Advertisement

Fluorescence in Situ Hybridization Reveals Homologies Among Tarsier, Galago, and Human Karyotypes

  • Kim Coleman Healy
Chapter

Abstract

The current majority position among morphologists regards Tarsius and Anthropoidea as sister taxa. This grouping, suborder Haplorhini, is supported by shared derived characters of the orbit, retina, placenta (Luckett, 1982) and basicranium (MacPhee and Cartmill, 1986) in addition to the derived nasal morphology from which the clade takes its name. Tarsius’s highly derived body plan complicates the interpretation of tarsier-anthropoid similarities, however, leading other morphologists to reject them as nonhomologous consequences of tarsier specializations. Schwartz and Tattersall (1987) propose a tarsier-lorisiform clade in lieu of a tarsier-anthropoid one; Simons and Rasmussen (1989) regard the most salient tarsier-anthropoid correspondences in cranial anatomy as convergent.

Keywords

Chromosome Painting Hybridization Mixture Genetic Homology Homology Recognition Cranial Anatomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baba, M.L., Weiss, M.L., Goodman, M., & Czelusniak, J. (1982).The case of tarsier hemoglobin.Systematic Zoology, 31, 156–165.Google Scholar
  2. Ballard, S.G. & Ward, D.C. (1993) Fluorescence in situ hybridization using digital imaging microscopy. Journal of Histochemistry and Cytochemistry, 41, 1755–1759.PubMedCrossRefGoogle Scholar
  3. Collins, C., Kuo, W.-L., Segraves, R., Fuscoe, J., Pinkel, D., & Gray, J.W. (1991). Construction and characterization of human chromosome-specific plasmid libraries by subcloning inserts from Charon 21a libraries made by the National Laboratory Gene Library Project. Genomics, 11, 997–1006.PubMedCrossRefGoogle Scholar
  4. Czelusniak, J., Koop, B., Tagle, D., Shoshani, H., Goodman, M., Braunitzer, G., Kleinschmidt, T., de Jong, W.W., & Matsuda, G. (1988).Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of Eutheria. In H. H. Genoways (Ed.) Current Mammalogy (pp. 545–572). New York: Plenum Press.Google Scholar
  5. de Jong, W.W. & Goodman, M. (1988). Anthropoid affinities of Tarsius supported by lens a-A crystallin sequences. Journal of Human Evolution, 17, 575–582.CrossRefGoogle Scholar
  6. Dresser, M. E. & Hamilton, A. E. (1979). Chromosomes of Lemuriformes. V. A comparison of the karyotypes of Cheirogaleus medius and Lemur fulvus fulvus. Chromosoma, 24, 160–167.Google Scholar
  7. Dutrillaux, B. & Rumpler, Y. (1988). Absence of chromosomal similarities between tarsiers (Tarsius syrichta) and other primates. Folia primatologica, 50, 130–133.CrossRefGoogle Scholar
  8. Dutrillaux, B., Couturier, J., Muleris, J., Rumpler, Y., & Viegas-Pequignot, E. (1986). Relations chromosomiques entre sous-ordres et infra-ordres, et schema evolutif general des Primates. Mammalia, 50, 108–123.Google Scholar
  9. Healy, K. C. (1992). Chromosome banding as a source of phylogenetic information: a critique based on the case of Tarsius. Unpublished Ph. D. dissertation, Duke University.Google Scholar
  10. Ikeuchi, T. (1984). Inhibitory effect of ethidium bromide on mitotic chromosome condensation and its application to high-resolution chromosome banding. Cytogenetics and Cell Genetics , 38, 56–61.PubMedCrossRefGoogle Scholar
  11. Jauch, A., Wienberg, J., Stanyon, R., Arnold, N., Tofanelli, S., Ishida, T., & Cremer, T. (1992). Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proceedings of the National Academy of Sciences USA, 89, 8611–8615.CrossRefGoogle Scholar
  12. Johnson, G.D., Davidson, R.S., McNamee, K.C., Russell, G., Goodwin, D., & Holbrow, E.J. (1982) Fading of immunofluorescence during microscopy: A study of the phenomenon and its remedy. Journal of Immunological Methods, 55, 231–242.PubMedCrossRefGoogle Scholar
  13. Koop, B.F., Siemieniak, D., Slighton, J.L., Goodman, M., Dunbar, J., Wright, P.C., Simons, E.L. (1989). Tarsius δ- and β-globin genes: conversions, evolution, and systematic implications. Journal of Biological Chemistry, 264, 68–79.PubMedGoogle Scholar
  14. MacPhee, R.D.E. & Cartmill, M. (1986). Basicranial structures and primate systematics. In D.R. Swindler & J. Erwin (Eds.) Comparative Primate Biology, Volume 1: Systematics, Evolution, and Anatomy (pp. 219–275). New York: Alan R. Liss, Inc.Google Scholar
  15. Poorman, P.A. (1982). Banded chromosomes of Galago crassicaudatus monteiri, G. c. garnettii, and a subspecific hybrid. Cytogenetics and Cell Genetics, 34, 296–304.PubMedCrossRefGoogle Scholar
  16. Poorman, P.A., Cartmill, M., MacPhee, R.D.E., & Moses, M.J. (1985). The G-banded karyotype of Tarsius bancanus and its implications for primate phylogeny. American Journal of Physical Anthropology, 66, 215. (Abstract.)Google Scholar
  17. Rumpler, Y. & Dutrillaux, B. (1986). Evolution chromosomique des Prosimiens. Mammalia, 50, 83–107.Google Scholar
  18. Sambrook, J., Frisch, E.F., & Maniatis, T. (1987). Molecular Cloning: A Laboratory Manual. Volume 2. Cold Spring Harbor Laboratory Press.Google Scholar
  19. Schwartz, J.H. & Tattersall, I. (1987). Tarsiers, adapids and the integrity of Strepsirhini. Journal of Human Evolution, 16, 23–40.CrossRefGoogle Scholar
  20. Simons E. L. & Rasmussen, T. (1989). Cranial morphology of Aegyptopithecus and Tarsius and the question of the tarsier-anthropoidean clade. American Journal of Physical Anthropology, 79, 1–23.PubMedCrossRefGoogle Scholar
  21. Verma, R.S. & Babu, A. (1989). Human Chromosomes: A Manual of Basic Techniques. New York: Pergamon Press.Google Scholar
  22. Wienberg, J., Jauch, A., Stanyon, R., & Cremer, T. (1990). Molecular cytotaxonomy of primates by fluorescence in situ hybridization. Genomics, 8, 347–350.PubMedCrossRefGoogle Scholar
  23. Wiegant, J., Galjart, N.Y., Roop, A.K., d’Asso, A. (1991). The gene encoding human protective protein (PPGB) is on chromosome 20. Genomics, 10, 345–349.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Kim Coleman Healy
    • 1
  1. 1.Department of PharmacologyYale University School of MedicineNew HavenUSA

Personalised recommendations