Skip to main content

Functional Morphology of Leaping Behaviors in Galagids: Associations Between Landing Limb use and Diaphyseal Geometry

  • Chapter

Abstract

An animals’ limb long bones must support its weight during postural and locomotor behaviors. Locomotor behaviors have been shown to result in bending and compressive loads of relatively large magnitude on the long bones. Of the several different types of locomotion so far studied with force plates and/or strain gauges (such as slow and fast quadrupedalism, leaping, suspension), leaping has been shown to result in the largest forces (e.g. Biewener et al., 1983; Biewener, 1990). Of the two phases of the leap where an animal is in contact with a support, take-off and landing, it is landing that results in the largest reaction forces: forces up to 10–15 times body weight have been shown to act on the limb skeleton at landing (Gunther, 1985; Gunther et al., 1991; Preuschoft, 1985). Bending is the most common and dangerous type of loading experienced by the limb skeleton (Biewener et al., 1983; Biewener and Taylor, 1986; Bertram and Biewener, 1988); bone is stronger in compression than it is in bending. The shape of long bone diaphyses dictate the behavior of the bone under load (Lanyon and Rubin, 1985; see also Cowin et al., 1984). The amount (area) and distribution (second moment of area) of diaphyseal cortical bone determine its compressive and bending strength, respectively (e.g. Wainwright et al., 1979). Recent research into the functional morphology of primate locomotion has demonstrated associations between diaphyseal cross-sectional geometry and locomotor patterns in galagids (Burr et al., 1982), lorises (Demes and Jungers, 1989), indriids (Jungers and Minns, 1979; Demes et al., 1991), macaques and other anthropoids (Ruff, 1987, 1988; Burr et al., 1989; see the review of Ruff and Runestad, 1992).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Biewener, AA, 1983, Allometry of quadrupedal locomotion:the scaling of duty factor, bone curvature and limb orientation to body size, Journal of experimental Biology, 105, 147–171.

    PubMed  CAS  Google Scholar 

  • Biewener, AA, 1989 Scaling body support in mammals: limb posture and muscle mechanics, Science, 245, 45–48.

    Article  PubMed  CAS  Google Scholar 

  • Biewener, AA, 1990 Biomechanics of terrestrial locomotion, Science, 250, 1097–1103.

    Article  PubMed  CAS  Google Scholar 

  • Biewener, AA and R. Taylor, 1986, Bone strain: a determinant of gait and speed? Journal of experimental Biology, 123, 383–400.

    PubMed  CAS  Google Scholar 

  • Biewener, AA; JJ Thomason; LE Lanyon, 1983, Mechanics of locomotion and jumping in the forelimb of the horse (Equus):in vivo stress developed in the radius and metacarpus, Journal of Zoology, London, 201, 67–82.

    Article  Google Scholar 

  • Bertram, JEA and AA Biewener, 1988, Bone curvature:sacrificing strength for load predictability? Journal of theoretical Biology, 131, 75–92.

    Article  PubMed  CAS  Google Scholar 

  • Burr, DB; G Piotrowski; RB Martin; P Nong Cook, 1982, Femoral mechanics in the lesser bushbaby (Galago senegalensis): structural adaptations to leaping in primates, Anatomical Record, 202, 419–429.

    Article  PubMed  CAS  Google Scholar 

  • Burr, DB; CB Ruff; C Johnson, 1989, Structural adaptations of the femur and humerus to arboreal and terrestrial environments in three species of Macaque, American Journal of Physical Anthropology, 79, 357–367.

    Article  PubMed  CAS  Google Scholar 

  • Charles-Dominique, P, 1977, Ecology and Behavior of Nocturnal Primates, New York: Columbia University Press.

    Google Scholar 

  • Cowin, SC, LE Lanyon, and G Rodan, 1984, The Kroc Foundation Conference on functional adaptation in bone tissue, Calcified Tissue International 36:S1-S6.

    Article  Google Scholar 

  • Currey, JD and R McN Alexander, 1985, The thickness of the walls of tubular bones, Journal of Zoology, London, (A)206, 453–468.

    Article  Google Scholar 

  • Dagosto, M and CJ Terranova, 1992, Estimating the body size of Eocene primates: a comparison of results from dental and postcranial variables, International Journal of Primatology, (13)3, 307–344.

    Article  Google Scholar 

  • Demes, B and MM Gunther, 1989, Biomechanics and allometric scaling in primate locomotion and morphology, Folia Primatologia, 53, 125–141.

    Article  CAS  Google Scholar 

  • Demes, B and WL Jungers, 1989, Functional differentiation of long bones in lorises, Folia Primatologia, 52, 58–69.

    Article  CAS  Google Scholar 

  • Demes, B. and WL Jungers, 1993, Long bone cross-sectional dimensions, locomotor adaptations and body size in prosimian primates, Journal of human Evolution, 25, 57–74.

    Article  Google Scholar 

  • Demes, B; WL Jungers; K Selpien, 1991, Body size, locomotion, and long bone cross-sectional geometry in indriid primates, American Journal of Physical Anthropology, 86, 537–547.

    Article  PubMed  CAS  Google Scholar 

  • Gunther, MM 1985 Biomechanische voraussetzungen beim Absprung des Senegalagos, Zeitschrift fur Morphologie und Anthropologie, 75, 287–306.

    PubMed  CAS  Google Scholar 

  • Gunther, MM, H Ishida, H Kumakura and Nakano, 1991, The jump as a fast mode of locomotion in arboreal and terrestrial biotopes, Zeitschrift fur Morphologie und Anthropologie, 78(3), 341–372.

    PubMed  CAS  Google Scholar 

  • Jungers, WL, 1985, Body size and scaling of limb proportions in primates. In WL Jungers, (Ed.), Size and Scaling in Primate Biology, (pp.345–381) New York: Plenum Press.

    Google Scholar 

  • Jungers, WL and RJ Minns, 1979, Computed tomography and biomechanical analysis of fossil longbones, American Journal of Physical Anthropology, 50, 285–290.

    Article  PubMed  CAS  Google Scholar 

  • Lanyon, LE and CT Rubin, 1985, Functional adaptation in skeletal structures. IN: M. Hildebrand, DM Bramble, KF Liem, and DB Wake, (Eds.), Functional Vertebrate Morphology, (pp.1–25). The Belknap Press, Cambridge, Massachusettes.

    Google Scholar 

  • Nash, LT, SK Bearder and TR Olson, 1989, Synopsis of Galago species characteristics, International Journal of Primatology, (10)1, 57–80.

    Article  Google Scholar 

  • Napier, J and AC Walker, 1967, Vertical clinging and leaping: a newly recognized category of locomotor behaviour of primates, Folia Primatologia, 6, 204–219.

    Article  CAS  Google Scholar 

  • Oxnard, CE, RH Crompton and SS Lieberman, 1990, Animal Lifestyles and Anatomies, University of Washington Press.

    Google Scholar 

  • Preuschoft, H, 1985, On the quality and magnitude of mechanical stresses in the locomotor system during rapid movements, Zeitschrift fur Morphologie und Anthropologie, 75, 245–262.

    PubMed  CAS  Google Scholar 

  • Roark, RJ and WC Young. 1976, Formulas for Stress and Strain, McGraw-Hill.

    Google Scholar 

  • Ruff, CB 1987 Structural allometry of the femur and tibia in Hominoidea and Macaca, Folia Primatologia, 48, 9–49.

    Article  CAS  Google Scholar 

  • Ruff, CB 1988 Hindlimb articular surface allometry in Hominoidea and Macaca, with comparisons to diaphyseal scaling, Journal of Human Evolution, 17, 687–714.

    Article  Google Scholar 

  • Ruff, CB and JA Runestad, 1992, Primate limb bone structural adaptations, Annual Reviews of Anthropology 21, 407–433.

    Article  Google Scholar 

  • Runestad, JA, CB Ruff, JC Nieh, RW Thorington, Jr and MF Teaford, 1993, Radiographic estimation of long-bone cross-sectional geometric properties, American Journal of Physical Anthropology, 90, 207–213.

    Article  PubMed  CAS  Google Scholar 

  • Schaffler, MB; DB Burr; WL Jungers; CB Ruff, 1985, Structural and mechanical indicators of limb specialization in primates, Folia Primatologia, 45, 61–75.

    Article  CAS  Google Scholar 

  • Sokal, RR and FJ Rohlf, 1989, Biometry, San Francisco: Freeman and Company.

    Google Scholar 

  • Terranova, CJ, 1994, Leaping behaviors and the cross-sectional geometry of strepsirhine primate long bones. Ph.D. Thesis, Northwestern University.

    Google Scholar 

  • Wainwright, SA, WD Biggs, JD Currey, and JM Gosline, 1976, Mechanical Design in Organisms, New Jersey: Princeton University Press.

    Google Scholar 

  • Walker, AC, 1979, Prosimian locomotor behavior. In: G Doyle and RD Martin, (Eds), The Study of Primate Behavior, London: Duckworth.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Terranova, C.J. (1995). Functional Morphology of Leaping Behaviors in Galagids: Associations Between Landing Limb use and Diaphyseal Geometry. In: Alterman, L., Doyle, G.A., Izard, M.K. (eds) Creatures of the Dark. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2405-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2405-9_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3250-1

  • Online ISBN: 978-1-4757-2405-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics