Manipulation of Growth and Photosynthetic Processes by Plant Growth Regulators

  • Richard N. Arteca


The purpose of most plant-related research is to explore possible ways to manipulate growth and increase productivity of plants. Throughout this text it has been shown that plant growth regulators are involved in many aspects of plant growth and development such as flowering, rooting, and other processes. This chapter will focus on restricting plant size and the manipulation of photosynthetic processes. The chemical control of plant growth to reduce size through the use of plant growth retardants is a common practice to make a plant more compact, which in many cases is more commercially acceptable. Plant growth regulators have also been shown to be involved in the regulation of photosynthesis and the movement of photosynthetic products from their site of synthesis in the leaf (source) to their sites of accumulation (sink). Regulation of photosynthesis and movement of photosynthetic products can occur at numerous points, thereby increasing or decreasing plant size.


Photosynthetic Rate Tomato Plant Gibberellic Acid Plant Growth Regulator Foliar Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, F. B., Morgan, P. W., and Saltveit Jr., M. E. (1992). Ethylene in Plant Biology. Second Edition, Academic Press, San Diego.Google Scholar
  2. Adriansen, E. (1985). “Height control of Beloperone guttata by paclobutrazol”. Acta Hortic. 167: 395.Google Scholar
  3. Ahmedullah, M., Kawakami, A., Sandidge, C. R., and Wample, R. L. (1986). “Effect of paclobutrazol on the vegetative growth, yield, quality and winter hardiness of buds of Concord grape”. HortScience 21: 273.Google Scholar
  4. Aron, Y., Monselise, S. P., Goren, R., and Costo, J. (1985). “Chemical control of vegetative growth in citrus trees by paclobutrazol”. HortScience 20: 96.Google Scholar
  5. Arteca, R. N. (1982). “Effect of root applications of kinetin and gibberellic acid on transplanting shock in tomato plants”. HortScience 17: 633–634.Google Scholar
  6. Arteca, R. N. and Dong, C. N. (1981). “Stimulation of photosynthesis by application of phytohormones to the root systems of tomato plants”. Photosynthesis Research 2: 243–249.CrossRefGoogle Scholar
  7. Arteca, R. N., Holcomb, E. J., Schlagnhaufer, C., and Tsai, D. S. (1985a). “Effect of root applications of gibberellic acid on photosynthesis and growth of geranium plants grown hydroponically”. HortScience 20: 925–927.Google Scholar
  8. Arteca, R. N., Schlagnhaufer, C. D., and Arteca, J. M. (1991). “Effects of root applications of gibberellic acid on growth of seven different Pelargonium cultivars”. HortScience 26: 555–556.Google Scholar
  9. Arteca, R. N. and Tsai, D. S. (1988). “Effects of abscisic acid on photosynthesis, transpiration and growth of tomato plants”. Crop Research 27: 91–96.Google Scholar
  10. Arteca, R. N., Tsai, D. S., and Schlagnhaufer, C. (1985b). “Abscisic acid effects on photosynthesis and transpiration in geranium cuttings”. HortScience 20: 370–372.Google Scholar
  11. Asore-Boamah, N. K., Hofstra, G., Fletcher, R. A., and Dumbroff, E. B. (1986). “Triadimedon protects bean plants from water stress through its effects on abscisic acid”. Plant Cell Physiol 27: 383.Google Scholar
  12. Atkinson, D. and Chauhan, J. S. (1987). “The effects of paclobutrazol on the water use of fruit plants at two temperatures”. J. Hortic. Sci. 62: 421.Google Scholar
  13. Baker, D. A. (1985). “Regulation of phloem loading”. British Plant Growth Regulator Group Monograph 12:163–176.Google Scholar
  14. Barrett, J. E. and Nell, T. A. (1981). “Transpiration in growth retardant treated poinsettia, bean and tomato”. Proc. Fla. State Hortic. Soc. 94: 85.Google Scholar
  15. Barrett, J. E. and Nell, T. A. (1982). “Irrigation interval and growth retardants affect poinsettia development”. Proc. Fla. State Hortic. Soc. 95: 167.Google Scholar
  16. Barrett, J. E. and Nell, T. A. (1987). “Bonzi for bedding plants. At last, is there a way to control run away impatiens?”. Grower Talks 50: 52.Google Scholar
  17. Batjer, L. P., Williams, M. W., and Martin, G. C. (1964). “Effects of N-dimethyl amino succinamic acid (B-Nine) on vegetative and fruit characteristics of apples, pears, and sweet cherries”. J. Am. Soc. Hortic. Sci. 85: 11.Google Scholar
  18. Bhattacharjee, A. (1984). “Responses of sunflower plants toward growth retardation with special reference to growth, metabolism and yield”. Ph.D. Thesis, Burdwan UniversityGoogle Scholar
  19. Bidwell, R. G. S. and Turner, W. B. (1966). “Effect of growth regulators on CO2 assimilation in leaves and its correlation with the bud break response in photosynthesis”. Plant Physiol. 41: 267–270.PubMedCrossRefGoogle Scholar
  20. Bode, J. and Wild, A. (1984). “The influence of (2-chloroethyl)trimethylammonium chloride (CCC) on growth and photosynthetic metabolism of young wheat plants (Triticum aestivum L.)”. J. Plant Physiol. 116: 435.PubMedCrossRefGoogle Scholar
  21. Borzenkova, R. A. (1976). “Effect of phytohormones on the photosynthetic metabolism of potato leaves”. Mater. Ekol. Fiziol. Rast. Ural. Flory. 104: 110.Google Scholar
  22. Bradford, K. J. (1983). “Involvement of plant growth substances in the alternation of leaf gas exchange of flooded tomato plants”. Plant Physiol. 73: 480–483.PubMedCrossRefGoogle Scholar
  23. Brenner, M. L. (1987). “The role of hormones in photosynthate partitioning and seed filling”. In Plant Hormones and Their Role in Plant Growth and Development, ed., P. J. Davies, Martinus Nijhoff Publishers, Boston, pp. 474.Google Scholar
  24. Breuninger, J. M. and Watschke, T. L. (1989). “Growth regulation of turfgrass”. Rev. Weed Sci. 4: 153.Google Scholar
  25. Buggeln, R. G. and Bal, A. K. (1976). “Effects of auxins and chemically related nonauxins on photosynthesis and chloroplast ultrastructure in Alaria esculenta (Laminariales)”. Canadian J. Botany 55: 2098–2105.CrossRefGoogle Scholar
  26. Byers, R. E. and Barden, J. A. (1976). “Chemical control of vegetative growth and flowering of non-bearing Delicious apple trees”. HortScience 11: 306.Google Scholar
  27. Campbell, C. A. M., Easterbrook, M. A. and Fisher, A. J. (1989). “Effects of plant growth regulators paclobutrazol and chlormequat chloride on pear psyllid (Cacopsylla pyricola [Folster]) and pear rust mite (Epitrimerus piri [Nal.])”. J. Hortic. Sci. 64: 561.Google Scholar
  28. Catsky, J., Pospisilova, J., Machackova, I., Synkova, H., Wilhelmova, N., and Sestak, Z. (1993a). “High-level of endogenous cytokinins in transgenic potato plantlets limits photosynthesis”. Biologia Plant. 35: 191–198.CrossRefGoogle Scholar
  29. Catsky, J., Pospisilova, J., Machackova, I., Wilhelmova, N. and Sestak, Z. (1993b). “Photosynthesis and water relations in transgenic tobacco plants with T-DNA carrying gene 4 for cytokinin synthesis”. Biologia Plant. 35: 393–399.CrossRefGoogle Scholar
  30. Chatterjee, A., Mandal, R. K., and Sircar, S. M. (1976). “Effects of growth substances on productivity, photosynthesis and translocation of rice varieties”. Indian J. Plant Physiol. 19: 121–138.Google Scholar
  31. Clifford, P. E., Offler, C. E., and Patrick, J. W. (1986). “Growth regulators have rapid effects on photosynthate unloading from seed coats of Phaseolus vulgaris L.”. Plant Physiol. 80: 635–637.PubMedCrossRefGoogle Scholar
  32. Cliquet, J. B., Boutin, J. P., Deleens, E., and Morot-Gaudry, J. F. (1991). “Ethephon effects on translocation and partitioning of assimilates in Zea mays”. Plant Physiol. Biochem. 29: 623–630.Google Scholar
  33. Cliquet, J. B. and Morot-Gaudry, J. F. (1989). “Ethephon and photosynthesis control in maize”. C. R. Acad. Sci. Paris 309: 317–322.Google Scholar
  34. Coolbaugh, R. C. and Hamilton, R. (1976). “Inhibition of ent-kaurene oxidation and growth by alpha-cyclopropyl-alpha(p-methoxyphenyl)-5-pyrimidine methylalcohol”. Plant Physiol. 57: 245.PubMedCrossRefGoogle Scholar
  35. Coulombe, L. J. and Paquin, R. (1959). “Effects de lacide gibberellique wurle metabolisme des plantes”. Canadian J. Botany 37: 897–901.CrossRefGoogle Scholar
  36. Cowan, A. K. and Railton, I. D. (1987). “Cytokinins and ancymidol inhibit abscisic acid biosynthesis in Persea gratissima”. J. Plant Physiol. 130: 273.CrossRefGoogle Scholar
  37. Cox, D. A. and Keever, G. J. (1988). “Paclobutrazol inhibits growth of zinnia and geranium”. HortScience 23: 1029.Google Scholar
  38. Cutler, H. G. and Schneider, B. A. (1990). Plant Growth Regulator Handbook, Plant Growth Regulator Society of America, Ithaca, NY.Google Scholar
  39. Cutler, H. G., Yokota, T., and Adam, G. (1991). Brassinosteroids: Chemistry, Bioactivity and Aplications, American Chemical Society, Washington, DC.Google Scholar
  40. Daie, J. (1986). “Turgor-mediated transport of sugars”. Plant Physiol. 80S: 98.Google Scholar
  41. Davies, W. J.and Jones, H. G. (1991). Abscisic Acid: Physiology and Biochemistry, Bios Scientific Publishers, Oxford, U.K.Google Scholar
  42. Davis, T. D. and Curry, E. A. (1991). “Chemical regulation of vegetative growth”. Critical Reviews in Plant Science 10: 151–188.CrossRefGoogle Scholar
  43. Davis, T. D., Steffens, G. L., and Sankhla, N. (1988). “Triazole plant growth regulators”. In Horticultural Reviews. Volume 10, ed., J. Janick, Timber Press, Portland, OR, pp. 63.Google Scholar
  44. Davis, T. D., Walser, R. H., and Sankhla, N. (1986). “Growth and photosynthesis of poinsettias as affected by plant growth regulators”. J. Current Biosci. 3: 121.Google Scholar
  45. De, R. Giri, G., Saran, G., Singh, R. K. and Chaiturvedi, G. S. (1982). “Modification of water balance of dryland wheat through the use of chlormequat chloride”. J. Agric. Sci. 98: 593.CrossRefGoogle Scholar
  46. Dheim, M. A. and Browning, G. (1988a). “The mechanism of the effect of (2RS, 3RS)-paclobutrazol on flower initiiation of pear cvs Doyenne du Comice and Conference”. J. Hortic. Sci. 63: 393.Google Scholar
  47. Dheim, M. A. and Browning, G. (1988b). “Preliminary studies on the use of (2RS, 3RS)-paclobutrazol for fruitlet thinning and growth control of ‘Conference’ pear”. J. Hortic. Sci. 63: 407.Google Scholar
  48. Dong, C. N. and Arteca, R. N. (1982). “Changes in photosynthetic rates resulting from phytohormone treatments to the roots of tomato plants”. Photosynthesis Research 3: 45–52.CrossRefGoogle Scholar
  49. Dreyer, D. L., Campbell, B. C., and Jones, K. C. (1983). “Effect of bioregulator-treated sorghum on greenbug fecundity and feeding behavior: Implication to host plant resistance”. Phytochemistry 23: 1593.CrossRefGoogle Scholar
  50. Edgerton, L. J. and Hoffman, M. B. (1965). “Some physiological responses of apple to N-dimethyl amino succinamic acid and other growth regulators”. Proc. Am. Soc. Hortic. Sci. 86: 28.Google Scholar
  51. Erez, A. (1985). “Growth control with paclobutrazol of peaches grown in a meadow orchard system”. Acta Hortic. 160: 26.Google Scholar
  52. Erkan, Z. and Bangerth, F. (1980). “Investigations on the effect of phytohormones and growth regulators on the transpiration, stomata aperture and photosynthesis of pepper (Capsicum annuum L.) and tomato (Lycopersicon esculetum Mill.) plants”. Botany 54: 207–220.Google Scholar
  53. Erwin, D. C., Tsai, S. D., and Khan, R. A. (1979). “Growth retardants mitigate Verticillium wilt and influence yield of cotton”. Phytopathology 69: 283.CrossRefGoogle Scholar
  54. Erwin, D. C., Tsai, S. D., and Khan, R. A. (1976). “Reduction of severity of Verticilhum wilt of cotton by the growth retardant, tributyl[(5-chloro-2-thienyl)methyl]phosphonium chloride”. Phytopathology 66: 106.CrossRefGoogle Scholar
  55. Feiocrabend, J. (1969). “Influence of cytokinins on the formation of photosynthetic enzymes in rye seedlings”. Planta 84: 11–29.CrossRefGoogle Scholar
  56. Ferre, D. C., Schmid, J. C. and Morrison, C. A. (1982). “An evaluation over 16 years of Delicious strains and other cultivars on several rootstocks and hardy interstems”. Fruit Var. J. 36: 37.Google Scholar
  57. Fiscus, E. L. (1981). “Effects of abscisic acid on the hydraulic conductance of and the total ion transport through Phaseolus root systems”. Plant Physiol. 68: 169–174.PubMedCrossRefGoogle Scholar
  58. Fisher, E., Still, M., and Raschke, K. (1985). “Effects of abscisic acid on photosynthesis in whole leaves: Changes in CO2 assimilation, levels of carbon reduction cycle intermediates and activity of ribulose-1,5-bisphophate carboxylase”. International Plant Growth Substance 12 t h Conference 28.Google Scholar
  59. Gale, M. D., Edrich, J., and Lupton, F. G. H. (1974). “Photosynthetic rates and the effects of applied gibberellin in some dwarf, semi-dwarf and tall wheat varieties (Triticum aestivum)”. J. Agric. Sci. Camb. 83: 43–46.CrossRefGoogle Scholar
  60. Gausman, H. W. (1986). Onium Bioregulators, Including Pix and Cycocel and Their Biorelevancy, West Printing, Lubbock, TX.Google Scholar
  61. Glinka, Z. (1977). “Effects of ABA and of hydrostatic pressure gradient on water movement through excised sunflower roots”. Plant Physiol. 59: 933–935.PubMedCrossRefGoogle Scholar
  62. Glinka, Z. and Reinhold, L. (1972). “Induced changes in permeability of plant cell membranes to water”. Plant Physiol. 49: 602–606.PubMedCrossRefGoogle Scholar
  63. Graselly, C. (1987). “New French stone fruit rootstocks”. Fruit Var. J. 41: 65.Google Scholar
  64. Gunderson, C. A. and Taylor Jr., G. E. (1988). “Kinetics of inhibition of foliar exchange by exogenous ethylene: an ultrasensitive response”. New Phytologist 110: 517–524.CrossRefGoogle Scholar
  65. Haber, A. H. and Tolbert, M. (1957). “Photosynthesis in gibberellin treated leaves”. Plant Physiol. 32: 152–153.PubMedCrossRefGoogle Scholar
  66. Hansche, P. E. and Beres, W. (1980). “Genetic remodeling of fruit and nut trees to facilitate cultivar improvement”. HortScience 15: 710.Google Scholar
  67. Haughan, P. A., Burden, R. S., Lenton, J. R., and Goad, J. L. (1989). “Inhibition of celery cell growth and sterol biosynthesis by the enantiomers of paclobutrazol”. Phytochemistry 28: 781.CrossRefGoogle Scholar
  68. Hayashi, T. (1961). “The effect of gibberellin treatment on the photosynthetic activity of plants”. Sixth International Conf. Plant Growth Regulation 579–587.Google Scholar
  69. Hickman, G. W., Perry, E. J., Mullen, R. J. and Smith, R. (1989). “Growth regulator controls tomato transplant height”. Calif Agric. 43: 19.Google Scholar
  70. Hoad, G. V., Loveys, B. R. and Skenek, G. M. (1977). “The effect of fruit removal on cytokinins and gibberellin-like substance”. Planta 136: 25–30.CrossRefGoogle Scholar
  71. Izumi, K., Kamiya, Y., Sakurai, A., Oshio, H., and Takahashi, N. (1985). “Studies of sites of action of a new plant growth retardant (E)-1-(4-chlorophenyl)-4,4-dimethyl- 2-(1,2,4-triazol-l-pentaen-3-ol (S-3307) and comparative effects of its stereoisomers in a cell-free system from Cucurbita maxima”. Plant Cell PhysioL 26: 821.Google Scholar
  72. Izumi, K., Nakagawa, S., Kobayashi, M., Oshio, H., Sakurai, A., and Takahashi, N. (1988). “Levels of IAA, cytokinins, ABA and ethylene in rice plants as affected by a gibberellin biosynthesis inhibitor, uniconazole-P”. Plant Cell PhysioL 29: 97.Google Scholar
  73. Johnson, C. R. (1974). “Response of chrysanthemums grown in clay and plastic pots to soil application of ancymidol ”. HortScience 9: 58.Google Scholar
  74. Jones, R. J., Griffith, S. M., and Brenner, M. L. (1986). “Sink regulation of source activity: Regulation by hormonal control”. In Regulation of Carbon and Nitrogen Reduction and Utilization in Maize, ed., J. Shannon, Martinus Nijhoff, Hague, The Netherlands.Google Scholar
  75. Kays, S. J. and Pallas Jr, J. E. (1980). “Inhibition of photosynthesis by ethylene”. Nature 285: 51–52.CrossRefGoogle Scholar
  76. Keever, G. J. and Cox, D. A. (1989). “Growth inhibition of marigold following drench and foliar-applied paclobutrazol ”. HortScience 24: 390.Google Scholar
  77. Knapp, J. S., Harms, C. L., and Volenec, J. J. (1987). “Growth regulator effects on wheat cuim nonstructural and structural carbohydrates and lignin”. Crop Sci. 27: 1201.CrossRefGoogle Scholar
  78. Latimer, J. G. (1992). “Drought, Paclobutrazol, abscisic acid and gibberellic acid as alternatives to daminozide in tomato transplant production”. J. Amer. Soc. Hort. Sci. 117: 243–247.Google Scholar
  79. Law, D. M. and Hamilton, R. H. (1989). “Reduction in the free indole-3-acetic acid levels in Alaska pea by the gibberellin biosynthesis inhibitor uniconazol”. Physiol. Plant. 76: 535.CrossRefGoogle Scholar
  80. Lester, D. C., Carter, O. G., Kelleher, F. M. and Laing, D. R. (1972). “The effect of gibberellic acid on apparent photosynthesis and dark respiration of simulated swards of Pennisetum clandestinum Hochst”. Australian J. Agric. Research 23: 205–213.CrossRefGoogle Scholar
  81. Little, C. H. A. and Loach, K. (1975). “Effect of gibberellic acid on growth and photosynthesis in Abies basamea”. Cana. J. Botany 53: 1805–1810.CrossRefGoogle Scholar
  82. Livine, A. and Vaadia, Y. (1965). “Stimulation of transpiration rate in barley leaves by kinetin and gibberellic acid”. PhysioL Plant. 18: 658–664.CrossRefGoogle Scholar
  83. Makeev, A. V., Krendeleva, T. E., and Mokronosov, A. T. (1992). “Photosynthesis and abscisic acid”. Soviet Plant Physiol. 39: 118–126.Google Scholar
  84. Marcelle, R. H., Clijsters, H., Oben, G., Bronchart, R. and Micheal, J. M. (1974). “Effects of CCC and GA3 on photosynthesis of primary bean leaves”. Proc. Eighth International Conference of Plant Growth Substances 1169–1174.Google Scholar
  85. Marcelle, T. and Oben, G. (1972). “Effects of some growth regulators on the CO2 exchanges of leaves”. Acta Horticulturae 34: 55–58.Google Scholar
  86. Markhart, A. H., Fiscur, E. L., Naylor, A. W., and Kramer, P. J. (1979). “Effect of abscisic acid on root hydraulic conductivity”. Plant Physiol. 64: 611–614.PubMedCrossRefGoogle Scholar
  87. Markhart. A. H. (1982). “Penetration of soybean roots by abscisic acid isomers”. Plant Physiol. 69: 1350–2.PubMedCrossRefGoogle Scholar
  88. Marquard, R. D. (1985). “Chemical growth regulation of pecan seedlings” HortScience 20: 119.Google Scholar
  89. Maugh II, T. H. (1981). “New chemicals promise lager crops”. Science 212: 33–34.PubMedCrossRefGoogle Scholar
  90. Meidner, H. (1967). “The effect of kinetin on stomatal opening and the rate of intake of carbon dioxide in mature primary leaves of barley”. J. Exp. Botany 18: 556–561.CrossRefGoogle Scholar
  91. Meidner, H. (1969). “Rate limiting resistances and photosynthesis”. Nature 222: 876–877.CrossRefGoogle Scholar
  92. Mild, T., Kamiya, Y., Fukazawa, M., Ichikawa, T., and Sakurai, A. (1990). “Sites of inhibition by a plant-growth regulator, 4’-chloro-2’-(alpha-hydroxybenzyl) isonicotinanilide (inabenfide), and its related compounds in the biosynthesis of gibberellins”. Plant Cell Physiol. 31: 201.Google Scholar
  93. Mishra, D. and Pradhan, G. C. (1972). “Effect of transpiration reducing chemicals on growth, flowering, and stomatal opening of tomato plants”. Plant Physiol. 50: 271.PubMedCrossRefGoogle Scholar
  94. Mittelheuser, C. J. and Van Steveninck, R. F. M. (1971). “Rapid action of abscisic acid on photosynthesis and stomatal resistance”. Planta 97: 83–86.CrossRefGoogle Scholar
  95. Nakayama, I., Miyazawa, T., Kobayashi, M., Kamiya, Y., Abe, H., and Sakurai, A. (1990). “Effects of a new plant growth regulator prohexadione calcium (BX-112) on shoot elongation caused by exogenously applied gibberellins in rice (Oryza sativa L.) seedlings”. Plant Cell Physiol. 31: 195.Google Scholar
  96. Nooden, L. (1969). “The mode of action of maleic hydrazide: inhibition of growth”. Physiol. Plant. 22: 260.CrossRefGoogle Scholar
  97. Pallas Jr. J. E. and Kays, S. J. (1982). “Inhibition of photosynthesis by ethylene–a stomatal effect”. Plant Physiol. 70: 598–601.PubMedCrossRefGoogle Scholar
  98. Parthier, B. (1979). “The role of phytohormones (cytokinins) in chloroplast development”. Biochem. Physiol Pflanzen 174: 173–214.Google Scholar
  99. Pill, N. G., Lambeth, V. N., and Hinchley, T. M. (1979). “Effects of nitrogen forms and level on ion concentrations, water stress and blossom-end rot incidence in tomato”. J. Am. Soc. Hortic. Sci. 103: 265.Google Scholar
  100. Pombo, G., Orzolek, M. D., Tukey, L. D., and Pyzik, T. P. (1985). “The effect of paclobutrazol, daminozide, glyphosate and 2,4-D in gel on the emergence and growth of germinated tomato seeds”. J. Hortic. Sci. 60: 353.Google Scholar
  101. Poskuta, J., Antoszewski, R., and Faltynowicz, M. (1972). “Photosynthesis, photoresiration and respiration of strawberry and maize leaves as influenced by abscisic acid”. Photosynthetica 6: 370–374.Google Scholar
  102. Rademacher, W. and Jung, J. (1986). “GA biosynthesis inhibitors - An update”. Proc. Plant Growth Reg. Soc. Am. 13:102.Google Scholar
  103. Raese, J. T. and Burts, E. C. (1983). “Increased yield and suppression of shoot growth and mite populations of d’Anjou pear trees with nitrogen and paclobutrazol”. HortScience 18: 212.Google Scholar
  104. Raschke, K. (1975). “Stomatal action”. Annu. Rev. Plant Physiol. 26: 309–340CrossRefGoogle Scholar
  105. Raschke, K. and Hendrick, R. (1985). “Simultaneous and independent effects of ab-scisic acid on stomata and the photosynthetic apparatus in whole leaves”. Planta 163: 105–118.CrossRefGoogle Scholar
  106. Richardson, P. J., Webster, A. D., and Quinlan, J. D. (1986). “The effect of paclobutrazol sprays with or without the addition of surfactants on the shoot growth, yield, and fruit quality of the apple cultivars Cox and Suntan”. J. Hortic. Sci. 61: 439.Google Scholar
  107. Riddell, J. A., Hageman, H. A., J’Anthony, C. M., and Hubbard, W. L. (1962). “Retardation of plant growth by a new group of chemicals”. Science 136: 391.PubMedCrossRefGoogle Scholar
  108. Riken, A., Blemenfeld, A., and Richmond, A. E. (1976). “Chilling resistance as affected by stressing environments and ABA”. Bot. Gaz. 137: 307–312.CrossRefGoogle Scholar
  109. Robinson, S. P., Wiskich, J. T., and Paleg, L. G. (1978). “Effects of indoleacetic acid on CO2 fixation, electron transport and phosphorylation in isolated chloroplasts”. Aust. J. Plant Physiol. 5: 425–431.CrossRefGoogle Scholar
  110. Rogers, B. L. and Thompson, A. H. (1968). “Growth and fruiting response of young apple and pear trees to annual applications of succinic acid 2,2-dimethylhydrazide on fruit shape of Delicious apples”. HortScience 93: 16.Google Scholar
  111. Rom, R. C. (1983). “The peach rootstock situation: An international perspective”. Fruit Var. J. 41: 65.Google Scholar
  112. Rom, R. C. and Carlson, R. F. (1987). Rootstocks for Fruit Crops, John Wiley and Sons, New York.Google Scholar
  113. Sanhla, N. and Huber, W. (1974). “Eco-physiological studies on India arid zone plants. IV. Effect of salinity and gibberellin on the activities of photsynthetic enzymes and CO2 fixation products in leaves of Pennisetum typhoides seedlings”. Biochem. Physiol. Pflanzen 166: 181–187.Google Scholar
  114. Sauerbrey, E., Grossman, K., and Jung, J. (1988). “Ethylene production by sunflower cell suspensions effects of plant growth retardants”. Plant Physiol. 87: 510.PubMedCrossRefGoogle Scholar
  115. Schneider, G. (1970). “Morphactins: Physiology and performance”. Annu. Rev. Plant Physiol. 21: 499.CrossRefGoogle Scholar
  116. Schoene, D. L. and Hoffman, D. L. (1949). “Maleic hydrazide, a unique growth regulant”. Science 109: 588.PubMedCrossRefGoogle Scholar
  117. Senaratna, T., Mackay, C. E., McKersie, B. D., and Fletcher, R. A. (1988). “Uniconazole-induced chilling tolerance in tomato and its relationship to antioxidant content”. J. Plant Physiol. 133: 56.CrossRefGoogle Scholar
  118. Shaltout, A. D., Salem, A. T., and Kilany, A. S. (1988). “Effect of pre-bloom sprays and soil drenches of paclobutrazol on growth, yield, and fruit composition of Roumi Red grapes”. J. Am. Soc. Hortic. Sci. 113: 13.Google Scholar
  119. Sharif, R. and Dale, J. E. (1980). “Growth regulating substances and the growth of tiller buds in barley; effects of cytokinins”. J. Exp. Botany 31: 921–930.CrossRefGoogle Scholar
  120. Shive, J. B. and Sisler, H. D. (1976). “Effects of ancymidol (a growth retardant) and triarimol (a fungicide) on the growth, sterols and gibberellins of Phaseolus vulgaris (L.)”. Plant Physiol. 57: 640.PubMedCrossRefGoogle Scholar
  121. Smeirat, N. and Qrunfleh, M. (1989). “Effect of paclobutrazol on vegetative and reproductive growth of Lisbon lemon”. Acta Hortic. 239: 261.Google Scholar
  122. Squier, S. A., Taylor, G. E., Selvidge, W. J., and Gunderson, C. A. (1985). “Effect of ethylene and related hydrocarbons on carbon assimilation and transpiration in herbaceous and woody species”. Environ. Sci. Technol. 19: 432–437.PubMedCrossRefGoogle Scholar
  123. Sterrett, J. P., Tworkoski, T. J., and Kujawshi, P. T. (1989). “Physiological responses of deciduous tree root collar drenched with flurprimidol”. J. Arboricult. 15: 120.Google Scholar
  124. Swietlik, D. (1986). “Effect of gibberellin inhibitors on growth and mineral nutrition of sour orange seedlings”. Sci. Hortic. 29: 325.CrossRefGoogle Scholar
  125. Tawas, I. A., Schwartz, J. W., Breithaupt, B. J., Hagin, J. M., and Arnold, P. H. (1973). “Effect of indoleacetic acid on photosynthetic reactions in isolated chloroplasts”. In Proc. Eighth International Conf. Plant Growth Substances, pp. 1159–1168.Google Scholar
  126. Tayama, H. K. and Carver, S. A. (1990). “Zonal geranium growth and flowering responses to six growth regulators”. HortScience 25: 82.Google Scholar
  127. Taylor Jr., G. E. and Gunderson, C. A. (1986). “The response of foliar gas exchage to exogenously applied ethylene”. Plant Physiol. 82: 653–657.PubMedCrossRefGoogle Scholar
  128. Trehame, K. J. and Stoddart, J. L. (1968). “Effects of gibberellin on photosynthesis in red clover (Trifolium pratense L.)”. Nature 220: 457–458.CrossRefGoogle Scholar
  129. Treharne, K. J., Stoddart, J. L., Pughe, J., Paranjothy, K., and Wareing, P. F. (1970). “Effects of gibberellins and cytokinins on the activity pf photosynthetic enzymes and plastid ribosomal RNA synthesis in Phaselous vulgaris L.”. Nature 228: 129–131.PubMedCrossRefGoogle Scholar
  130. Tsai, D. S. and Arteca, R. N. (1985). “Effects of root applications of gibberellic acid on photosynthesis and growth in C3 and C4 plants”. Photosynthesis Res. 6: 147–157.CrossRefGoogle Scholar
  131. Turner, W. B. and Bidwell, R. G. S. (1965). “Rates of photosynthesis in attached and detached bean leaves and the effect of spraying with indole-3-acetic acid”. Plant Physiol 40: 446–451.CrossRefGoogle Scholar
  132. Upadhyaya, A., Davis, T. D., Larsen, M. H., Walser, R. H., and Sankhla, N. (1990). “Uniconazole-induced thermotolerance in soybean seedling root tissue”. Physiol. Plant. 79: 78.CrossRefGoogle Scholar
  133. Upadhyaya, A., Davis, T. D., Walser, R. H., Galbraith, A. B. and Sankhla, N. (1989). “Uniconazole-induced alleviation of low-temperature damage in relation to antioxidant activity”. HortScience 24: 955.Google Scholar
  134. Upadhyaya, A., Davis, T. D., and Walser, R. H. (1991). “Alleviation of sulfur dioxide-induced phytotoxicity in cucumber plants by uniconazole”. Biochem. Physiol. Pflanzen 187: 59.Google Scholar
  135. Walton, D. C. (1980). “Biochemistry and physiology of abscisic acid”. Annu. Rev. Plant Physiol. 31: 453–490.CrossRefGoogle Scholar
  136. Wang, S. A. Y., Sun, T., Zuo, L. J., and Faust, M. (1987). “Effect of paclobutrazol on water stress-induced abscisic acid in apple seedling leaves”. Plant Physiol. 84: 1051.PubMedCrossRefGoogle Scholar
  137. Wareing, P. F., Khalifa, M. M., and Treharne, K. J. (1968). “Rate-limiting processes in photosynthesis at saturating light intensities”. Nature 222: 453–457.CrossRefGoogle Scholar
  138. Wellburn, F. A. M., Wellbum, A. R., Stoddart, J. L., and Treharne, K. L. (1973). “Influence of gibberellic acid and abscisic acid and the growth retardant, CCC upon plastid development”. Planta 111: 337–346.CrossRefGoogle Scholar
  139. Wood, B. W. (1988). “Paclobutrazol supresses shoot growth and influences nut quality and yield of young pecan trees”. J. Am. Soc. Hortic. Sci. 113: 374.Google Scholar
  140. Woodrow, L. and Grodzinski, B. (1989). “An evaluation of the effects of ethylene on carbon assimilation in Lycopersicon esculentum Mill. ”. J. Exp. Botany 40: 361–368.CrossRefGoogle Scholar
  141. Woodrow, L. and Grodzinski, B. (1993). “Ethylene exchange in Lycopersicon esculenturn Mill. leaves during short-term and long-term exposures to CO2”. J. Exp. Botany 44: 471–480.CrossRefGoogle Scholar
  142. Woodrow, L., Jiao, J., Tsujita, M. J., and Grodzinski, B. (1989). “Whole plant and leaf steady state gas exchange during ethylene exposure in Xanthium strumarium L.”. J. Amer. Soc. Hort. Sci. 90: 85–90.Google Scholar
  143. Zerbe, R. and Wild, A. (1981). “The effect of indole-3-acetic acid on the photosynthetic apparatus of Sinapis alba”. Photosynthetic Research 1: 71–81.CrossRefGoogle Scholar
  144. Zillkah, S. and Gressel, J. (1978). “Differential inhibition by dikegulac of dividing and stationary cells in vitro”. Planta 147: 274.CrossRefGoogle Scholar
  145. Zummo, G. R., Benedict, H. J. H., and Segers, J. C. (1984). “Effect of the plant growth regulator mepiquat chloride on host plant resistance in cottton to bollworm (Lepidoptera: Noctuidae)”. J. Econ. Entomol. 77: 922.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Richard N. Arteca
    • 1
  1. 1.The Pennsylvania State UniversityUSA

Personalised recommendations