Advertisement

NADPH Cytochrome P450 Reductase and Its Structural and Functional Domains

  • Henry W. Strobel
  • Anne V. Hodgson
  • Sijiu Shen
Chapter

Abstract

NADPH cytochrome P450 reductase has been a topic of interest and study since Horecker1 first reported the isolation from pig liver after acetone extraction and trypsin treatment of a protein that catalyzed the reduction of cytochromes c. Since that initial report, much information has been revealed and reported about the nature, reactivities, structure, and regulation of the reductase that we have come to recognize as a component of the cytochrome P450-dependent drug metabolism system. The development of knowledge about the role and mechanism of NADPH cytochrome P450 reductase has been periodically discussed and reviewed.2–5 The most recent review (by Backes5) in 1993 focused on the function of cytochrome P450 reductase, summarizing and evaluating very elegantly a number of studies of the mechanism of electron transfer to the flavin centers of the reductase, interflavin electron transfer and transfer of electrons from the flavin centers to oxygen and/or the redox partners of cytochrome P450 reductase. This present review, therefore, will not cover mechanism in any more than a cursory fashion, but will attempt to focus on a summary of the salient features of the study of structural/functional regions or domains of cytochrome P450 reductase.

Keywords

P450 Reductase Cytochrome P450 Reductase Redox Partner NADPH Cytochrome P450 Reductase Antipeptide Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horecker, B. L., 1950, Triphosphopyridine nucleotide-cytochrome c reductase in liver, J. Biol. Chem. 183: 593–605.Google Scholar
  2. 2.
    Strobel, H. W., Dignam, J. D., and Gum, J. R., 1980, NADPH cytochrome P450 reductase and its role in the mixed function oxidase reaction, Pharmacol. Ther. 8: 525–537.PubMedCrossRefGoogle Scholar
  3. 3.
    Guengerich, F. P., 1987, Mammalian Cytochromes P450, Vols. 1 and 2, CRC Press, Boca Raton, FL.Google Scholar
  4. 4.
    Porter, T. D., and Coon, M. J., 1991, Cytochrome P450: Multiplicity of isoforms, substrates and catalytic and regulatory mechanisms, J. Biol. Chem. 266: 13469–13472.PubMedGoogle Scholar
  5. 5.
    Backes, W. L., 1993, NADPH cytochrome P450 reductase: Function, in: Handbook of Experimental Pharmacology, Vol. 105, Cytochrome P450 ( J. B. Schenkman and H. Greim, eds.), Springer-Verlag, Berlin, pp. 15–34.Google Scholar
  6. 6.
    Lu, A. Y. H., and Coon, M. J., 1968, Role of hemoprotein P450 in fatty acid ta-hydroxylation in a soluble enzyme system from liver microsomes, J. Biol. Chem. 243: 1331–1332.PubMedGoogle Scholar
  7. 7.
    Lu, A. Y. H., Junk, K. W., and Coon, M. J., 1969, Resolution of the cytochrome P450 containing to-hydroxylation system of liver microsomes into three components, J. Biol. Chem. 244: 3714–3721.PubMedGoogle Scholar
  8. 8.
    Strobel, H. W., Lu, A. Y. H., Heidema, J., and Coon, M. J., 1970, Phosphatidylcholine requirement in the enzymatic reduction of hemoprotein P450 and in fatty acid, hydrocarbon and drug hydroxylation, J. Biol. Chem. 245: 4851–4854.PubMedGoogle Scholar
  9. 9.
    Lu, A. Y. H., Strobel, H. W., and Coon, M. J., 1969, Hydroxylation of benzphetamine and other drugs by a solubilized form of cytochrome P450 from liver microsomes lipid: Requirement for drug demethylation, Biochem. Biophys. Res. Commun. 36: 545–551.PubMedCrossRefGoogle Scholar
  10. 10.
    Lu, A. Y. H., Strobel, H. W., and Coon, M. J., 1970, Properties of a solubilized form of the cytochrome P450-containing mixed-function oxidase of liver microsomes, Mol. Pharmacol. 6: 213–220.PubMedGoogle Scholar
  11. 11.
    Gillette, J. R., 1979, Effects of induction of cytochrome P450 enzymes on the concentrations of foreign compounds and their metabolites and on the toxicological effects of the compounds, Drug Metab. Rev. 10: 59–87.PubMedCrossRefGoogle Scholar
  12. 12.
    Conney, A. H., 1982, Induction of microsomal enzymes by foreign compounds and carcinogenesis by polycyclic aromatic hydrocarbons, Cancer Res. 42: 4875–4917.PubMedGoogle Scholar
  13. 13.
    Guengerich, F. P., 1977, Metabolism of vinyl chloride: Destruction of the heme of highly purified liver microsomal cytochrome P450 by a metabolite, Mol. Pharmacol. 13: 911–923.PubMedGoogle Scholar
  14. 14.
    Stohs, S. J., Grafstrom, R. C., Burke, M. D., Moldeus, P. W., and Orrenius, S., 1976, The isolation of rat intestinal microsomes with stable cytochrome P450 and their metabolism of benzo[alpyrene, Arch. Biochem. Biophys. 177: 105–116.PubMedCrossRefGoogle Scholar
  15. 15.
    Ellin, A., Jakobsson, S. B., Schenkman, J. B., and Orrenius, S., 1971, P450k of rat kidney cortex microsomes: Its involvement in fatty acid w-and (0)-1) hydroxylation, Arch. Biochem. Biophys. 150: 64–71.CrossRefGoogle Scholar
  16. 16.
    Fang, W. F., and Strobel, H. W., 1978, The drug and carcinogen metabolism system of rat colon microsomes, Arch. Biochem. Biophys. 186: 128–138.PubMedCrossRefGoogle Scholar
  17. 17.
    Hodgson, A. V., White, T. B., White, J. W., and Strobel, H. W., 1993, Expression analysis of the mixed-function oxidase system in rat brain by the polymerase chain reaction, Mol. Cell. Biochem. 121: 171–174.CrossRefGoogle Scholar
  18. 18.
    Bergh, A. F., and Strobel, H. W., 1992, Reconstitution of the brain mixed-function oxidase system: Purification ofNADPH-cytochrome P450 reductase and partial purification of cytochrome P450 from whole rat brain, J. Neurochem. 59: 575–581.PubMedCrossRefGoogle Scholar
  19. 19.
    Fennell, P. M., and Strobel, H. W., 1982, Preparation of homogeneous NADPH-cytochrome P450 reductase from rat hepatoma, Biochim. Biophys. Acta 709:173–177.Google Scholar
  20. 20.
    Oshinsky, R. J., and Strobel, H. W., 1987, Distribution and properties of cytochromes P450 and cytochrome P450 reductase from rat colon mucosal cells, int. J. Biochem. 19: 575–588.PubMedCrossRefGoogle Scholar
  21. 21.
    Hammond, D. K., and Strobel, H. W., 1990, Human colon cell line LS 174T drug metabolizing system, Mol. Cell. Biochem. 93: 95–105.PubMedCrossRefGoogle Scholar
  22. 22.
    White, T. B., Hammond, D. K., Vasquez, H., and Strobel, H. W., 1991, Expression of two cytochromes P450 involved in carcinogen activation in a human colon cell line, Mol. Cell. Biochem. 102: 61–69.PubMedCrossRefGoogle Scholar
  23. 23.
    Nelson, D. R., Kamataki, T., Waxman, D. J., Guengerich, F. P., Estabrook, R. W., Feyereisen, R., Gonzales, F. J., Coon, M. J., Gunsalus, I. C., Gotoh, O., Okuda, K., and Nebert, D. W., 1993, The P450 superfamily: Update on new sequences, gene mapping, accession numbers, early trivial names and nomenclature, DNA Cell Biol. 12: 1–51.PubMedCrossRefGoogle Scholar
  24. 24.
    Lu, A. Y. H., Kuntzman, R., West, S., Jacobson, M., and Conney, A. H., 1972, I. Reconstituted liver microsomal system that hydroxylates drugs, other foreign compounds, and endogenous substrates. II. Role of the cytochrome P450 and P448 fractions in drug and steroid hydroxylations, J. Biol. Chem. 247: 1724–1734.Google Scholar
  25. 25.
    van der Hoeven, T. A., Haugen, D. A., and Coon, M. J., 1974, Cytochrome P450 purified to apparent homogeneity from phenobarbital-induced rabbit liver microsomes: Catalytic activity and other properties, Biochem. Biophys. Res. Commun. 60: 569–575.PubMedCrossRefGoogle Scholar
  26. 26.
    Levin, W., Ryan, D., West, S., and Lu, A. V. H., 1974, Preparation of partially purified, lipid-depleted cytochrome P450 and reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase from rat liver microsomes, J. Biol. Chem. 249: 1747–1754.PubMedGoogle Scholar
  27. 27.
    Ryan, D., Lu, A. Y. H., West, S. B., and Levin, W., 1975, Multiple forms of cytochrome P450 in phenobarbital-and 3-methylcholanthrene-treated rats: Separation and spectral properties, J. Biol. Chem. 250: 2157–2163.PubMedGoogle Scholar
  28. 28.
    Poulos, T. L., Finzel, B. C., Gunsalus, I. C., Wagner, G. C., and Kraut, J., 1985, The 2.6 A crystal structure of Pseudomonas putida cytochrome P450, J. Bio!. Chem. 260: 16122–16130.Google Scholar
  29. 29.
    Poulos, T. L., Finzel, B. C., and Howard, A. J., 1987, High resolution crystal structure of cytochrome P450cam, J. Mol. Biol. 195: 687–700.PubMedCrossRefGoogle Scholar
  30. 30.
    Ravichandran, K. G., Boddupalli, S. S., Hasemann, C. A., Peterson, J. A., and Deisenhofer, J., 1993, Crystal structure of hemoprotein domain of P450 BM-3. A prototype for microsomal P450s, Science 261: 731–736.PubMedCrossRefGoogle Scholar
  31. 31.
    Hasemann, C. A., Ravichandran, K. G., Peterson, J. A., and Deisenhofer, J., 1994, Crystal structure and refinement of cytochrome P450tep at 2.3 A resolution, J. Mol. Biol. 236: 1169–1185.PubMedCrossRefGoogle Scholar
  32. 32.
    Dignam, J. D., and Strobel, H. W., 1975, Preparation of homogeneous NADPH cytochrome P450 reductase from rat liver, Biochem. Biophys. Res. Commun. 63: 845–852.PubMedCrossRefGoogle Scholar
  33. 33.
    Iyanagi, T., and Mason, H. S., 1973, Some properties of hepatic reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase, Biochemistry 12: 2297–2308.PubMedCrossRefGoogle Scholar
  34. 34.
    Iyanagi, T., Makino, N., and Mason, H. S., 1974, Redox properties of the reduced nicotinamide adenine dinucleotide phosphate-cytochrome P450 and reduced nicotinamide adenine dinucleotide-cytochrome b5 reductases, Biochemistry 13: 1701–1710.PubMedCrossRefGoogle Scholar
  35. 35.
    Williams, C. H., and Kamin, H., 1962, Microsomal triphosphopyridine nucleotide cytochrome c reductase of liver, J. Bio!. Chem. 237: 587–595.Google Scholar
  36. 36.
    Phillips, A. H., and Langdon, R. G., 1962, Hepatic triphosphopyridine nucleotide cytochrome c reductase: Isolation, characterization and kinetic studies, J. Bio!. Chem. 237: 2652–2660.Google Scholar
  37. 37.
    Masters, B. S. S., Bilimoria, M. H., and Kamin, H., 1965, The mechanism of 1- and 2- electron transfers catalyzed by reduced triphosphopyridine nucleotide-cytochrome c reductase, J. Biol. Chem. 240: 4081–4088.PubMedGoogle Scholar
  38. 38.
    Pederson, T. C., Buege, J. A., and Aust, S.D., 1973, Microsomal electron transport: The role of reduced nicotinamide adenine dinucleotide-phosphate-cytochrome c reductase in liver microsomal peroxidation, J. Biol. Chem. 248: 7134–7141.PubMedGoogle Scholar
  39. 39.
    Yasukochi, Y., and Masters, B. S. S., 1976, Some properties of a detergent solubilized NADPH-cytochrome c (cytochrome P450) reductase purified by biospecific affinity chromatography, J. Biol. Chem. 251: 5337–5344.PubMedGoogle Scholar
  40. 40.
    Dignam, J. D., and Strobel, H. W., 1977, NADPH-cytochrome P450 reductase from rat liver: Purification by affinity chromatography and characterization, Biochemistry 16: 1116–1123.PubMedCrossRefGoogle Scholar
  41. 41.
    Knapp, J. A., Dignam, J. D., and Strobel, H. W., 1977, NADPH cytochrome P450 reductase: Circular dichroism and physical studies, J. Biol. Chem. 252: 437–443.PubMedGoogle Scholar
  42. 42.
    Yasukochi, Y., Peterson, J. A., and Masters, B. S. S., 1979, NADPH cytochrome c (cytochrome P450) reductase: Spectrophotometric and stopped flow kinetic studies on the formation of reduced flavoprotein intermediates, J. Biol. Chem. 254: 7097–7104.PubMedGoogle Scholar
  43. 43.
    Vermilion, J. L., and Coon, M. J., 1978, Identification of the high and low potential flavins of liver microsomal NADPH-cytochrome P450 reductase, J. Biol. Chem. 253: 8812–8819.PubMedGoogle Scholar
  44. 44.
    Vermilion, J. L., and Coon, M. J., 1978, Purified liver microsomal NADPH-cytochrome P450 reductase: Spectral characterization of oxidation reduction states, J. Biol. Chem. 253: 2694–2704.PubMedGoogle Scholar
  45. 45.
    Vermilion, J. L., Ballou, D. P., Massey, V., and Coon, M. J., 1981, Separate roles for FMN and FAD in catalysis by liver microsomal NADPH-cytochrome P450 reductase, J. Biol. Chem. 256: 266–277.PubMedGoogle Scholar
  46. 46.
    Kurzban, G. P., and Strobel, H. W., 1986, Preparation and characterization of FAD-dependent NADPH cytochrome P450 reductase, J. Bio!. Chem. 261: 7824–7830.Google Scholar
  47. 47.
    Kurzban, G. P., and Strobel, H. W., 1986, Purification of flavin mononucleotide-dependent and flavin-adenine dinucleotide-dependent reduced nicotinamide-adenine dinucleotide phosphate-cytochrome P450 reductase by high-performance liquid chromatography on hydroxylapatite, J. Chromatogr. 358: 296–301.PubMedCrossRefGoogle Scholar
  48. 48.
    Kurzban, G. P., Howarth, J., Palmer, G., and Strobel, H. W., 1990, NADPH-cytochrome P450 reductase: Physical properties and redox behavior in the absence of the FAD moiety, J. Biol. Chem. 265: 12272–12279.PubMedGoogle Scholar
  49. 49.
    Narayanasami, R., Otvos, J. D., Kasper, C. B., Shen, A., Rajagopalan, J., McCabe, T. J., Okita, J. R., Hanahan, D. J., and Masters, B. S. S., 1992, 31P NMR spectroscopic studies on purified, native and cloned, expressed forms of NADPH-cytochrome P450 reductase, Biochemistry 31: 4210–4218.Google Scholar
  50. 50.
    Bastiaens, P. I. H., Bonants, P. J. M., Muller, F., and Visser, A. J. W. G., 1989, Time resolved fluorescence spectroscopy of NADPH cytochrome P450 reductase: Demonstration of energy transfer between the two prostethic groups, Biochemistry 28: 8416–8425.PubMedCrossRefGoogle Scholar
  51. 51.
    Kuki, A., and Wolynes, P. G., 1987, Electron tunnelling paths in proteins, Science 236: 1642–1652.CrossRefGoogle Scholar
  52. 52.
    Centeno, F., and Gutierrez-Merino, C., 1992, Location of functional centers in the microsomal cytochrome P450 system, Biochemistry 31: 8473–8481.PubMedCrossRefGoogle Scholar
  53. 53.
    Gum, J. R., and Strobel, H. W., 1979, Purified NADPH cytochrome P450 reductase: Interaction with hepatic microsomes and phospholipid vesicles, J. Biol. Chem. 254: 4177–4185.PubMedGoogle Scholar
  54. 54.
    Gum, J. R., and Strobel, H. W., 1985, Isolation of the membrane-binding peptide of NADPH cytochrome P450 reductase: Characterization of the peptide and its role in the interaction of reductase with cytochrome P450, J. Biol. Chem. 256: 7478–7486.Google Scholar
  55. 55.
    Black, S. D., French, J. S., Williams, C. H., and Coon, M. J., 1979, Role of hydrophobic polypeptide in the N-terminal region of NADPH-cytochrome P450 reductase in complex formation with P450LM, Biochem. Biophys. Res. Commun. 91: 1528–1535.PubMedCrossRefGoogle Scholar
  56. 56.
    Black, S. D., and Coon, M. J., 1982, Structural features of liver microsomal NADPH cytochrome P450 reductase: Hydrophobic domain, hydrophilic domain and connecting region, J. Biol. Chem. 257: 5929–5938.PubMedGoogle Scholar
  57. 57.
    Haniu, M., Iyanagi, T., Miller, P., Lee, T. D., and Shively, J. E., 1986, Complete amino sequence of NADPH cytochrome P450 reductase from porcine hepatic microsomes, Biochemistry 25: 7906–7911.PubMedCrossRefGoogle Scholar
  58. 58.
    Porter, T. D., Beck, T. W., and Kasper, C. B., 1990, NADPH cytochrome P450 oxidoreductase gene organization correlates with structural domains of the protein, Biochemistry 29: 9814–9818.PubMedCrossRefGoogle Scholar
  59. 59.
    Traut, T. W., 1988, Do exons code for structural or functional units in proteins? Proc. Natl. Acad. Sci. USA 85: 2944–2948.PubMedCrossRefGoogle Scholar
  60. 60.
    Tamburini, P. P., and Schenkman, J. B., 1986, Differences in the mechanism of functional interaction between NADPH cytochrome P450 reductase and its redox partners, Mol. Pharmacol. 30: 178–185.PubMedGoogle Scholar
  61. 61.
    Nadler, S. G., and Strobel, H. W., 1988, Role of electrostatic interactions in the reaction of NADPH cytochrome P450 reductase with cytochromes P450, Arch. Biochem. Biophys. 261: 418–429.PubMedCrossRefGoogle Scholar
  62. 62.
    Nadler, S. G., and Strobel, H. W., 1991, Identification and characterization of an NADPH-cytochrome P450 reductase-derived peptide involved in binding to cytochrome P450, Arch. Biochem. Biophys. 290: 277–284.PubMedCrossRefGoogle Scholar
  63. 63.
    Nisimoto, Y., 1986, Localization of cytochrome c-binding domain on NADPH cytochrome P450 reductase, J. Biol. Chem. 261: 14232–14239.PubMedGoogle Scholar
  64. 64.
    Tamburini, P. P., MacFarquhar, S., and Schenkman, J. B., 1986, Evidence of binary complex formation between cytochrome P450, cytochrome b5 and NADPH-cytochrome P450 reductase, Biochem. Biophys. Res. Commun. 134: 519–526.PubMedCrossRefGoogle Scholar
  65. 65.
    Towbin, H., Stachelin, T., and Gordin, J., 1979, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications, Proc. Natl. Acad. Sci. USA 76: 4350–4354.PubMedCrossRefGoogle Scholar
  66. 66.
    Wada, F., Shibata, H., Goto, M., and Sakamoto, Y., 1968, Participation of the microsomal electron transport system involving cytochrome P450 in w-oxidation of fatty acids, Biochim. Biophys. Acta 162: 518–524.PubMedCrossRefGoogle Scholar
  67. 67.
    Masters, B. S. S., Baron, J., Taylor, W. E., Isaacson, E. L., and LoSpalluto, J., 1971, Immunochemical studies on electron transport chains involving cytochrome P450, J. Biol. Chem. 246: 4143–4150.PubMedGoogle Scholar
  68. 68.
    Shen, S., and Strobel, H. W., 1994, Probing the putative cytochrome P450- and cytochrome c-binding sites on NADPH cytochrome P450 reductase by antipeptide antibodies, Biochemistry 33: 8807–8812.PubMedCrossRefGoogle Scholar
  69. 69.
    Porter, T. D., and Kasper, C. B., 1985, Coding nucleotide sequence of rat NADPH cytochrome P450 oxidoreductase cDNA and identification of flavin-binding domains, Proc. Natl. Acad. Sci. USA 82: 973–977.PubMedCrossRefGoogle Scholar
  70. 70.
    Katagiri, M., Murakami, H., Yabusaki, Y., Sugigama, T., Okamoto, M., Yamano, T., and Ohkawa, H., 1986, Molecular cloning and sequence analyses of full-length cDNA for rabbit liver NADPH-cytochrome P450 reductase mRNA, J. Biochem. 100: 945–954.PubMedGoogle Scholar
  71. 71.
    Shen, A. L., Porter, T. D., Wilson, T. E., and Kasper, C. B., 1989, Structural analysis of the FMN-binding domain of NADPH-cytochrome P450 oxidoreductase by site-directed mutagenesis, J. Biol. Chem. 264: 7584–7590.PubMedGoogle Scholar
  72. 72.
    Hodgson, A. V., and Strobel, H. W., 1994, Polymerase chain reaction cloning, expression and purification of two FAD-binding domain fragments of cytochrome P450 reductase, FASEB J. 8: A1422.Google Scholar
  73. 73.
    Porter, J. D., and Kasper, C. B., 1985, NADPH-cytochrome P450 oxidoreductase: Flavin mononucleotide and flavin adenine dinucleotide domains evolved from different flavoproteins, Biochemistry 25: 1682–1687.CrossRefGoogle Scholar
  74. 74.
    Nisimoto, Y., and Shibata, Y., 1981, Location of functional -SH groups in NADPH cytochrome P450 reductase from rabbit liver microsomes, Biochim. Biophys. Acta 662: 291–299.PubMedCrossRefGoogle Scholar
  75. 75.
    Lee, J. J., and Kaminsky, L. S., 1986, Fluorescence probing of the function-specific cysteines of rat microsomal NADPH-cytochrome P450 reductase, Biochem. Biophys. Res. Commun. 134: 393–399.PubMedCrossRefGoogle Scholar
  76. 76.
    Nisimoto, Y., and Shibata, Y., 1982, Studies in FAD and FMN-binding domains in NADPH cytochrome P450 reductase from rabbit liver microsomes, J. Biol. Chem. 257: 12532–12539.PubMedGoogle Scholar
  77. 77.
    Inano, H., Kurihara, S., and Tamaoki, B., 1988, Inactivation of rat testicular NADPH-cytochrome P450 reductase by 2,4,6-trinitrobenzene sulfonate, J. Steroid Biochem. 29: 227–232.PubMedCrossRefGoogle Scholar
  78. 78.
    Inano, H., and Tamaoki, B., 1986, Chemical modification of NADPH-cytochrome P450 reductase: Presence of a lysine residue in the rat hepatic enzyme as the recognition site of the 2’ phosphate moiety of the cofactor, Eur. J. Biochem. 155: 485–489.PubMedCrossRefGoogle Scholar
  79. 79.
    Strobel, H. W., Nadler, S. G., and Nelson, D. R., 1989, Cytochrome P450: Cytochrome P450 reductase interactions, Drug Metab. Rev. 20: 519–533.PubMedCrossRefGoogle Scholar
  80. 80.
    Nisimoto, Y., Hayashi, R., Akutsu, H., Kyogoku, Y., and Shibata, Y., 1984, Photochemically induced dynamic nuclear polarization study on microsomal NADPH-cytochrome P450 reductase, J. Biol. Chem. 259: 2480–2483.PubMedGoogle Scholar
  81. 81.
    Karplus, P. A., Daniels, M. K., and Herriott, J. R., 1991, Atomic structure of ferredoxin NADPH reductase: Prototype for a structurally novel family, Science 251: 60–66.PubMedCrossRefGoogle Scholar
  82. 82.
    Karplus, P. A., and Schulz, G. E., 1987, Refined structure of glutathione reductase at 1.5 A resolution, J. Mol. Biol. 195: 701–729.PubMedCrossRefGoogle Scholar
  83. 83.
    Karplus, P. A., and Schulz, G. E., 1989, Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: Substrate crystal structures at 2 A resolution, J. Mol. Biol. 210: 163–180.PubMedCrossRefGoogle Scholar
  84. 84.
    Bosterling, B., and Trudell, J. R., 1982, Association of cytochrome b5 and cytochrome P450 reductase with cytochrome P450 in the membrane and reconstituted vesicles, J. Biol. Chem. 257: 4783–4787.PubMedGoogle Scholar
  85. 85.
    Voznesensky, A. I., and Schenkman, J. B., 1992, The cytochrome P450 2B4-NADPH cytochrome P450 reductase electron transfer complex is not formed by charge pairing, J. Biol. Chem. 267: 1466914676.Google Scholar
  86. 86.
    Voznesensky, A. I., and Schenkman, J. B., 1992, Inhibition of cytochrome P450 reductase by polyols has an electrostatic nature, Eur. J. Biochem. 210: 741–746.PubMedCrossRefGoogle Scholar
  87. 87.
    Makower, A., Bernhardt, R., Rabe, H., Janig, G.-R., and Ruckpaul, K., 1984, Identification of lysine (384) in cytochrome P450LM2 as functionally-linked residue, Biomed. Biochim. Acta 43: 1333–1341.PubMedGoogle Scholar
  88. 88.
    Bernhardt, R., Makower, A., Janig, G.-R., and Ruckpaul, K., 1984, Selective chemical modification of a functionally-linked lysine in cytochrome P450LM2, Biochim. Biophys. Acta 785: 186–190.PubMedCrossRefGoogle Scholar
  89. 89.
    Nelson, D. R., and Strobel, H. W., 1988, On the membrane topology of vertebrate cytochrome P450 proteins, J. Biol. Chem. 263: 6038–6050.PubMedGoogle Scholar
  90. 90.
    Nelson, D. R., and Strobel, H. W., 1989, Secondary structure prediction of 52 membrane-bound cytochromes P450 shows a strong structural similarity to P450cam, Biochemistry 28: 656–660.PubMedCrossRefGoogle Scholar
  91. 91.
    Narhi, L. D., and Fulco, A. J., 1986, Characterization of a catalytically self-sufficient 119,000 dalton cytochrome P450 monooxygenase induced by barbiturates in Bacillus megaterium, J. Biol. Chem. 261: 7160–7169.PubMedGoogle Scholar
  92. 92.
    Djordjevic, S., Wang, M., Shea, T., Roberts, D., Camitta, M., Masters, B. S. S., and Kim, J. J. P., 1994, Crystallization and preliminary x-ray studies of NADPH cytochrome P450 reductase, FASEB J. 8:Al244.Google Scholar
  93. 93.
    Gillette, J. R., 1966, Biochemistry of drug oxidation and reduction by enzymes in hepatic endoplasmic reticulum, Adv. Pharmacol. 4: 219–261.PubMedCrossRefGoogle Scholar
  94. 94.
    Rydstrom, J., Montelius, J., and Bengtsson, M., 1983, Extrahepatic Drug Metabolism and Chemical Carcinogenesis, Elsevier, Amsterdam.Google Scholar
  95. 95.
    Hagland, L., Kohler, C., Haaparanta, T., Goldstein, M., and Gustafsson, J.-A., 1983, Immunohistochemical evidence for a heterogeneous distribution of NADPH-cytochrome P450 reductase in the rat and monkey brain, in: Extrahepatic Drug Metabolism and Chemical Carcinogenesis ( J. Rydström, J. Montelius, and M. Bengtsson, eds.), Elsevier, Amsterdam, pp. 89–93.Google Scholar
  96. 96.
    McMillan, K., Bredt, D. S., Hirsch, D. J., Snyder, S. H., Clark, J. E., and Masters, B. S. S., 1992, Cloned expressed rat cerebellar nitric acid synthase contains stoichiometric amounts of heme which binds carbon monoxide, Proc. Natl. Acad. Sci. USA 89: 11141–11145.PubMedCrossRefGoogle Scholar
  97. 97.
    Shet, M. S., Fisher, C. W., Arlotto, M. P., Shackleton, C. H. L., Holmans, P. L., Martin-Wixtrom, C. A., Saeki, Y., and Estabrook, R. W., 1994, Purification and enzymatic properties of a recombinant fusion protein expressed in Escherichia coli containing the domains of bovine P450 17A and rat NADPH cytochrome P450 reductase, Arch. Biochem. Biophys. 311: 402–417.PubMedCrossRefGoogle Scholar
  98. 98.
    Murakami, H., Yabusaki, Y., Sakaki, T., Shibata, M., and Ohkawa, H., 1987, A genetically engineered P450 monooxygenase: Construction of the functional used enzyme between rat cytochrome P450 c and NADPH cytochrome P450 reductase, DNA 6: 189–197.PubMedCrossRefGoogle Scholar
  99. 99.
    Fisher, C. W., Shet, M. S., Caudle, D. C., Martin-Wixtrom, C. A., and Estabrook, R. W., 1992, High-level expression in Escherichia coli of enzymatically active fusion proteins containing the domains of mammalian cytochromes P450 and NADPH-cytochrome P450 reductase flavoprotein, Proc. Natl. Acad. Sci. USA 89: 10817–10821.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Henry W. Strobel
    • 1
  • Anne V. Hodgson
    • 1
  • Sijiu Shen
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyThe University of Texas Medical School at HoustonHoustonUSA

Personalised recommendations