Chemistry, Biological Effects, and Mechanism of Action of Plant Growth Substances

  • Richard N. Arteca


Dose-response curves for all of the known plant growth substances are bell-shaped, as shown in Figure 3.1. At lower concentrations the effects are typically stimulatory reaching a maximum beyond which they become inhibitory. There are two general classes of hormones found in animal systems, steroid and peptide, both of which probably also occur in plant systems. The steroid class forms a hormone/receptor (defined as those molecules that specifically recognize and bind the hormone and, as a consequence of this recognition, can lead to other changes or series of changes which ultimately result in the biological response) complex in the cytoplasm, which is then transported into the nucleus where mRNA is synthesized, resulting in a given response (Figure 3.2a). The second class are peptide hormones which bind to a receptor at the plasmamembrane, altering the enzyme adenylate cyclase and activating cyclic AMP from ATP, which acts as a secondary messenger for a given response (Figure 3.2b). In order for hormone binding in either class to be specific, the following criteria must be met (Cuatrecasas et al. 1977):
  1. 1.

    There must be strict structural and steric specificity.

  2. 2.

    The response must be saturable, thereby indicating a finite and limited number of binding sites.

  3. 3.

    The response must be tissue-specific.

  4. 4.

    The hormone must bind with a high affinity in order to show physiological relevance.

  5. 5.

    Hormone binding must be reversible showing kinetics consistent with a physiological response observed and biological activity.

Figure 3.1

A typical dose-response curve for the known plant growth substances.


Salicylic Acid Ethylene Production Jasmonic Acid Auxin Transport Ethylene Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, F. B., Morgan, P. W., and Saltveit Jr., M. E. (1992). Ethylene in Plant Biology. Second Edition, Academic Press, Inc., San Diego, CA.Google Scholar
  2. Andreae, W. A. and Good, N. E. (1957). “Studies in indoleacetic acid metabolism. IV: Conjugation with aspartic acid and ammonia as processes in the metabolism of carboxylic acid”. Plant Physiol. 32: 566–572.PubMedCrossRefGoogle Scholar
  3. Andreae, W. A. and van Ysselstein, M. W. (1960). “Studies of indoleacetic acid metabolism. VI: Indoleacetic acid uptake and metabolism by pea roots and epicotyls”. Plant Physiol. 35: 225–232.PubMedCrossRefGoogle Scholar
  4. Arteca, J. M., Botella, J. R., and Arteca, R. N. (1993). “Effects of plant hormones on ACC synthase gene expression in etiolated mung beans”. Plant Physiol. 102S: 131.Google Scholar
  5. Arteca, R. N. (1990). “Hormonal stimulation of ethylene biosynthesis”. In Polyamines and Ethylene: Biochemistry, Physiology, and Interactions, eds., H. E. Flores, R. N. Arteca, and J. C. Shannon, American Society of Plant Physiologists, Rockville, MD, pp. 216–223.Google Scholar
  6. Arteca, R. N., Bachman, J. M., Yopp, J. H., and Mandava, N. B. (1985). “Relationship of steroidal structure to ethylene production by etiolated mung bean segments”. Physiol. Plant. 64: 13–16.CrossRefGoogle Scholar
  7. Bach, T. J., Roth, P. S., and Thompson, M. J. (1991). “Brassinosteroids specifically inhibit growth of tobacco tumor cells”. In Brassinosteroids. Chemistry, Bioactivity, and Applications, eds., H. G. Cutler, T. Yokota, and G. Adam, American Chemical Society, Washington, DC, pp. 176–188.Google Scholar
  8. Bandurski, R. S. (1984). “Metabolism of indole-3-acetic acid”. In The Biosynthesis and Metabolism of Plant Hormones, eds., A. Crozier and J. R. Hillman, Cambridge University Press, Cambridge, U.K., pp. 183–200.Google Scholar
  9. Bandurski, R. S., Schulze, A., and Reinecke, D. M. (1986). “Biosynthetic and metabolic aspects of auxins”. In Plant Growth Substances, eds., M. Bopp, Springer-Verlag, Berlin, pp. 83–91.CrossRefGoogle Scholar
  10. Bellincampi, D. and Morpurgo, G. (1991). “Stimulation of growth induced by brassinosteroid and conditioning factors in plant cell cultures”. In Brassinosteroids. Chemistry, Bioactivity, and Applications, eds., H. G. Cutler, T. Yokota, and G. Adam, American Chemical Society, Washington, DC, pp. 189–199.Google Scholar
  11. Bleecker, A. B., Estelle, M. A., Somerville, C., and Kende, H. (1988). “Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana”. Science 231: 1086–1089.Google Scholar
  12. Botella, J. R., Arteca, J. M., Schlagnhaufer, C. D., Arteca, R. N., and Phillips, A. T. (1992). “Identification and characterization of a full-length cDNA encoding for an auxin-induced 1-aminocyclopropane 1-carboxylate synthase from etiolated mung bean hypocotyl segments and expression of its mRNA in response to indole-3-acetic acid”. Plant Mol. BioL 20: 425–436.CrossRefGoogle Scholar
  13. Briggs, W. R. and Baskin, T. I. (1988). “Phototropism in higher plants — controversies and caveats”. Botanica Acta 101: 133–139.Google Scholar
  14. Brown, P. H. and Ho, T-H. D. (1986). “Barley aleurone layers secrete a nuclease in response to gibberellic acid. Purification and partial characterization of the associated ribonuclease, deoxyribonuclease, and 3 ’-nucleotidase activities”. Plant Physiol. 82: 801–806.PubMedCrossRefGoogle Scholar
  15. Chacko, E. K., Kohli, R. R., and Randhawa, G. S. (1974). “Investigations on the use of (2-chloroethyl)phosphonic acid (ethephon, CEPA) for the control of biennial bearing in mango”. Sci. Hort. 2: 389–398.CrossRefGoogle Scholar
  16. Chen, W.-S. and Ku, M.-L. (1988). “Ethephon and kinetin reduce shoot length and increase flower bud formation in lychee”. HortSci. 23: 1078.Google Scholar
  17. Chibnall, A. C. (1954). “Protein metabolism in rooted runner-bean leaves”. New Phytol. 53: 31.CrossRefGoogle Scholar
  18. Cleland, R. E. (1987). “Auxin and cell elongation”. In Plant Hormones and Their Role in Plant Growth and Development, ed., P. J. Davies, Martinus Nijhoff Publishers, Boston, pp. 132–148.Google Scholar
  19. Clouse, S. D., Hall, A. F., Langford, M., McMorris, T. C., and Baker, M. E. (1993). “Physiological and molecular effects of brassinosteroids on Arabidopsis thaliana”. J. Plant Growth Reg. 12: 61–66.CrossRefGoogle Scholar
  20. Clouse, S. D., Zurek, D. M., McMorris, T. C. and Baker, M. E. (1992). “Effect of brassinolide on gene expression in elongating soybean epicotyls”. Plant Physiol. 100: 1377–1383.PubMedCrossRefGoogle Scholar
  21. Cohen, J. D. and Bialek, K. (1984). “The biosynthesis of indole-3-acetic acid in higher plants”. In The Biosynthesis and Metabolism of Plant Hormones, eds., A. Crozier and J. R. Hillman, Cambridge University Press, Cambridge, pp. 165–181.Google Scholar
  22. Crane, J. C. (1949). “Controlled growth of fig fruits by synthetic hormone applications”. Proc. Amer. Soc. Hort. Sci. 54: 102–108.Google Scholar
  23. Cuatrecasas, P., Hollenberg, M. D., Chang, K., and Bennett, V. (1977). “Hormone receptor complexes and their modulation of membrane function”. Recent Progress in Hormone Research 31: 37–52.Google Scholar
  24. Cutler, H. G., Yokota, T., and Adam, G. (1991). Brassinosteroids: Chemistry, Bioactivity and Applications, American Chemical Society, Washington, DC.Google Scholar
  25. Danielli, J. F. (1954). “Morphological and molecular aspects of active transport”. Soc. Exp. Biol. 8: 502–515.Google Scholar
  26. Davies, W. J. and Jones, H. G. (1991). Abscisic Acid: Physiology and Biochemistry, Bios Scientific Publishers, Oxford.Google Scholar
  27. Davis, T. D. and Curry, E. A. (1991). “Chemical regulation of vegetative growth”. Critical Reviews in Plant Science 10: 151–188.CrossRefGoogle Scholar
  28. De Greef, J. A., De Proft, M. P., Mekers, O., Van Dijck, R., Jacobs, L., and Philippe, L. (1989). “Floral induction of bromeliads by ethylene”. In Biochemical and Physiological Aspects of Ethylene Production in Lower and Higher Plants, eds., H. Clijster, M. De Proft, R. Marcelle and M. Van Poucke, Kluwer Academic Publishers, Dordrecht, pp. 313–322.CrossRefGoogle Scholar
  29. Dong, C.-N. and Arteca, R. N. (1982). “Changes in photosynthetic rates and growth following root treatments of tomato plants with phytohormones”. Photosynthesis Research 3: 45–52.CrossRefGoogle Scholar
  30. Eagles, C. F. and Wareing, P. F. (1963). “Experimental induction of dormancy in Betula pubescens”. Nature 199: 874.CrossRefGoogle Scholar
  31. Eliasson, L., Bertell, G., and Bolander, E. (1989). “Inhibitory action of auxin on root elongation not mediated by ethylene”. Plant Physiol 91: 310–314.PubMedCrossRefGoogle Scholar
  32. Evans, M. L. (1985). “The action of auxin on plant cell elongation”. CRC Critical Reviews in Plant Sciences 2: 317–365.PubMedCrossRefGoogle Scholar
  33. Farmer, E. E. and Ryan, C. A. (1992). “Octadecanoid prescursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors”. Plant Cell 4: 129–134.PubMedGoogle Scholar
  34. Filner, P. and Varner, J. E. (1967). “A test for de novo synthesis of enzymes: Density labeling with H1O of barley a-amylase induced by gibberellic acid”. Proc. NatL Acad. Sci. USA 58: 1520–1526.PubMedCrossRefGoogle Scholar
  35. Fries, N. (1960). “The effect of adenine and kinetin on growth and differentiation of Lupinus”. Physiol. Plant. 13: 468.CrossRefGoogle Scholar
  36. Gmelin, R. and Virtanen, A. I. (1961). “Glucobrassicin, the precursor of indolylacetylnitrile, ascorbigen and SCN in Brassica oleracea”. Suomen Kern. 34: 15–18.Google Scholar
  37. Grossmann, K. (1990). “Plant growth retardants as tools in physiological research”. Physiol. Plant. 78: 640–648.CrossRefGoogle Scholar
  38. Guo, L., Arteca, R. N., Phillips, A. T., and Liu, Y. (1992). “Purification and characterization of 1-aminocyclopropane-1-carboxylate N-malonyltransferase from etiolated mung bean hypocotyls”. Plant PhysioL 100: 2041–2045.PubMedCrossRefGoogle Scholar
  39. Guo, L. G., Phillips, A. T., and Arteca, R. N. (1993). “Amino acid N-malonyltransferases in mung beans: Action on 1-aminocyclopropane-1-carboxylic acid and Dphenylalanine”. J. BioL Chem. 268:25,389–25,394.Google Scholar
  40. Guy, C. L. (1990). “Cold acclimation and freezing stress tolerance: Role of protein metabolism”. Annu. Rev. Plant PhysioL Plant Mol. BioL 41: 187–233.CrossRefGoogle Scholar
  41. Haberlandt, G. (1902). “Über die Statolithefunktion der Stärkekörner (about the statolith function of starch grains)”. Berichte der Deutschen Botanisches Gesellschaft 20: 189–195.Google Scholar
  42. Hamilton, A. J., Lycett, G. W., and Grierson, D. (1990). “Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants”. Nature 346: 284–287.CrossRefGoogle Scholar
  43. Harris, M. J. and Outlaw Jr., W. H. (1990). “Histochemical technique: A low-volume, enzyme-amplified immunoassay with sub-fmol sensitivity. Application to measurement of abscisic acid in stomatal guard cells”. PhysioL Plant. 78: 495–500.CrossRefGoogle Scholar
  44. Hillman, J. R. (1984). “Apical dominance”. In Advanced Plant Physiology, eds., M. B. Wilkins, Pitman, London, pp. 127–148.Google Scholar
  45. Iwahori, S., Tominaga, S., and Higuchi, S. (1990). “Retardation of abscission of citrus leak and fruitlet explants by brassinolide”. Plant Growth Reg. 9: 119–125.CrossRefGoogle Scholar
  46. Jablonski, J. R. and Skoog, F. (1954). “Cell enlargement and cell division in excised tobacco pith tissue”. Physiol. Plant. 7: 16–24.CrossRefGoogle Scholar
  47. Jacobs, M. and Gilbert, S. F. (1983). “Basal localization of the presumptive auxin transport carrier in pea stem cells”. Science 220: 1297–1300.PubMedCrossRefGoogle Scholar
  48. Jacobs, W. P. (1961). “The polar movement of auxin in the shoots of higher plants: Its occurrence and physiological significance”. In Plant Growth Regulation, ed., R. M. Klein, Iowa State University Press, Ames, IA, pp. 397–409.Google Scholar
  49. Kalinich, J. F., Mandava, N. B., and Todhunter, J. A. (1985). “Relationship of nucleic acid metabolism to brassinolide-induced responses in beans”. J. Plant Physiol. 120: 207–214.CrossRefGoogle Scholar
  50. Kaminek, M., Mok, D. W. S., and Zazimalova, E. (1992). Physiology and Biochemistry of Cytokinins in Plants, SPB Academic Publishing, Hague, The Netherlands.Google Scholar
  51. Kamuro, Y. and Inada, K. (1991). “The effect of brassinolide on the light-induced growth inhibition in mung bean epicotyl”. Plant Growth Reg. 10: 37–43.CrossRefGoogle Scholar
  52. Kende, H. (1993). “Ethylene biosynthesis”. Annu. Rev. Plant PhysioL Plant Mol. Biol. 44: 283–307.CrossRefGoogle Scholar
  53. Klee, H. J. (1993). “Ripening physiology of fruit from transgenic tomato (Lycopersicon esculentum) plants with reduced ethylene synthesis”. Plant PhysioL 102: 911–916.PubMedGoogle Scholar
  54. Klee, H. J., Hayford, M. B., Kretzmer, K. A., Barry, G. F., and Kishore, G. M. (1991). “Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants”. Plant Cell 3: 1187–1193.PubMedGoogle Scholar
  55. Kulaeva, O. N., Burkhanove, E. A., Fedina, A. B., Khokhlova, V. A., Bokebayeva, G. A., Vorbrodt, H. M., and Adam, G. (1991). “Effect of brassinosteroids on protein synthesis and plant cell ultrastructure under stress conditions”. In Brassinosteriods. Chemistry, Bioactivity and Applications, eds., H. G. Cutler, T. Yokota, and G. Adam, American Chemical Society, Washington, DC, pp. 141–157.Google Scholar
  56. Lamarck J. B. (1778). Flore Francaise 3, L’Imprimerie Royale, Paris.Google Scholar
  57. Leopold, A. C. and Kawase, M. (1964). “Benzyladenine effects on bean leaf growth and senescence”. Am. J. Botany 51: 294–298.CrossRefGoogle Scholar
  58. Li, W. and Assmann, S. M. (1993). “Characterization of a G-protein regulated outward K+ current in mesophyll cells of Vicia faba L.”. Proc. Natl. Acad. Sci. USA 90: 262–266.PubMedCrossRefGoogle Scholar
  59. Libbert, E., Wichner, S., Schiewer, U., Risch, H., and Kaiser, W. (1966). “The influence of epiphytic bacteria on auxin metabolism”. Planta 68: 327–334.CrossRefGoogle Scholar
  60. Ludford, P. M. (1987). “Postharvest hormone changes in vegetables and fruit”. In Plant Hormones and Their Role in Plant Growth and Development, ed., P. J. Davies, Martinus Nijhoff, Boston, pp. 574–592.Google Scholar
  61. Mandava, N. B. (1988). “Plant growth-promoting brassinosteroids”. Annu. Rev. Plant Physiol. Plant Mol. BioL 39: 23–52.CrossRefGoogle Scholar
  62. Medford, J. I., Horgan, R., El-Sawi, Z., and Klee, H. J. (1989). “Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene”. The Plant Cell 1: 403–413.PubMedGoogle Scholar
  63. Miller, C. O. (1956). “Similarity of some kinetin and red light effects”. Plant Physiol. 31: 318.PubMedCrossRefGoogle Scholar
  64. Mok, D. W. S. and Mok, M. C. (1994). Cytokinins. Chemistry, Activity, and Function, CRC Press, Boca Raton, FL.Google Scholar
  65. Morgan, P. W. and Hall, W. C. (1964). “Effect of 2,4-D on the production of ethylene by cotton and grain sorghum”. Physiol. Plant. 15: 308–311.Google Scholar
  66. Mothes, K. and Engelbrecht, L. (1961). “Kinetin-induced directed transport of substances in excised leaves in the dark”. Phytochem. 1: 58–62.CrossRefGoogle Scholar
  67. Muir, R. M. and Lantican, B. P. (1968). “Purification and properties of the enzyme system forming indoleacetic acid”. In Biochemistry and Physiology of Plant Growth Substances, eds., F. Wightman and G. Setterfield, Runge Press, Ottawa, pp. 259–272.Google Scholar
  68. Neljubow, D. N. (1901). “über die horizontale nutation der stengel von Pisum sativum und einiger anderen”. Pflanzen Beitrage Botanik Zentralblatt 10: 128–139.Google Scholar
  69. Nemec, B. (1901). “Über die Wahrnehmung des Schwerkraftreizes bei den Pflanzen. (About the perception of gravity by plants)”. Jahrb. Wiss. Bot. 36: 80–178.Google Scholar
  70. Nitsch, C. and Nitsch, J. P. (1969), Floral induction in a short-day plant. “Plumbago indica L., by 2-chloroethanephosphonic acid”. Plant Physiol. 44: 1747–1748.PubMedCrossRefGoogle Scholar
  71. Nitsch, J. P. (1950). “Growth and morphogenesis of the strawberry as related to auxin”. Am. J. Bot. 37: 211–215.CrossRefGoogle Scholar
  72. Oehler, P. W., Min-Wong, L., Taylor, L. P., Pike, D. A. and Theologis, A. (1991). “Reversible inhibition of tomato fruit senescence by antisense RNA”. Science 254: 437–439.CrossRefGoogle Scholar
  73. Osborne, D. J. (1989). “Abscission”. CRC Critical Reviews in Plant Sciences 8: 103–129.CrossRefGoogle Scholar
  74. Paleg, L. G. (1960a). “Physiological effects of gibberellic acid: I. On carbohydrate metabolism and amylase activity of barley endosperm”. Plant Physiol. 35: 293.PubMedCrossRefGoogle Scholar
  75. Paleg, L. G. (1960b). “Physiological effects of gibberellic acid: II. On starch hydrolyzing enzymes of barley endosperm”. Plant Physiol. 35: 902.PubMedCrossRefGoogle Scholar
  76. Paleg, L. G. (1965). “Physiological effects of gibberellins”. Annu. Rev. Plant Physiol. 16: 291–322.CrossRefGoogle Scholar
  77. Parthier, B. (1979). “The role of phytohormones (cytokinins) in chloroplast development (a review)”. Biochemie Physiologie Pflanzen 174: 173–214.Google Scholar
  78. Rai, V. K. and Laloraya, M. M. (1967). “Correlative studies on plant growth and metabolism II. Effect of light and of gibberellic acid on the changes in protein and soluble nitrogen in lettuce seedlings”. Plant Physiol. 42: 440–444.PubMedCrossRefGoogle Scholar
  79. Raschke, K. (1987). “Action of abscisic acid on guard cells”. In Stomata! Function, eds., E. Zeiger, G. D. Farquhar and I. R. Cowan, Stanford University Press, Stanford, CA, pp. 253–270.Google Scholar
  80. Raskin, I. (1992). “Role of salicylic acid in plants”. Annu. Rev. Plant Physiol. Plant Mol. Biot 43: 439–463.CrossRefGoogle Scholar
  81. Raven, J. A. (1975). “Transport of indoleacetic acid in plant cells in relation to pH and electrical gradients, and its significance for polar IAA transport”. New Phytol 74: 163.CrossRefGoogle Scholar
  82. Ray, P. M. (1987). “Principles of plant cell growth”. In Physiology of Cell Expansion During Plant Growth, eds., D. J. Cosgrove and D. P. Knievel, American Society of Plant Physiology, Rockville, MD, pp. 1–17.Google Scholar
  83. Rayle, D. L. and Purves, W. K. (1967). “Conversion of indole-ethanol to indoleacetic acid in cucumber seedling shoots”. Plant Physiol. 42: 1091–1093.PubMedCrossRefGoogle Scholar
  84. Reid, J. B. (1990). “Phytohormone mutants in plant research”. J. Plant Growth Reg. 9: 97–111.CrossRefGoogle Scholar
  85. Reid, M. S. (1985). “Ethylene and abscission”. HortSci. 20: 45–50.Google Scholar
  86. Reinecke, D. M. and Bandurski, R. S. (1987). “Auxin biosynthesis and metabolism”. In Plant Hormones and Their Role in Plant Growth and Development, ed., P. J. Davies, Martinus Nijhoff Publishers, Boston, pp. 24–42.Google Scholar
  87. Richter, K. and Koolman, J. (1991). “Antiecdysteroid effects of brassinosteriods in insects”. In Brassinosteroids. Chemistry, Bioactivity, and Applications, eds., H. G. Cutler, T. Yokota and G. Adam, American Chemical Society, Washington, DC, pp. 265–279.Google Scholar
  88. Roddick, J. G. and Guan, M. (1991). “Brassinosteroids and root development”. In Brassinosteroids. Chemistry, Bioactivity, and Applications, eds., H. G. Cutler, T. Yokota and G. Adam, American Chemical Society, Washington, DC, pp. 231–245.Google Scholar
  89. Rubery, P. H. and Sheldrake, A. R. (1974). “Carrier mediated auxin transport”. Planta 118: 101–121.CrossRefGoogle Scholar
  90. Sachs, J. (1880). “Stoff und Form der Pflanzenorgane. I”. Arb. Bot. Inst. Wurzburg 2: 452–488.Google Scholar
  91. Salisbury, F. B. and Ross, C. W. (1992). Plant Physiology, Fourth Edition, Wadworth Publishing Co., Belmont, CA.Google Scholar
  92. Sasse, J. M. (1991). “Brassinosteroids-Are they endogenous plant hormones?” PGRSA Quarterly 19: 1–18.Google Scholar
  93. Schlagnhaufer, C. and Arteca, R. N. (1985). “Brassinosteroid-induced epinasty in tomato plants”. Plant Physiol. 78: 300–303.PubMedCrossRefGoogle Scholar
  94. Schlagnhaufer, C. D. and Arteca, R. N. (1991). “The uptake and metabolism of brassinosteroid by tomato (Lycopersicon esculentum) plants”. J. Plant Physiol. 138: 191–194.CrossRefGoogle Scholar
  95. Scott, I. M. (1990). “Plant hormone response mutants”. PhysioL Plant. 78: 147–152.CrossRefGoogle Scholar
  96. Sembdner, G. and Parthier, B. (1993). “The biochemistry and the physiological and molecular actions of jasmonates”. Annu. Rev. Plant PhysioL Plant Mol. Biol. 44: 569–589.CrossRefGoogle Scholar
  97. Shiver, K. and Mundy, J. (1990). “Gene expression in response to abscisic acid and osmotic stress”. The Plant Cell 2: 503–512.Google Scholar
  98. Staswick, P. E. (1992). “Jasmonate, genes, and fragrant signals”. Plant Physiol. 99: 804–807.PubMedCrossRefGoogle Scholar
  99. Stuart, N. W. and Cathey, H. M. (1961). “Applied aspects of the gibberellins”. Ann. Rev. Plant Physiol. 12: 369.CrossRefGoogle Scholar
  100. Takahashi, N., Phinney, B. O. and MacMillan, J. (1991). Gibberellins, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  101. Takasuto, S., Yazawa, N., Ikekawa, N., Takematsu, T., Takeuchi, Y., and Koguchi, M. (1983). “Structure-activity relationship of brassinosteroids”. Phytochem. 22: 2437–41.CrossRefGoogle Scholar
  102. Tamas, I. A. (1987). “Hormonal regulation of apical dominance”. In Plant Hormones and Their Role in Plant Growth and Development, ed., P. J. Davies, Martinus Nijhoff Publishers, Boston, pp. 393–410.Google Scholar
  103. Tang, Y. W. and Bonner, J. (1947). “The enzymatic inactivation of indoleacetic acid”. Arch. Biochem. Biophys. 3: 11–25.Google Scholar
  104. Tanino, K., Weiser, C. J., Fuchigami, L. H. and Chen, T. T. H. (1990). “Water content during abscisic acid induced freezing tolerance in bromegrass cells”. Plant Physiol. 93: 460–464.PubMedCrossRefGoogle Scholar
  105. Theologis, A. (1992). “One rotten apple spoils the whole bushel: The role of ethylene in fruit ripening”. Cell 70: 181–184.PubMedCrossRefGoogle Scholar
  106. Thimann, K. V. (1935). “On the plant growth hormone produced by Rhizopus sinuis”. J. BioL Chem. 109: 279–291.Google Scholar
  107. Thimann, K. V. (1987). “Plant senescence: A proposed integration of the constituent processes”. In Plant Senescence: Its Biochemistry and Physiology, eds., W. W. Thomson and E. A. Nothnagel, American Society of Plant Physiologists, Rockville, MD, pp. 1–19.Google Scholar
  108. Thimann, K. V. and Mahadevan, S. (1958). “Enzymatic hydrolysis of indoleacetonitrile”. Nature 181: 1466–1467.PubMedCrossRefGoogle Scholar
  109. Thimann, K. V. and Skoog, F. (1934). “On the inhibition of bud development and other functions of growth substance in Vicia faba”. Proc. Royal Soc. B114: 317–339.CrossRefGoogle Scholar
  110. Thompson, M. J., Mandava, N. B., Meudt, W. J., Lusby, W. R., and Spaulding, D. W. (1981). “Synthesis and biological activity of brassinolide and its 22,23-isomer. Novel plant growth promoting steroids”. Steroids 38: 567–580.PubMedCrossRefGoogle Scholar
  111. Thompson, M. J., Meudt, W. J., Mandava, N. B., Dutky, S. R., Lusby, W. R. and Spaulding D. W. (1982). “Synthesis of brassinosteroids and relationship of structure to plant growth-promoting effects”. Steroids 39: 89–105.PubMedCrossRefGoogle Scholar
  112. Torrey, J. G. (1962). “Auxin and purine interactions in lateral root initiation in isolated pea root segments”. Physiol Plant. 15: 177.CrossRefGoogle Scholar
  113. Traub, H. P., Cooper, W. C., and Reece, P. C. (1940). “Inducing flowering in the pineapple, Ananas sativus”. Proc. Amer. Soc. Hort. Sci. 37: 521–525.Google Scholar
  114. van Herk, A. W. H. (1937). “Die chemischen Vorgange im Sauromatum Kolben III. Mitteilung”. Proc. K. Ned. Akad. Wet. 40: 709–719.Google Scholar
  115. van Staden, J., Bayley, A. D., Upfold, S. J., and Drewes, F. E. (1990). “Cytokinins in cut carnation flowers. VIII. Uptake, transport and metabolism of benzyladenine and the effect of benzyladenine derivatives on flower longevity”. J. Plant Physiol. 703–707.Google Scholar
  116. van Staden, J., Cook, E. L. and Noodén, L. D. (1988). “Cytokinins and senescence”. In Senescence and Aging in Plants, eds., L. D. Noodén and A. C. Leopold, Academic Press, New York, pp. 281–328.Google Scholar
  117. Varner, J. E. (1964). “Gibberellic acid-controlled synthesis of a-amylase in barley endosperm”. Plant Physiol. 39: 413–415.PubMedCrossRefGoogle Scholar
  118. von Sachs, R. M. and Kofranek, A. M. (1963). “Comparative cytohistological studies on inhibition and promotion of stem growth in Chrysanthemum morifolium”. Am. J. Bot. 50: 772.CrossRefGoogle Scholar
  119. Wang, T.-W., Cosgrove, D. J., and Arteca, R. N. (1993). “Brassinosteroids stimulation of hypocotyl elongation and wall relaxation in pakchoi (Brassica chinensis cv Lei-Choi)”. Plant Physiol. 101: 965–968.PubMedGoogle Scholar
  120. Weaver, R. J. (1972). Plant Growth Substances in Agriculture, W. H. Freeman and Company, San Francisco.Google Scholar
  121. Went, F. W. (1934). “On the pea test method for auxin, the plant growth hormone”. K Akad. Wetenschap. Amsterdam Proc. Sect. Sci. 37: 547.Google Scholar
  122. Wickson, M. and Thimann, K. V. (1958). “The antagonism of auxin and kinetin in apical dominance”. Physiol. Plant. 11: 62.CrossRefGoogle Scholar
  123. Wightman, F., Schneider, E. A. and Thimann, K. V. (1980). “Hormonal factors controlling the initiation and development of lateral roots. II. Effects of exogenous growth factors on lateral root formation in pea roots”. Physiol. Plant. 49: 304–314.CrossRefGoogle Scholar
  124. Wildman, S. G., Ferri, M. G., and Bonner, J. (1947). “The enzymatic conversion of tryptophan to auxin by spinach leaves”. Arch. Biochem. Biophys. 13: 131.Google Scholar
  125. Yalpani, N., Len, J., Lawton, M. A., and Raskin, I. (1993). “Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco”. Plant Physiol. 103: 315–321.PubMedGoogle Scholar
  126. Yokota, T., Ogino, Y., Suzuki, H., Takahashi, N., Saimoto, H., Fujioka, S., and Sakurai, A. (1991). “Metabolism and biosynthesis of brassinosteroids”. In Brassinosteroids. Chemistry, Bioactivity, and Applications, eds., H. G. Cutler, T. Yokota and G. Adam ). American Chemical Society, Washington, DC, pp. 86–96.Google Scholar
  127. Yomo, H. (1960). “Studies on the a-amylase activity substance. IV. On the amylase activating action of gibberellin”. Hakko Kyokaishi 18: 600–602.Google Scholar
  128. Yopp, J. H., Aung, L. H. and Steffens, G. L. (1986). Bioassays and Other Special Techniques for Plant Hormones and Plant Growth Regulators, Plant Growth Regulator Society of America, Lake Alfred, FL.Google Scholar
  129. Yopp, J. H., Mandava, N. B., Thompson, M. J., and Sasse, J. M. (1981). Brassinosteroids in Selected Bioassays, Proc. Plant Growth Reg. Soc. Am., Plant Growth Regular Society of America, St. Petersburg, FL.Google Scholar
  130. Zenk, M. H. (1968). “The action of light on the metabolism of auxin in relation to phototropism”. In Biochemistry and Physiology of Plant Growth Substances, eds., F. Wightman and G. Setterfield, Runge Press, Ottawa, pp. 1109–1128.Google Scholar
  131. Zenk, M. H. (1962). “Aufnahme and Stoffwechsel von Naphthylessigsäure durch Erbsenepicotyle”. Planta 58: 75–94.CrossRefGoogle Scholar
  132. Zenk, M. H. (1961). “Indoleacetyl glucose, a new compound in the metabolism in indoleacetic acid in plants”. Nature 191: 493–494.PubMedCrossRefGoogle Scholar
  133. Zimmerman, P. W. and Hitchcock, A. E. (1942). “Substituted phenoxy and benzoic acid growth substances and the relation of structure to physiological activity”. Contrib. Boyce Thompson Inst. 12: 321–343.Google Scholar
  134. Zimmerman, P. W. and Wilcoxon, F. (1935). “Several chemical growth substances which cause initiation of roots and other responses in plants”. Contrib. Boyce Thompson Inst. 7: 209–229.Google Scholar
  135. Zurek, D. M. and Clouse, S. D. (1994). “Molecular cloning and characterization of a brassinosteroid-regulated gene from elongating soybean (Glycine max L.) epicotyls”. Plant Physiol. 104: 161–170.PubMedCrossRefGoogle Scholar
  136. Zurek, D. M., Rayle, D. L., McMorris, T. C., and Clouse, S. D. (1994). “Investigation of gene expression, growth kinetics, and wall extensibility during brassinosteroidregulated stem elongation”. Plant Physiol. 104: 505–513.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Richard N. Arteca
    • 1
  1. 1.The Pennsylvania State UniversityUSA

Personalised recommendations