Weed Control

  • Richard N. Arteca


Most if not all people working with plants understand what is meant by the term weed. The most common definition of a weed is a plant growing where it is not desired (Buchholtz 1967). Now even though this definition makes a lot of sense, it is not one which is agreed upon by all. In fact, there are a number of definitions which have been used to describe weeds (Harlan and deWet 1965), and a considerable amount of debate about the pros and cons of each (Zimdahl 1993). Weeds are very costly because they compete with crop plants for water, nutrients, and light, while harboring diseases and insects which attack crop plants, thereby increasing production costs. In addition, weeds:
  1. 1.

    Reduce quality of farm products.

  2. 2.

    Reduce plant and animal yields.

  3. 3.

    Increase production costs.

  4. 4.

    Interfere with water management.

  5. 5.

    Pose problems with human health.

  6. 6

    Limit human efficiency.

  7. 7.

    Decrease land value.

  8. 8.

    Reduce crop options which can be planted on a given piece of land.

  9. 9.

    May be a fire hazard.

  10. 10.

    Can be unsightly.



Weed Control Foliar Spray Herbicide Resistance Submerse Aquatic Vegetation Selective Herbicide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, F. B., Morgan, P. W., and Saltveit Jr., M. E. (1992). Ethylene in Plant Biology. Second Edition, Academic Press, Inc., San Diego, CA.Google Scholar
  2. Amrhein, N. (1986). “Specific inhibitors as probes into the biosynthesis and metabolism of aromatic amino acids”. In The Shikimic Acid Pathway, eds., E. E. Conn, Plenum Press, New York, pp. 83.CrossRefGoogle Scholar
  3. Ashton, F. M. and Crafts, A. S. (1981). Mode of Action of Herbicides. Second Edition, Wiley Interscience, New York.Google Scholar
  4. Ashton, F. M. and Monaco, T. J. (1991). Weed Science. Principles and Practices. Third Edition, Wiley Interscience, New York.Google Scholar
  5. Barko, J. W., Adams, M. S., and Clesceri, N. L. (1986). “Environmental factors and their consideration in the management of submersed aquatic vegetation: A review”. J. Aquatic Plant Management 24: 1–10.Google Scholar
  6. Barko, J. W. and Smart, R. M. (1981). “Comparative influences of light and temperature on the growth and metabolism of selected submersed freshwater macrophytes”. Ecol. Monogram 51: 219–235.CrossRefGoogle Scholar
  7. Buchholtz, K. P. (1967). “Report of the terminology committee of the Weed Science Society of America”. Weeds 15: 388–389.Google Scholar
  8. Chaleff, R. S. (1981). “Variants and mutants”. In Genetics of Higher Plants. Application of Cell Culture, eds., D. R. Newth and J. G. Torrey, Cambridge University Press, London, pp. 41.Google Scholar
  9. Chaleff, R. A. and Mauvais, C. J. (1984). “Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants”. Science 224: 14–43.CrossRefGoogle Scholar
  10. Chaleff, R. S. and Ray, T. B. (1984). “Herbicide resistant mutants from tobacco cell cultures”. Science 223: 1148.PubMedCrossRefGoogle Scholar
  11. Chandler, J. M., Hamill, A. S., and Thomas, A. G. (1984). Crop Losses due to Weeds in the United States and Canada, Weed Science Society of America, Champaign, IL.Google Scholar
  12. Cornai, L., Facciotti, D., Hiatt, W. R., Thompson, G., Rose, R. E., and Stalker, P. M. (1985). “Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate”. Nature 317: 741.CrossRefGoogle Scholar
  13. Davis, T. D. and Curry, E. A. (1991). “Chemical regulation of vegetative growth”. Critical Reviews in Plant Science 10: 151–188.CrossRefGoogle Scholar
  14. Don, R. and Pemberton, J. (1981). “Properties of six pesticide degradation plasmids isolated from Alcaligenes eutrophus and Alcaligenes paradoxus”. J. Bacteriology 145: 681–686.Google Scholar
  15. Don, R., Weightman, A., Knackmuss, H., and Timmis, K. (1985). “Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134(pJP4)”. J. Bacteriology 161: 85–90.Google Scholar
  16. Donn, G., Tischer, E., Smith, J. A., and Goodman, H. M. (1984). “Herbicide-resistant alfalfa cells: an example of gene amplification in plants”. J. Mol. AppL Genet. 2: 621.PubMedGoogle Scholar
  17. Dos Santos, A. V. P., Outka, D. E., and Cocking, E. C. (1980). “Organogenesis and somatic embryogenesis in tissues derived from leaf protoplasts and leaf explants of Medicago sativa”. Z. PflanzenphysioL 99: 261.Google Scholar
  18. Duncan, K., Lewendon, A., and Coggins, J. R. (1984). “The complete amino acid sequence of Escherichia coli 5-enolpyruvylshikimate 3-phosphate synthase”. FEBS Letters 170: 59.CrossRefGoogle Scholar
  19. Fedtke, C. (1982). Biochemistry and Physiology of Herbicide Action, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  20. Filatti, J. J., Kiser, J., Rose, R., and Cornai, L. (1987). “Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector”. Biotechnology 5: 726.CrossRefGoogle Scholar
  21. Fowke, C. C. (1985). “Plant protoplasts”. In Plant Protoplasts, ed., F. Constable, CRC Press, Boca Raton, FL.Google Scholar
  22. Fujimura, T., Sakurai, M., Akagi, H., Negishi, T., and Hirose, A. (1985). “Regeneration of rice plants from protoplasts”. Plant Tissue Culture Letters 2: 74.CrossRefGoogle Scholar
  23. Graebe, J. E. (1987). “Gibberellin biosynthesis and control”. Annu. Rev. Plant Physiol. 38: 419–465.CrossRefGoogle Scholar
  24. Gressel, J. (1985). “Biotechnologically conferring herbicide resistance in crops. The present realities”. In Molecular Form and Function of the Plant Genome, ed., L. van Vloten-Doting, Plenum Press, New York, pp. 489.Google Scholar
  25. Harlan, J. R. and de Wet, J. M. J. (1965). “Some thoughts about weeds”. Econ. Bot. 19: 16–24.CrossRefGoogle Scholar
  26. Herbicide Handbook (1989). Weed Science Society of America, Champaign, IL.Google Scholar
  27. Hirschberg, J. and McIntosh, L. (1983). “Molecular basis of herbicide resistance in Amaranthus hybridus”. Science 222: 1346.Google Scholar
  28. Kartha, K. K., Michayluk, M. R., Nao, K. N., Gamborg, O. L., and Constable, F. (1974). “Callus formation and regeneration from mesophyll protoplasts of rape plants Brassica napes cultivar zephyr”. Plant Science Letters 3: 265.CrossRefGoogle Scholar
  29. Klee, H. J., Muskopf, Y. M., and Gasser, C. S. (1987). “Cloning of an Arabidopsis thaliana gene encoding 5-enolpyruvylshikimate-3-phosphate synthase: Sequence analysis and manipulation to obtain glyphosate tolerant plants”. Mol. Gen. Genet. 210: 437.PubMedCrossRefGoogle Scholar
  30. Larkin, P. J., Ryan, S. A., Brettel, R. I. S., and Scowcroft, W. R. (1984). “Heritable somaclonal variation in wheat”. Theor. AppL Genet. 67: 443.CrossRefGoogle Scholar
  31. Larkin, P. J. and Scowcroft, W. R. (1981). “Somaclonal variation-A novel source of variability from cell cultures for plant improvement”. Theor. AppL Genet. 60: 197.CrossRefGoogle Scholar
  32. Leason, M., Cunliffe, D., Parkin, D., Lea, P. J., and Miflin, B. J. (1982). “Inhibition of Pisum sativum leaf glutamine synthetase EC- by methionine sulfoximine phosphinotricin and other glutamate analogues”. Phytochemistry 21: 855.CrossRefGoogle Scholar
  33. Llewellyn, D., Lyon, B. R., Cousins, Y., Huppatz, J., Dennis, E. S., and Peacock, W. J. (1990). “Genetic engineering of plants for resistance to the herbicide 2,4-D”. In Genetic Engineering of Crop Plants, eds., G. W. Lycett and D. Grierson, Butter-worths, London, pp. 67.Google Scholar
  34. Muskgrave, A., Jackson, E., and Ling, E. (1972). Callitriche stem elongation is controlled by ethylene and gibberellin“. Nature New Biology 238: 93–96.Google Scholar
  35. Netherland, M. D. and Lembi, C. A. (1992). “Gibberellin synthesis inhibitor effects of submersed aquatic weed species”. Weed Science 40: 29–36.Google Scholar
  36. Penner, D. and Ashton, F. M. (1966). “Biochemical and metabolic changes in plants induced by chlorophenoxy herbicides”. Residue Review 14: 39–113.Google Scholar
  37. Pental, D., Cooper-Bland, S., Harding, K., Cocking, E. C., and Muller, A. J. (1982). “Cultural studies on nitrate reductase deficient Nicotiana tabaccum mutant protoplasts”. Z. PflanzenphysioL 105: 219.Google Scholar
  38. Potrykus, I. (1973). “Transplantation of chloroplasts into protoplasts of petunia”. Z. Pflanzenphysiol. 70: 364.Google Scholar
  39. Raskin, I. and Kende, H. (1984). “The role of gibberellin in the growth response of submerged deep-water rice”. Plant PhysioL 76: 947–950.PubMedCrossRefGoogle Scholar
  40. Riemer, D. N. (1984). Introduction to Freshwater Vegetation, The AVI Publishing Co., Westport, CT.Google Scholar
  41. Ross, M. A. and Lembi, C. A. (1985). Applied Weed Science, MacMillan Co., New York.Google Scholar
  42. Schulz, A., Wengenmayer, F., and Goodman, H. M. (1990). “Genetic engineering of herbicide resistance in higher plants”. Critical Reviews in Plant Sciences 9: 1–15.CrossRefGoogle Scholar
  43. Shah, D. M., Horsch, R. B., Klee, H. J., Kishore, G. M., Winter, J. A., Tuner, N. E., Hironaka, C. M., Sanders, P. R., Gasser, C. S., Aykent, L., Siegel, N. R., Rogers, S. G., and Fraley, R. T. (1986). “Engineering herbicide tolerance in transgenic plants”. Science 233: 478.PubMedCrossRefGoogle Scholar
  44. Shaner, D. L. and Anderson, P. C. (1985). “Mechanism of action of the imidazolinones and cell culture selection of tolerant maize”. In Biotechnology in Plant Science, Relevance Agriculture Eighties, eds., M. Zaitlin, P. R. Day, and A. Hollaender, Academic Press, Orlando, FL, pp. 287.Google Scholar
  45. Shepard, J. F. and Totten, R. E. (1977). “Mesophyll cell protoplasts of potato: isolation, proliferation and plant regeneration”. Plant PhysioL 60: 313.PubMedCrossRefGoogle Scholar
  46. Singer, S. S. and McDaniel, C. N. (1985). “Selection of glyphosate-tolerant tobacco calli and the expression of this tolerance in regenerated plants”. Plant Physiol. 78: 411.PubMedCrossRefGoogle Scholar
  47. Stalker, D. M., Hiatz, W. R., and Cornai, L. (1985). “A single amino acid substitution in the enzyme 5-enolpyruvulshikimate 3-phosphate synthase confers resistance to the herbicide glyphosate”. J. BioL Chem. 260: 4725.Google Scholar
  48. Steinrucker, H. C. and Amrhein, N. (1980). “The herbicide glyphosate is a potent inhibitor of 5-enol-pyruvylshikimic acid 3-phosphate-synthase”. Biochem. Biophys. Res. Comm. 94: 1207.CrossRefGoogle Scholar
  49. Sterret, J. P. (1988). “XE-1019: Plant response, translocation and metabolism” J. Plant Growth Reg. 7: 19–26.CrossRefGoogle Scholar
  50. Sterret, J. P. and Tworkoski, T. (1987). “Flurprimidol: Plant response, translocation and metabolism”. J. Am. Soc. Hortic. Sci. 112: 341–345.Google Scholar
  51. Streber, W., Timmis, K., and Zenk, M. (1987). “Analysis, cloning and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134”. J. Bacteriology 169: 2950–2955.Google Scholar
  52. Szabados, L., Hadlaczky, G., and Dudits, D. (1981). “Uptake of isolated plant chromosomes by plant protoplasts”. Planta 151: 141.CrossRefGoogle Scholar
  53. Takahashi, N., Phinney, B. O., and MacMillan, J. (1991). Gibberellins, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  54. Trebst, A. and Draber, W. (1978). “Structure activity correlation of recent herbicides in photosynthetic reactions”. In Advances in Pesticide Science, Volume 2, eds., H. Geissbuhler, Pergamon Press, New York, pp. 223.Google Scholar
  55. van Overbeek, J. (1964). “Survey of mechanism of herbicide action”. In The Physiology and Biochemistry of Herbicides, ed., L. J. Audus, Academic Press, London, pp. 387–400.Google Scholar
  56. Wallsgrove, R. M., Turner, J. C., Hall, N. P., Kendall, A. C., and Bright, S. W. J. (1987). “Barley mutants lacking chloroplast glutamine synthetase. Biochemical and genetic analysis”. Plant Physiol. 83: 155.PubMedCrossRefGoogle Scholar
  57. Zapata, F. J., Evans, P. K., Powers, J. B., and Cocking, E. C. (1977). “The effect of temperature on the division of protoplasts of Lycopersicon esculentum and Lycopersicon peruvianum”. Plant Science Letters 8: 119.CrossRefGoogle Scholar
  58. Zimdahl, R. L. (1993). Fundamentals of Weed Science, Academic Press, San Diego, CA.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Richard N. Arteca
    • 1
  1. 1.The Pennsylvania State UniversityUSA

Personalised recommendations