: 505–513.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Arteca, R.N. (1996). Chemistry, Biological Effects, and Mechanism of Action of Plant Growth Substances. In: Plant Growth Substances. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2451-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2451-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4721-5

  • Online ISBN: 978-1-4757-2451-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics