Structures of Eukaryotic Cytochrome P450 Enzymes

  • Claes Von Wachenfeldt
  • Eric F. Johnson


A three-dimensional structure will facilitate our understanding of the relationship between structure and substrate specificity within and between different eukaryotic members of the cytochrome P450 superfamily. Such information would provide insights into the structural arrangement of these proteins that would assist in the rational design of therapeutic enzyme inhibitors or in the engineering of P450s as biotechnological tools.


Microsomal Membrane Membrane Topology P450 Molecule Hydropathy Profile Substrate Recognition Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gotoh, O., and Fujii-Kuriyama, Y., 1989, Evolution, structure, and gene regulation of cytochrome P-450, in: Frontiers in Biotransformation. Basis and Mechanisms of Regulation of Cytochrome P-450 ( K. Ruckpaul and H. Rein, eds.), Taylor & Francis, London, pp. 195–243.Google Scholar
  2. 2.
    Koymans, L., Donné-Op den Kelder, G. M., Koppele Te, J. M., and Vermeulen, N. P. E., 1993, Cytochromes P450: Their active-site structure and mechanism of oxidation, Drug Metab. Rev. 25: 325–387.PubMedCrossRefGoogle Scholar
  3. 3.
    Kalb, V. F., and Loper, J. C., 1988, Proteins from eight eukaryotic cytochrome P-450 families share a segmented region of sequence similarity, Proc. Natl. Acad. Sci. USA 85: 7221–7225.PubMedCrossRefGoogle Scholar
  4. 4.
    White, R. E., 1991, The involvement of free radicals in the mechanisms of monooxygenases, Pharmacol. Ther. 49: 21–42.PubMedCrossRefGoogle Scholar
  5. 5.
    Ator, M. A., and Ortiz de Montellano, P. R., 1987, Protein control of prosthetic heure reactivity. Reaction of substrates with the heure edge of horseradish peroxidase, J. Biol. Chem. 262: 1542–1551.PubMedGoogle Scholar
  6. 6.
    Nelson, D. R., Kamataki, T., Waxman, D. J., Guengerich, F. P., Estabrook, R. W., Feyereisen, R., Gonzalez, F. J., Coon, M. J., Gunsalus, I. C., Gotoh, O., Okuda, K., and Nebert, D. W., 1993, The P450 superfamily: Update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature, DNA Cell Biol. 12: 1–51.PubMedCrossRefGoogle Scholar
  7. 7.
    Graham-Lorence, S. E., and Peterson, J. A., 1995, The molecular structure of P450s: The conserved and the variable elements, in: Advances in Molecular and Cell Biology ( C. Jefcoate, ed.), JAI Press, Greenwich, CT.Google Scholar
  8. 8.
    Lindberg, R. L. P., and Negishi, M., 1989, Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue, Nature 339: 632–634.PubMedCrossRefGoogle Scholar
  9. 9.
    Lindberg, R. L. P., and Negishi, M., 1991, Modulation of specificity and activity in mammalian cytochrome P-450, Methods Enzymol. 202: 741–752.PubMedCrossRefGoogle Scholar
  10. 10.
    Kronbach, T., and Johnson, E. F., 1991, An inhibitory monoclonal antibody binds in close proximity to a determinant for substrate binding in cytochrome P450IIC5, J. Biol. Chem. 266: 6215–6220.PubMedGoogle Scholar
  11. 11.
    Aoyama, T., Korzekwa, K., Nagata, K., Adesnik, M., Reiss, A., Lapenson, D. P., Gillette, J., Gelboin, H. V., Waxman, D. J., and Gonzalez, F. J., 1989, Sequence requirements for cytochrome P-450IIB1 catalytic activity. Alteration of the stereospecificity and regioselectivity of steroid hydroxylation by a simultaneous change of two hydrophobic amino acid residues to phenylalanine, J. Biol. Chem. 264: 21327–21333.PubMedGoogle Scholar
  12. 12.
    Christou, M., Mitchell, M. J., Aoyama, T., Gelboin, H. V., Gonzalez, F. J., and Jefcoate, C. R., 1992, Selective suppression of the catalytic activity of cDNA-expressed cytochrome P4502B1 toward polycycic hydrocarbons in the microsomal membrane: Modification of this effect by specific amino acid substitutions, Biochemistry 31: 2835–2841.PubMedCrossRefGoogle Scholar
  13. 13.
    Lindberg, R. L. P., Juvonen, R., and Negishi, M., 1992, Molecular characterization of the murine Coh locus: An amino acid difference at position 117 confers high and low coumarin 7-hydroxylase activity in P450coh, Pharmacogenetics 2: 32–37.PubMedCrossRefGoogle Scholar
  14. 14.
    Matsunaga, E., Zeugin, T., Zanger, U. M., Aoyama, T., Meyer, U. A., and Gonzalez, E J., 1990, Sequence requirements for cytochrome P-450IID1 catalytic activity: A single amino acid change (ILE380PHE) specifically decreases Vmax of the enzyme for bufuralol but not debrisoquine hydroxylation, J. Biol. Chem. 265: 17197–17201.PubMedGoogle Scholar
  15. 15.
    Hsu, M.-H., Griffin, K. J., Wang, Y., Kemper, B., and Johnson, E. F., 1993, A single amino acid substitution confers progesterone 63-hydroxylase activity to rabbit cytochrome P450 2C3, J. Biol. Chem. 268: 6939–6944.Google Scholar
  16. 16.
    Kaminsky, L. S., De Morais, S. M. F., Faletto, M. B., Dunbar, D. A., and Goldstein, J. A., 1993, Correlation of human cytochrome P4502C substrate specificities with primary structure: Warfarin as a probe, Mol. Pharmacol. 43: 234–239.Google Scholar
  17. 17.
    Veronese, M. E., Doecke, C. J., Mackenzie, P.I., McManus, M. E., Miners, J. O., Rees, D. L. P., Gasser, R., Meyer, U. A., and Birkett, D. J., 1993, Site-directed mutation studies of human liver cytochrome P-450 isoenzymes in the CYP2C subfamily, Biochem. J. 289: 533–538.PubMedGoogle Scholar
  18. 18.
    Goldstein, J. A., Faletto, M. B., Romkes-Sparks, M., Sullivan, T., Kitareewan, S., Raucy, J. L., Lasker, J. M., and Ghanayem, B. I., 1994, Evidence that CYP2C19 is the major (S)-mephenytoin 4’-hydroxylase in humans, Biochemistry 33: 1743–1752.PubMedCrossRefGoogle Scholar
  19. 19.
    Kronbach, T., Kemper, B., and Johnson, E. F., 1990, Multiple determinants for substrate specificities in cytochrome P450 isozymes, in: Current Research in Protein Chemistry: Techniques, Structure, and Function ( J. J. Villafranca, ed.), Academic Press, New York, pp. 481–488.Google Scholar
  20. 20.
    Richardson, T. H., and Johnson, E. E, 1994, Alterations of the regiospecificity of progesterone metabolism by the mutagenesis of two key amino acid residues in rabbit cytochrome P450 2C3v, J. Biol. Chem. 269: 23937–23943.PubMedGoogle Scholar
  21. 21.
    Halpert, J. R., and He, Y., 1993, Engineering of cytochrome P450 2B1 specificity. Conversion of an androgen 163-hydroxylase to a 15a-hydroxylase, J. Biol. Chem. 268: 4453–4457.PubMedGoogle Scholar
  22. 22.
    Kedzie, K. M., Balfour, C. A., Escobar, G. Y., Grimm, S. W., He, Y., Pepperl, D. J., Regan, J. W., Stevens, J. C., and Halpert, J. R., 1991, Molecular basis for a functionally unique cytochrome P450IIB1 variant, J. Biol. Chem. 266: 22515–22521.PubMedGoogle Scholar
  23. 23.
    He, Y., Balfour, C. A., Kedzie, K. M., and Halpert, J. R., 1992, Role of residue 478 as a determinant of the substrate specificity of cytochrome P450 2B1, Biochemistry 31: 9220–9226.PubMedCrossRefGoogle Scholar
  24. 24.
    Laethem, R. M., Halpert, J. R., and Koop, D. R., 1994, Epoxidation of arachidonic acid as an active-site probe of cytochrome P-450 2B isoforms, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1206: 42–48.CrossRefGoogle Scholar
  25. 25.
    Luo, Z., He, Y., and Halpert, J. R., 1994, Role of residues 363 and 206 in conversion of cytochrome P450 2B1 from a steroid 16-hydroxylase to a 15a-hydroxylase, Arch. Biochem. Biophys. 309: 52–57.PubMedCrossRefGoogle Scholar
  26. 26.
    Iwasaki, M., Darden, T. A., Pedersen, L. G., Davis, D. G., Juvonen, R. O., Sueyoshi, T., and Negishi, M., 1993, Engineering mouse P450coh to a novel corticosterone 15a-hydroxylase and modeling steroid-binding orientation in the substrate pocket, J. Biol. Chem. 268: 759–762.PubMedGoogle Scholar
  27. 27.
    Iwasaki, M., Darden, T. A., Parker, C. E., Tomer, K. B., Pedersen, L. G., and Negishi, M., 1994, Inherent versatility of P-450 oxygenase. Conferring dehydroepiandrosterone hydroxylase activity to P-450 2a-4 by a single amino acid mutation at position 117, J. Biol. Chem. 269: 9079–9083.PubMedGoogle Scholar
  28. 28.
    Johnson, E. F., 1992, Mapping determinants of the substrate selectivities of P450 enzymes by site-directed mutagenesis, Trends Pharmacol. Sci. 13: 122–126.PubMedCrossRefGoogle Scholar
  29. 29.
    Gotoh, O., 1992, Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences, J. Biol. Chem. 267: 83–90.PubMedGoogle Scholar
  30. 30.
    He, Y., Luo, Z., Klekotka, P. A., Burnett, V. L., and Halpert, J. R., 1994, Structural determinants of cytochrome P450 2B1 specificity: Evidence for five substrate recognition sites, Biochemistry 33: 4419–4424.PubMedCrossRefGoogle Scholar
  31. 31.
    Hasler, J. A., Harlow, G. R., Szklarz, G. D., John, G. H., Kedzie, K. M., Burnett, V. L., He, Y.-A., Kaminsky, L. S., and Halpert, J. R., 1994, Site-directed mutagenesis of putative substrate recognition sites in cytochrome P450 2B11: Importance of amino acid residues 114, 290, and 363 for substrate specificity, Mol. Pharmacol. 46: 338–345.PubMedGoogle Scholar
  32. 32.
    Poulos, T. L., 1989, Site-directed mutagenesis: Reversing enzyme specificity, Nature 339: 580–581.PubMedCrossRefGoogle Scholar
  33. 33.
    Nelson, D. R., and Strobel, H. W., 1989, Secondary structure prediction of 52 membrane-bound cytochromes P450 shows a strong structural similarity to P450cam, Biochemistry 28: 656–660.PubMedCrossRefGoogle Scholar
  34. 34.
    Edwards, R. J., Murray, B. P., Boobis, A. R., and Davies, D. S., 1989, Identification and location of a-helices in mammalian cytochrome P450, Biochemistry 28: 3762–3770.PubMedCrossRefGoogle Scholar
  35. 35.
    Zvelebil, M. J. J. M., Wolf, C. R., and Sternberg, M. J. E., 1991, A predicted three-dimensional structure of human cytochrome P450: Implications for substrate specificity, Protein Eng. 4: 271–282.PubMedCrossRefGoogle Scholar
  36. 36.
    Juvonen, R. O., Iwasaki, M., and Negishi, M., 1991, Structural function of residue-209 in coumarin 7-hydroxylase (P450coh). Enzyme-kinetic studies and site-directed mutagenesis, J. Biol. Chem. 266: 16431–16435.PubMedGoogle Scholar
  37. 37.
    Iwasaki, M., Juvonen, R., Lindberg, R., and Negishi, M., 1991, Alteration of high and low spin equilibrium by a single mutation of amino acid 209 in mouse cytochromes P450, J. Biol. Chem. 266: 3380–3382.PubMedGoogle Scholar
  38. 38.
    Juvonen, R. O., Iwasaki, M., and Negishi, M., 1992, Roles of residues 129 and 209 in the alteration by cytochrome b5 of hydroxylase activities in mouse 2A P450S, Biochemistry 31: 11519–11523.PubMedCrossRefGoogle Scholar
  39. 39.
    Juvonen, R. O., Iwasaki, M., Sueyoshi, T., and Negishi, M., 1993, Structural alteration of mouse P450coh by mutation of glycine-207 to proline: Spin equilibrium, enzyme kinetics, and heat sensitivity, Biochem. J. 294: 31–34.PubMedGoogle Scholar
  40. 40.
    Straub, P., Johnson, E. F., and Kemper, B., 1993, Hydrophobic side chain requirements for lauric acid and progesterone hydroxylation at amino acid 113 in cytochrome P450 2C2, a potential determinant of substrate specificity, Arch. Biochem. Biophys. 306: 521–527.PubMedCrossRefGoogle Scholar
  41. 41.
    Straub, P., Lloyd, M., Johnson, E. F., and Kemper, B., 1993, Cassette-mutagenesis of a potential substrate recognition region of cytochrome P450 2C2, J. Biol. Chem. 268: 21997–22003.PubMedGoogle Scholar
  42. 42.
    Straub, P., Lloyd, M., Johnson, E. F., and Kemper, B., 1994, Differential effects of mutations in substrate recognition site 1 of cytochrome P450 2C2 on lauric acid and progesterone hydroxylation, Biochemistry 33: 8029–8034.PubMedCrossRefGoogle Scholar
  43. 43.
    Uno, T., Yokota, H., and Imai, Y., 1990, Replacing the carboxy-terminal 28 residues of rabbit liver P-450 (laurate (omega-1)-hydroxylase) with those of P-450 (testosterone 16a-hydroxylase) produces a new stereospecific hydroxylase activity, Biochem. Biophys. Res. Commun. 167: 498–503.PubMedCrossRefGoogle Scholar
  44. 44.
    Ramarao, M. K., Straub, P., and Kemper, B., 1995, Identification by in vitro mutagenesis of the interaction of two segments of C2MSTC1, a chimera of cytochromes P450 2C2 and P450 2C1, J. Biol. Chem. 270: 1873–1880.PubMedCrossRefGoogle Scholar
  45. 45.
    Kronbach, T., Kemper, B., and Johnson, E. F., 1991, A hypervariable region of P450I105 confers progesterone 21-hydroxylase activity to P4501IC1, Biochemistry 30: 6097–6102.PubMedCrossRefGoogle Scholar
  46. 46.
    Ravichandran, K. G., Boddupalli, S. S., Hasemann, C. A., Peterson, J. A., and Deisenhofer, J., 1993, Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450’s, Science 261: 731–736.PubMedCrossRefGoogle Scholar
  47. 47.
    Poulos, T. L., 1991, Modeling of mammalian P450s on basis of P450cam X-ray structure, Methods Enzymol. 206: 11–30.PubMedCrossRefGoogle Scholar
  48. 48.
    Hasemann, C. A., Ravichandran, K. G., Peterson, J. A., and Deisenhofer, J., 1994, Crystal structure and refinement of cytochrome P450iem at 2.3 A resolution, J. Mol. Biol. 236: 1169–1185.PubMedCrossRefGoogle Scholar
  49. 49.
    Hanioka, N., Gonzalez, F. J., Lindberg, N. A., Liu, G., Gelboin, H. V., and Korzekwa, K. R., 1992, Site-directed mutagenesis of cytochrome P450s CYP2A1 and CYP2A2: Influence of the distal helix on the kinetics of testosterone hydroxylation, Biochemistry 31: 3364–3370.PubMedCrossRefGoogle Scholar
  50. 50.
    Ding, X., Peng, H.-M., and Coon, M. J., 1994, Structure—function analysis of CYP2A10 and CYP2A11, P450 cytochromes that differ in only eight amino acids but have strikingly different activities toward testosterone and coumarin, Biochem. Biophys. Res. Commun. 203: 373–378.PubMedCrossRefGoogle Scholar
  51. 51.
    Poulos, T. L., Finzel, B. C., and Howard, A. J., 1987, High-resolution crystal structure of cytochrome P450cam, J. Mol. Biol. 195: 687–700.PubMedCrossRefGoogle Scholar
  52. 52.
    Imai, Y., and Nakamura, M., 1988, The importance of threonine-301 from cytochromes P-450 (laurate (w-1)-hydroxylase and testosterone 16α-hydroxylase) in substrate binding as demonstrated by site-directed mutagenesis, FEBS Lett. 234: 313–315.PubMedCrossRefGoogle Scholar
  53. 53.
    Imai, Y., and Nakamura, M., 1989, Point mutations at threonine-301 modify substrate specificity of rabbit liver microsomal cytochromes P-450 (laurate (omega-1)-hydroxylase and testosterone 16α-hydroxylase), Biochem. Biophys. Res. Commun. 158: 717–722.PubMedCrossRefGoogle Scholar
  54. 54.
    Furuya, H., Shimizu, T., Hirano, K., Hatano, M., Fujii-Kuriyama, Y., Raag, R., and Poulos, T. L., 1989, Site-directed mutageneses of rat liver cytochrome P-450d: Catalytic activities toward benzphetamine and 7-ethoxycoumarin, Biochemistry 28: 6848–6857.PubMedCrossRefGoogle Scholar
  55. 55.
    Martinis, S. A., Atkins, W. M., Stayton, P. S., and Sligar, S. G., 1989, A conserved residue of cytochrome P-450 is involved in heme-oxygen stability and activation, J. Am. Chem. Soc. 111: 9252–9253.CrossRefGoogle Scholar
  56. 56.
    Raag, R., Martinis, S. A., Sligar, S. G., and Poulos, T. L., 1991, Crystal structure of the cytochrome P-450cAM active site mutant Thr252Ala, Biochemistry 30: 11420–11429.PubMedCrossRefGoogle Scholar
  57. 57.
    Tuck, S.F., Hiroya, K., Shimizu, T., Hatano, M., and Ortiz de Montellano, P.R., 1993, The cytochrome P450 1A2 active site: Topology and perturbations caused by glutamic acid-318 and threonine-319 mutations, Biochemistry 32: 2548–2553.PubMedCrossRefGoogle Scholar
  58. 58.
    Tuck, S. F., Peterson, J. A., and Ortiz de Montellano, P. R., 1992, Active site topologies of bacterial cytochromes P450101 (P450cam), P450108 (P450terp), and P450102 (P450BM-3). In situ rearrangement of their phenyl-iron complexes, J. Biol. Chem. 267: 5614–5620.PubMedGoogle Scholar
  59. 59.
    Swanson, B. A., Dutton, D. R., Lunetta, J. M., Yang, C. S., and Ortiz de Montellano, P. R., 1991, The active sites of cytochromes P450IAI, IIBI, IIB2, and IIE1. Topological analysis by in situ rearrangement of phenyl-iron complexes, J. Biol. Chem. 266: 19258–19264.PubMedGoogle Scholar
  60. 60.
    Swanson, B. A., Halpert, J. R., Bornheim, L. M., and Ortiz de Montellano, P. R., 1992, Topological analysis of the active sites of cytochromes P450IIB4 (rabbit), P4501IB10 (mouse), and P450IIB11 (dog) by in situ rearrangement of phenyl-iron complexes, Arch. Biochem. Biophys. 292: 42–46.PubMedCrossRefGoogle Scholar
  61. 61.
    Kunze, K. L., Mangold, B. L. K., Wheeler, C., Beilan, H. S., and Ortiz de Montellano, P. R., 1983, The cytochrome P-450 active site, J. Biol. Chem. 258: 4202–4207.PubMedGoogle Scholar
  62. 62.
    Ishigooka, M., Shimizu, T., Hiroya, K., and Hatano, M., 1992, Role of Glu318 at the putative distal site in the catalytic function of cytochrome P450d, Biochemistry 31: 1528–1531.PubMedCrossRefGoogle Scholar
  63. 63.
    Hiroya, K., Ishigooka, M., Shimizu, T., and Hatano, M., 1992, Role of G1u318 and Thr319 in the catalytic function of cytochrome P450d (P4501 A2): Effects of mutations on the methanol hydroxylation, FASEB J. 6: 749–751.PubMedGoogle Scholar
  64. 64.
    Hiroya, K., Murakami, Y., Shimizu, T., Hatano, M., and Ortiz de Montellano, P. R., 1994, Differential roles of G1u318 and Thr319 in cytochrome P450 1A2 catalysis supported by NADPH-cytochrome P450 reductase and tert-butyl hydroperoxide, Arch. Biochem. Biophys. 310: 397–401.PubMedCrossRefGoogle Scholar
  65. 65.
    Chen, S., and Zhou, D., 1992, Functional domains of aromatase cytochrome P450 inferred from comparative analyses of amino acid sequences and substantiated by site-directed mutagenesis experiments, J. Biol. Chem. 267: 22587–22594.PubMedGoogle Scholar
  66. 66.
    Amarneh, B., Corbin, C. J., Peterson, J. A., Simpson, E. R., and Graham-Lorence, S., 1993, Functional domains of human aromatase cytochrome P450 characterized by linear alignment and site-directed mutagenesis, Mol. Endocrinol. 7: 1617–1624.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhou, D., Korzekwa, K. R., Poulos, T., and Chen, S., 1992, A site-directed mutagenesis study of human placental aromatase, J. Biol. Chem. 267: 762–768.PubMedGoogle Scholar
  68. 68.
    Furuya, H., Shimizu, T., Hatano, M., and Fujii-Kuriyama, Y., 1989, Mutations at the distal and proximal sites of cytochrome P-450d changed regio-specificity of acetanilide hydroxylations, Biochem. Biophys. Res. Commun. 160: 669–676.PubMedCrossRefGoogle Scholar
  69. 69.
    Graham-Lorence, S., Khalil, M. W., Lorence, M. C., Mendelson, C. R., and Simpson, E. R., 1991, Structure-function relationships of human aromatase cytochrome P-450 using molecular modeling and site-directed mutagenesis, J. Biol. Chem. 266: 11939–11946.PubMedGoogle Scholar
  70. 70.
    Kadohama, N., Zhou, D., Chen, S., and Osawa, Y., 1993, Catalytic efficiency of expressed aromatase following site-directed mutagenesis, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1163: 195–200.CrossRefGoogle Scholar
  71. 71.
    Kadohama, N., Yarborough, C., Zhou, D., Chen, S., and Osawa, Y., 1992, Kinetic properties of aromatase mutants Pro308Phe, Asp309Asn, and Asp309Ala and their interactions with aromatase inhibitors, J. Steroid Biochem. Mol. Biol. 43: 693–701.PubMedCrossRefGoogle Scholar
  72. 72.
    Chen, S., Zhou, D., Swiderek, K. M., Nobuyuki, K., Osawa, Y., and Hall, R. F., 1993, Structure-function studies of human aromatase, J. Steroid Biochem. Mol. Biol. 44: 347–356.PubMedCrossRefGoogle Scholar
  73. 73.
    Imai, Y., and Nakamura, M., 1991, Nitrogenous ligation at the sixth coordination position of the Thr-301 to Lys-mutated P450IIC2 heme iron, J. Biochem. 110: 884–888.PubMedGoogle Scholar
  74. 74.
    Fukuda, T., Imai, Y., Komori, M., Nakamura, M., Kusunose, E., Satouchi, K., and Kusunose, M., 1993, Replacement of Thr-303 of P450 2E11 with serine modifies the regioselectivity of its fatty acid hydroxylase activity, J. Biochem. 113: 7–12.PubMedGoogle Scholar
  75. 75.
    Roberts, E. S., Hopkins, N. E., Zaluzec, E. J., Gage, D. A., Alworth, W. L., and Hollenberg, R. F., 1994, Identification of active-site peptides from 3H-labeled 2-ethynylnaphthalene-inactivated P4502B 1 and 2B4 using amino acid sequencing and mass spectrometry, Biochemistry 33: 3766–3771.PubMedCrossRefGoogle Scholar
  76. 76.
    Miller, J. R, and White, R. E., 1994, Photoaffinity labeling of cytochrome P450 2B4: Capture of active site heme ligands by a photocarbene, Biochemistry 33: 807–817.PubMedCrossRefGoogle Scholar
  77. 77.
    Yun, C.-H., Hammons, G. J., Jones, G., Martin, M. V., Eddy Hopkins, N., Alworth, W. L., and Guengerich, F. R, 1992, Modification of cytochrome P450 1A2 enzymes by the mechanism-based inactivator 2-ethynylnaphthalene and the photoaffinity label 4-azidobiphenyl, Biochemistry 31: 10556–10563.PubMedCrossRefGoogle Scholar
  78. 78.
    Tsujita, M., and Ichikawa, Y., 1993, Substrate-binding region of cytochrome P-450scc (P-450 XIA1). Identification and primary structure of the cholesterol binding region in cytochrome P-450scc, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1161: 124–130.CrossRefGoogle Scholar
  79. 79.
    Ohnishi, T., Miura, S., and Ichikawa, Y., 1993, Photoaffinity labeling of cytochrome P-450i0 with methyltrienolone as a probe for the substrate binding region, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1161: 257–264.CrossRefGoogle Scholar
  80. 80.
    Kronbach, T., Larabee, T. M., and Johnson, E. F., 1989, Hybrid cytochromes P-450 identify a substrate binding domain in P-450I105 and P-45011C4, Proc. Natl. Acad. Sci. USA 86: 8262–8265.PubMedCrossRefGoogle Scholar
  81. 81.
    Frey, A. B., Waxman, D. J., and Kreibich, G., 1985, The structure of phenobarbital-inducible rat liver cytochrome P-450 isoenzyme PB-4: Production and characterization of site-specific antibodies, J. Biol. Chem. 260: 15253–15265.PubMedGoogle Scholar
  82. 82.
    De Lemos-Chiarandini, C., Frey, A. B., Sabatini, D. D., and Kreibich, G., 1987, Determination of the membrane topology of the phenobarbital-inducible rat liver cytochrome P-450 isoenzyme PB-4 using site-specific antibodies, J. Cell Biol. 104: 209–219.PubMedCrossRefGoogle Scholar
  83. 83.
    Shoun, H., Suyama, W., and Yasui, T., 1989, Soluble, nitrate/nitrite-inducible cytochrome P-450 of the fungus, Fusarium oxysporum, FEBS Lett. 244: 11–14.PubMedCrossRefGoogle Scholar
  84. 84.
    Black, S. D., 1992, Membrane topology of the mammalian P450 cytochromes, FASEB J. 6: 680–685.PubMedGoogle Scholar
  85. 85.
    Vergères, G., Winterhalter, K. H., and Richter, C., 1989, Microsomal cytochrome P-450: Substrate binding, membrane interactions, and topology, Mutat. Res. 213: 83–90.PubMedCrossRefGoogle Scholar
  86. 86.
    Tretiakov, V. E., Degtyarenko, K. N., Uvarov, V. Y., and Archakov, A. I., 1989, Secondary structure and membrane topology of cytochrome P450s, Arch. Biochem. Biophys. 275: 429–439.PubMedCrossRefGoogle Scholar
  87. 87.
    Sakaguchi, M., and Omura, T., 1993, Topology and biogenesis of microsomal cytochrome P-450s, in: Medicinal Implications in Cytochrome P-450 Catalyzed Biotransformations ( K. Ruckpaul and H. Rein, eds.), Akademie Verlag, Berlin, pp. 59–73.Google Scholar
  88. 88.
    Haugen, D. A., Armes, L. G., Yasunobu, K. T., and Coon, M. J., 1977, Amino-terminal sequence of phenobarbital-inducible cytochrome P-450 from rabbit liver microsomes: Similarity to hydrophobic amino-terminal segments of preproteins, Biochem. Biophys. Res. Commun. 77: 967–973.PubMedCrossRefGoogle Scholar
  89. 89.
    Bar-Nun, S., Kreibich, G., Adesnik, M., Alterman, L., Negishi, M., and Sabatini, D. D.,1980, Synthesis and insertion of cytochrome P-450 into endoplasmic reticulum membranes, Proc. Natl. Acad. Sci. USA 77: 965–969.Google Scholar
  90. 90.
    High, S., and Dobberstein, B., 1992, Mechanisms that determine the transmembrane disposition of proteins, Curt. Opin. Cell Biol. 4: 581–586.CrossRefGoogle Scholar
  91. 91.
    Sakaguchi, M., Katsuyoshi, M., and Sato, R., 1984, Signal recognition particle is required for co-translational insertion of cytochrome P-450 into microsomal membranes, Proc. Natl. Acad. Sci. USA 81: 3361–3364.PubMedCrossRefGoogle Scholar
  92. 92.
    Monier, S., Van Luc, P., Kreibich, G., Sabatini, D. D., and Adesnik, M., 1988, Signals for the incorporation and orientation of cytochrome P450 in the endoplasmic reticulum membrane, J. Cell Biol. 107: 457–470.PubMedCrossRefGoogle Scholar
  93. 93.
    Sakaguchi, M., Mihara, K., and Sato, R., 1987, A short amino-terminal segment of microsomal cytochrome P-450 functions both as an insertion signal and as a stop-transfer sequence, EMBO J. 6: 2425–2431.PubMedGoogle Scholar
  94. 94.
    Szczesna-Skorupa, E., Browne, N., Mead, D., and Kemper, B., 1988, Positive charges at the NH2 terminus convert the membrane-anchor signal peptide of cytochrome P-450 to a secretory signal peptide, Proc. Natl. Acad. Sci. USA 85: 738–742.PubMedCrossRefGoogle Scholar
  95. 95.
    Sato, T., Sakaguchi, M., Mihara, K., and Omura, T., 1990, The amino-terminal structures that determine topological orientation of cytochrome P-450 in microsomal membrane, EMBO J. 9: 2391–2397.PubMedGoogle Scholar
  96. 96.
    Ahn, K., Szczesna-Skorupa, E., and Kemper, B., 1993, The amino-terminal 29 amino acids of cytochrome P450 2C1 are sufficient for retention in the endoplasmic reticulum, J. Biol. Chem. 268: 18726–18733.PubMedGoogle Scholar
  97. 97.
    Murakami, K., Mihara, K., and Omura, T., 1994, The transmembrane region of microsomal cytochrome P450 identified as the endoplasmic reticulum retention signal, J. Biochem. 116: 164–175.PubMedGoogle Scholar
  98. 98.
    Szczesna-Skorupa, E., and Kemper, B., 1989, NH2-terminal substitutions of basic amino acids induce translocation across the microsomal membrane and glycosylation of rabbit cytochrome P450IIC2, J. Cell Biol. 108: 1237–1243.PubMedCrossRefGoogle Scholar
  99. 99.
    Sakaguchi, M., Tomiyoshi, R., Kuroiwa, T., Mihara, K., and Omura, T., 1992, Functions of signal and signal-anchor sequences are determined by the balance between the hydrophobic segment and the N-terminal charge, Proc. Natl. Acad. Sci. USA 89: 16–19.PubMedCrossRefGoogle Scholar
  100. 100.
    Hsu, L.-C., Hu, M.-C., Cheng, H.-C., Lu, J.-C., and Chung, B., 1993, The N-terminal hydrophobic domain of P450c21 is required for membrane insertion and enzyme stability, J. Biol. Chem. 268: 14682–14686.PubMedGoogle Scholar
  101. 101.
    Wolin, S. L., 1994, From the elephant to E. coli: SRP-dependent protein targeting, Cell 77: 787–790.Google Scholar
  102. 102.
    Yabusaki, Y., Murakami, H., Sakaki, T., Shibata, M., and Ohkawa, H., 1988, Genetically engineered modification of P450 monooxygenases: Functional analysis of the amino-terminal hydrophobic region and hinge region of the P450/reductase fused enzyme, DNA 7: 701–711.PubMedCrossRefGoogle Scholar
  103. 103.
    Cullin, C., 1992, Two distinct sequences control the targeting and anchoring of the mouse P450 lA1 into the yeast endoplasmic reticulum membrane, Biochem. Biophys. Res. Commun. 184: 1490–1495.PubMedCrossRefGoogle Scholar
  104. 104.
    Ohta, Y., Sakaki, T., Yabusaki, Y., Ohkawa, H., and Kawato, S., 1994, Rotation and membrane topology of genetically expressed methylcholanthrene-inducible cytochrome P-450IA1 lacking the N-terminal hydrophobic segment in yeast microsomes, J. Biol. Chem. 269: 15597–15600.PubMedGoogle Scholar
  105. 105.
    Clark, B. J., and Waterman, M. R., 1991, The hydrophobic amino-terminal sequence of bovine 17a-hydroxylase is required for the expression of a functional hemoprotein in COS 1 cells, J. Biol. Chem. 266: 5898–5904.PubMedGoogle Scholar
  106. 106.
    Clark, B. J., and Waterman, M. R., 1992, Functional expression of bovine 17a-hydroxylase in COS 1 cells is dependent upon the presence of an amino-terminal signal anchor sequence, J. Biol. Chem. 267: 24568–24574.PubMedGoogle Scholar
  107. 107.
    Krynetsky, E. Y., Drutsa, V. L., Kovaleva, I. E., Luzikov, V. N., and Uvarov, V. Y., 1993, Effects of amino-terminus truncation in human cytochrome P450IID6 on its insertion into the endoplasmic reticulum membrane of Saccharomyces cerevisiae, FEBS Lett. 336: 87–89.PubMedCrossRefGoogle Scholar
  108. 108.
    Andersen, J. F., Utermohlen, J. G., and Feyereisen, R., 1994, Expression of house fly CYP6A1 and NADPH-cytochrome P450 reductase in Escherichia coli and reconstitution of an insecticide-metabolizing P450 system, Biochemistry 33: 2171–2177.PubMedCrossRefGoogle Scholar
  109. 109.
    Larson, J. R., Coon, M. J., and Porter, T. D., 1991, Purification and properties of a shortened form of cytochrome P-450 2E1: Deletion of the NH2-terminal membrane-insertion signal peptide does not alter the catalytic activities, Proc. Natl. Acad. Sci. USA 88: 9141–9145.PubMedCrossRefGoogle Scholar
  110. 110.
    Sagara, Y., Barnes, H. J., and Waterman, M. R., 1993, Expression in Escherichia coli of functional cytochrome P450c» lacking its hydrophobic amino-terminal signal anchor, Arch. Biochem. Biophys. 304: 272–278.PubMedCrossRefGoogle Scholar
  111. 111.
    Sakaki, T., Oeda, K., Miyoshi, M., and Ohkawa, H., 1985, Characterization of rat cytochrome P-450mc synthesized in Saccharomyces cerevisiae, J. Biochem. 98: 167–175.PubMedGoogle Scholar
  112. 112.
    Omura, T., and Ito, A., 1991, Biosynthesis and intracellular sorting of mitochondria) forms of cytochrome P450, Methods Enzymol. 206: 75–81.PubMedCrossRefGoogle Scholar
  113. 113.
    Wada, A., Mathew, P. A., Barnes, H. J., Sanders, D., Estabrook, R. W., and Waterman, M. R., 1991, Expression of functional bovine cholesterol side chain cleavage cytochrome P450 (P450scc) in Escherichia coli, Arch. Biochem. Biophys. 290: 376–380.PubMedCrossRefGoogle Scholar
  114. 114.
    Sakaki, T., Akiyoshi-Shibata, M., Yabusaki, Y., and Ohkawa, H., 1992, Organella-targeted expression of rat liver cytochrome P450c27 in yeast. Genetically engineered alteration of mitochondrial P450 into a microsomal form creates a novel functional electron transport chain, J. Biol. Chem. 267: 16497–16502.PubMedGoogle Scholar
  115. 115.
    Black, S. M., Harikrishna, J. A., Szklarz, G. D., and Miller, W. L., 1994, The mitochondrial environment is required for activity of the cholesterol side-chain cleavage enzyme, cytochrome P450scc, Proc. Natl. Acad. Sci. USA 91: 7247–7251.PubMedCrossRefGoogle Scholar
  116. 116.
    Bernhardt, R., Ngoc Dao, N. T., Stiel, H., Schwarze, W., Friedrich, J., Janig, G.-R., and Ruckpaul, K., 1983, Modification of cytochrome P-450 with fluorescein isothiocyanate, Biochim. Biophys. Acta 745: 140–148.PubMedCrossRefGoogle Scholar
  117. 117.
    Vergères, G., Winterhalter, K. H., and Richter, C., 1991, Localization of the N-terminal methionine of rat liver cytochrome P-450 in the lumen of the endoplasmic reticulum, Biochim. Biophys. Acta Bio-Membr. 1063: 235–241.CrossRefGoogle Scholar
  118. 118.
    Shumyantseva, V. V., Kuznetsova, G. P., Yu, V., Archakov, U., and Archakov, A. I., 1994, Membrane topology of N-terminal residues of cytochromes P-450 2B4 and 1A2, Biochem. Mol. Biol. Int. 34: 183–190.PubMedGoogle Scholar
  119. 119.
    Bernhardt, R., Kraft, R., and Ruckpaul, K., 1988, A simple determination of the sideness of the NH2-terminus in the membrane bound cytochrome P-450 LM2, Biochem. Int. 17: 1143–1150.PubMedGoogle Scholar
  120. 120.
    Sethumadhavan, K., Bellino, F. L., and Thotakura, N. R., 1991, Estrogen synthetase (aromatase). The cytochrome P-450 component of the human placental enzyme is a glycoprotein, Mol. Cell. Endocrinol. 78: 25–32.PubMedCrossRefGoogle Scholar
  121. 121.
    Shimozawa, O., Sakaguchi, M., Ogawa, H., Harada, N., Mihara, K., and Omura, T., 1993, Core glycosylation of cytochrome P-450(arom). Evidence for localization of N terminus of microsomal cytochrome P-450 in the lumen, J. Bio!. Chem. 268: 21399–21402.Google Scholar
  122. 122.
    Szczesna-Skorupa, E., and Kemper, B., 1993, An N-terminal glycosylation signal on cytochrome P450 is restricted to the endoplasmic reticulum in a luminal orientation, J. Biol. Chem. 268: 1757–1762.PubMedGoogle Scholar
  123. 123.
    Ruan, K.-H., Wang, L.-H., Wu, K. K., and Kulmacz, R. J., 1993, Amino-terminal topology of thromboxane synthase in endoplasmic reticulum, J. Bio!. Chem. 268: 19483–19490.Google Scholar
  124. 124.
    Thomas, P. E., Lu, A. Y. H., West, S. B., Ryan, D., Miwa, G. T., and Levin, W., 1977, Accessibility of cytochrome P-450 in microsomal membranes: Inhibition of metabolism by antibodies to cytochrome P-450, Mol. Pharmacol. 13: 819–831.PubMedGoogle Scholar
  125. 125.
    Matsuura, S., Fujii-Kuriyama, Y., and Tashiro, Y., 1979, Quantitative immunoelectron-microscopic analyses of the distribution of cytochrome P-450 molecules on rat liver microsomes, J. Ce!! Sci. 36: 413–435.Google Scholar
  126. 126.
    Matsuura, S., Fujii-Kuriyama, Y., and Tashiro, Y., 1978, Immunoelectron microscope localization of cytochrome P-450 on microsomes and other membrane structures of rat hepatocytes, J. Cell Biol. 78: 503–519.PubMedCrossRefGoogle Scholar
  127. 127.
    Nilsson, O. S., DePierre, J. W., and Dallner, G., 1978, Investigation of the transverse topology of the microsomal membrane using combinations of proteases and the non-penetrating reagent diazobenzene sulfonate, Biochim. Biophys. Acta 511: 93–104.PubMedCrossRefGoogle Scholar
  128. 128.
    Black, S. D., and Coon, M. J., 1982, Structural features of liver microsomal NADPH-cytochrome P-450 reductase. Hydrophobic domain, hydrophilic domain, and connecting region, J. Bio!. Chem. 257: 5929–5938.Google Scholar
  129. 129.
    Ozols, J., 1989, Structure of cytochrome b5 and its topology in the microsomal membrane, Biochim. Biophys. Acta 997: 121–130.PubMedCrossRefGoogle Scholar
  130. 130.
    White, S. H., 1994, Hydropathy plots and the prediction of membrane protein topology, in: Membrane Protein Structure: Experimental Approaches (S. H. White, ed.), Oxford University Press, London, pp. 97–124.Google Scholar
  131. 131.
    Kyte, J., and Doolittle, R. F., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157: 105–132.PubMedCrossRefGoogle Scholar
  132. 132.
    Degli Esposti, M., Crimi, M., and Venturoli, G., 1990, A critical evaluation of the hydropathy profile of membrane proteins, Ern: J. Biochem. 190: 207–219.CrossRefGoogle Scholar
  133. 133.
    Vijayakumar, S., and Salerno, J. C., 1992, Molecular modeling of the 3-D structure of cytochrome P-450scc, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1160: 281–286.CrossRefGoogle Scholar
  134. 134.
    Usanov, S. A., Chernogolov, A. A., and Chashchin, V. L., 1990, Is cytochrome P-450scc a transmembrane protein? FEBS Lett. 275: 33–35.PubMedCrossRefGoogle Scholar
  135. 135.
    Nelson, D. R., and Strobel, H. W., 1988, On the membrane topology of vertebrate cytochrome P-450 proteins, J. Bio!. Chem. 263: 6038–6050.Google Scholar
  136. 136.
    Edelman, J., 1993, Quadratic minimization of predictors for protein secondary structure. Application to transmembrane alpha-helices, J. Mol. Biol. 232: 165–191.PubMedCrossRefGoogle Scholar
  137. 137.
    Edwards, R. J., Murray, B. R, Singleton, A. M., and Boobis, A. R., 1991, Orientation of cytochromes P450 in the endoplasmic reticulum, Biochemistry 30: 71–76.PubMedCrossRefGoogle Scholar
  138. 138.
    Black, S. D., Martin, S. T., and Smith, C. A., 1994, Membrane topology of liver microsomal cytochrome P450 2B4 determined via monoclonal antibodies directed to the halt-transfer signal, Biochemistry 33: 6945–6951.PubMedCrossRefGoogle Scholar
  139. 139.
    Vlasuk, G. P., Ghrayeb, J., Ryan, D. E., Reik, L., Thomas, P. E., Levin, W., and Walz, F. G., Jr., 1982, Multiplicity, strain differences, and topology of phenobarbital-induced cytochromes P-450 in rat liver microsomes, Biochemistry 21: 789–798.PubMedCrossRefGoogle Scholar
  140. 140.
    Scheller, U., Kraft, R., Schröder, K.-L., and Schunck, W.-H., 1994, Generation of the soluble and functional cytosolic domain of microsomal cytochrome P450 52A3, J. Biol. Chem. 269: 12779–12783.PubMedGoogle Scholar
  141. 141.
    Brown, C. A., and Black, S. D., 1989, Membrane topology of mammalian cytochromes P-450 from liver endoplasmic reticulum. Determination by trypsinolysis of phenobarbital-treated microsomes, J. Biol. Chem. 264: 4442–4449.PubMedGoogle Scholar
  142. 142.
    Vergères, G., Winterhalter, K. H., and Richter, C., 1989, Identification of the membrane anchor of microsomal rat liver cytochrome P-450, Biochemistry 28: 3650–3655.PubMedCrossRefGoogle Scholar
  143. 143.
    Ohta, Y., Kawato, S., Tagashira, H., Takemori, S., and Kominami, S., 1992, Dynamic structures of adrenocortical cytochrome P-450 in proteoliposomes and microsomes: Protein rotation study, Biochemistry 31: 12680–12687.PubMedCrossRefGoogle Scholar
  144. 144.
    Kominami, S., Tagashira, H., Ohta, Y., Yamada, M., Kawato, S., and Takemori, S., 1993, Membrane topology of bovine adrenocortical cytochrome P-450c21: Structural studies by trypsin digestion in vesicle membranes, Biochemistry 32: 12935–12940.PubMedCrossRefGoogle Scholar
  145. 145.
    Edwards, R. J., Singleton, A. M., Murray, B. P., Murray, S., Boobis, A. R., and Davies, D. S., 1991, Identification of a functionally conserved surface region of rat cytochromes P450IA, Biochem. J. 278: 749–757.PubMedGoogle Scholar
  146. 146.
    Murray, B. R, Edwards, R. J., Davies, D. S., and Boobis, A. R., 1993, Conservation of a functionally important surface region between two families of the cytochrome P-450 superfamily, Biochem. J. 292: 309–310.PubMedGoogle Scholar
  147. 147.
    Lombardo, A., Laine, M., Defaye, G., Monnier, N., Guidicelli, C., and Chambaz, E. M., 1986, Molecular organization (topography) of cytochrome P-450(11)beta in mitochondria) membrane and phospholipid vesicles as studied by trypsinolysis, Biochim. Biophys. Acta 863: 71–81.PubMedCrossRefGoogle Scholar
  148. 148.
    Centeno, F., and Gutiérrez-Merino, C., 1992, Location of functional centers in the microsomal cytochrome P450 system, Biochemistry 31: 8473–8481.PubMedCrossRefGoogle Scholar
  149. 149.
    Blum, H., Leigh, J. S., Salerno, J. C., and Ohnishi, T., 1978, The orientation of bovine adrenal cortex cytochrome P-450 in submitochondrial particle multilayers, Arch. Biochem. Biophys. 187: 153–157.PubMedCrossRefGoogle Scholar
  150. 150.
    Kamin, H., Batie, C., Lambeth, J. D., Lancaster, J., Graham, L., and Salerno, J. C., 1985, Paramagnetic probes of multicomponent electron-transfer systems, Biochem. Soc. Trans. 13: 615–618.PubMedGoogle Scholar
  151. 151.
    Gut, J., Richter, C., Cherry, R. J., Winterhalter, K. H., and Kawato, S., 1983, Rotation of cytochrome P-450: Complex formation of cytochrome P-450 with NADPH-cytochrome P-450 reductase in liposomes demonstrated by combining protein rotation with antibody-induced cross-linking, J. Biol. Chem. 258: 8588–8594.PubMedGoogle Scholar
  152. 152.
    Kawato, S., Gut, J., Cherry, R. J., Winterhalter, K. H., and Richter, C., 1982, Rotation of cytochrome P-450. I. Investigations of protein—protein interactions of cytochrome P-450 in phospholipid vesicles and liver microsomes, J. Biol. Chem. 257: 7023–7029.PubMedGoogle Scholar
  153. 153.
    Kawato, S., Sigel, E., Carafoli, E., and Cherry, R. J., 1981, Rotation of cytochrome oxidase in phospholipid vesicles. Investigations of interactions between cytochrome oxidases and between cytochrome oxidase and cytochrome bcl complex, J. Biol. Chem. 256: 7518–7527.PubMedGoogle Scholar
  154. 154.
    Cherry, R. J., Heyn, M. R, and Oesterhelt, D., 1977, Rotational diffusion and exciton coupling of bacteriorhodopsin in the cell membrane of Halobacterium halobium, FEBS Lett. 78: 25–30.PubMedCrossRefGoogle Scholar
  155. 155.
    Tsuprun, V. L., Myasoedova, K. N., Berndt, R, Sograf, O. N., Orlova, E. V., Chernyak, V. Y., Archakov, A. I., and Skulachev, V. P., 1986, Quaternary structure of the liver microsomal cytochrome P-450, FEBS Lett. 205: 35–40.PubMedCrossRefGoogle Scholar
  156. 156.
    Myasoedova, K. N., and Tsuprun, V. L., 1993, Cytochrome P-450: Hexameric structure of the purified LM4 form, FEBS Len. 325: 251–254.CrossRefGoogle Scholar
  157. 157.
    Schwarz, D., Pirrwitz, J., Meyer, H. W., Coon, M. J., and Ruckpaul, K., 1990, Membrane topology of microsomal cytochrome P-450: Saturation transfer EPR and freeze-fracture electron microscopy studies, Biochem. Biophys. Res. Commun. 171: 175–181.PubMedCrossRefGoogle Scholar
  158. 158.
    Deisenhofer, J., and Michel, H., 1991, High-resolution structures of photosynthetic reaction centers, Annu. Rev. Biophys. Biophys. Chem. 20: 247–266.PubMedCrossRefGoogle Scholar
  159. 159.
    Rees, D. C., Komiya, H., Yeates, T. O., Allen, J. P., and Feher, G., 1989, The bacterial photosynthetic reaction center as a model for membrane proteins, Annu. Rev. Biochem. 58: 607–633.PubMedCrossRefGoogle Scholar
  160. 160.
    Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H., 1990, Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy, J. Mol. Biol. 213: 899–929.PubMedCrossRefGoogle Scholar
  161. 161.
    Kuhlbrandt, W., Wang, D. N., and Fujiyoshi, Y., 1994, Atomic model of plant light-harvesting complex by electron crystallography, Nature 367: 614–621.PubMedCrossRefGoogle Scholar
  162. 162.
    Weiss, M. S., and Schulz, G. E., 1992, Structure of porin refined at 1.8 A resolution, J. Mol. Biol. 227: 493–509.PubMedCrossRefGoogle Scholar
  163. 163.
    Cowan, S. W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R. A., Jansonius, J. N., and Rosenbusch, J. P., 1992, Crystal structures explain functional properties of two E. coli porins, Nature 358: 727–733.Google Scholar
  164. 164.
    Picot, D., Loll, P. J., and Garavito, R. M., 1994, The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1, Nature 367: 243–249.PubMedCrossRefGoogle Scholar
  165. 165.
    Merlie, J. P., Fagan, D., Mudd, J., and Needleman, P., 1988, Isolation and characterization of the complementary DNA for sheep seminal vesicle prostaglandin endoperoxide synthase (cyclooxygenase), J. Biol. Chem. 263: 3550–3553.PubMedGoogle Scholar
  166. 166.
    Kominami, S., Itoh, Y., and Takemori, S., 1986, Studies on the interaction of steroid substrates with adrenal microsomal cytochrome P-450 (P-450 C21) in liposome membranes, J. Biol. Chem. 261: 2077–2083.PubMedGoogle Scholar
  167. 167.
    Korzekwa, K. R., and Jones, J. P., 1993, Predicting the cytochrome P450 mediated metabolism of xenobiotics, Pharmacogenetics 3: 1–18.PubMedCrossRefGoogle Scholar
  168. 168.
    Uvarov, V. Y., Sotnichenko, A. I., Vodovozova, E. L., Molotkovsky, J. G., Kolesanova, E. F., Lyulkin, Y. A., Stier, A., Krueger, V., and Archakov, A. I., 1994, Determination of membrane-bound fragments of cytochrome P-450 2B4, Eur. J. Biochem. 222: 483–489.PubMedCrossRefGoogle Scholar
  169. 169.
    Lewis, D. F. V., Ioannides, C., and Parke, D. V., 1994, Molecular modelling of cytochrome CYP1A 1: A putative access channel explains differences in induction potency between the isomers benzo(a)pyrene and benzo(e)pyrene, and 2- and 4-acetylaminofluorene, Toxicol. Leu. 71: 235–243.CrossRefGoogle Scholar
  170. 170.
    Szklarz, G. D., Ornstein, R. L., and Halpert, J. R., 1994, Application of 3-dimensional homology modeling of cytochrome P450 2B1 for interpretation of site-directed mutagenesis results, J. Biomol. Struct. Dynam. 12: 61–78.CrossRefGoogle Scholar
  171. 171.
    Koymans, L. M., Vermeulen, N. P., Baarslag, A., and Donne-Op den Kelder, G. M., 1993, A preliminary 3D model for cytochrome P450 2D6 constructed by homology model building, J. Comput. Aided Mol. Des. 7: 281–289.PubMedCrossRefGoogle Scholar
  172. 172.
    Lewis, D. F. V., 1987, Quantitative structure—activity relationships in a series of alcohols exhibiting inhibition of cytochrome P-450-mediated aniline hydroxylation, Chem. Biol. Int. 62: 271–280.CrossRefGoogle Scholar
  173. 173.
    Ferenczy, G. G., and Morris, G. M., 1989, The active site of cytochrome P-450 nifedipine oxidase: A model-building study, J. Mo!. Graph. 7: 206–211.CrossRefGoogle Scholar
  174. 174.
    Laughton, C. A., Neidle, S., Zvelebil, M. J. J. M., and Sternberg, M. J. E., 1990, A molecular model for the enzyme cytochrome P45017a, a major target for the chemotherapy of prostatic cancer, Biochem. Biophys. Res. Commun. 171: 1160–1167.PubMedCrossRefGoogle Scholar
  175. 175.
    Laughton, C. A., Zvelebil, M. J. J. M., and Neidle, S., 1993, A detailed molecular model for human aromatase, J. Steroid Biochem. Mol. Biol. 44: 399–407.PubMedCrossRefGoogle Scholar
  176. 176.
    Morris, G. M., and Richards, W. G., 1991, Molecular modelling of the sterol C-14 demethylase of Saccharomyces cerevisiae, Biochem. Soc. Trans. 19: 793–795.PubMedGoogle Scholar
  177. 177.
    Boscott, P. E., and Grant, G. H., 1994, Modeling cytochrome P450 14α demethylase (Candida albicans) from P450cam, J. Mol. Graph. 12: 185–200.PubMedCrossRefGoogle Scholar
  178. 178.
    Cupp-Vickery, J. R., and Poulos, T. L., 1995, Structure of cytochrome P450eryF involved in erythromycin biosynthesis, Nature Struct. Biol. 2: 144–153.PubMedCrossRefGoogle Scholar
  179. 179.
    Ruan, K.-H., Milfeld, K., Kulmacz, R. J., and Wu, K. K., 1994, Comparison of the construction of a 3-D model for human thromboxane synthase using P450cam and BM-3 as templates: Implications for the substrate binding pocket, Protein Eng. 7: 1345–1351.PubMedCrossRefGoogle Scholar
  180. 180.
    Waterman, M. R., 1993, Heterologous expression of cytochrome P-450 in Escherichia coli, Biochem. Soc. Trans. 21: 1081–1085.PubMedGoogle Scholar
  181. 181.
    Pernecky, S. J., Larson, J. R., Philpot, R. M., and Coon, M. J., 1993, Expression of truncated forms of liver microsomal P450 cytochromes 2B4 and 2E1 in Escherichia coli: Influence of NH2-terminal region on localization in cytosol and membranes, Proc. Natl. Acad. Sci. USA 90: 2651–2655.PubMedCrossRefGoogle Scholar
  182. 182.
    Pernecky, S. J., Larson, J. R., and Coon, M. J., 1994, Cytosolic localization of NH2-terminal-modified microsomal P450s expressed in E. coli, FASEB J. 7:Al200.Google Scholar
  183. 183.
    Li, Y. C., and Chiang, J. Y. L., 1991, The expression of a catalytically active cholesterol 7alpha-hydroxylase cytochrome P450 in Escherichia coli, J. Biol. Chem. 266: 19186–19191.PubMedGoogle Scholar
  184. 184.
    Edwards, R. J., Singleton, A. M., Sesardic, D., Boobis, A. R., and Davies, D. S., 1988, Antibodies to a synthetic peptide that react specifically with a common surface region on two hydrocarbon-inducible isoenzymes of cytochrome P-450 in the rat, Biochem. Pharmacol. 37: 3735–3741.PubMedCrossRefGoogle Scholar
  185. 185.
    Manns, M. P., Griffin, K. J., Sullivan, K. F., and Johnson, E. F., 1991, LKM-1 autoantibodies recognize a short linear sequence in P450IID6, a cytochrome P-450 monooxygenase, J. Clin. Invest. 88: 1370–1378.PubMedCrossRefGoogle Scholar
  186. 186.
    Yamamoto, A. M., Cresteil, D., Boniface, O., Clerc, F. E, and Alvarez, F., 1993, Identification and analysis of cytochrome P450IID6 antigenic sites recognized by anti-liver-kidney microsome type-1 antibodies (LKM1), Eut: J. Immunol. 23: 1105–1111.CrossRefGoogle Scholar
  187. 187.
    Edwards, R. J., Singleton, A. M., Murray, B. P., Sesardic, D., Rich, K. J., Davies, D. S., and Boobis, A. R., 1990, An anti-peptide antibody targeted to a specific region of rat cytochrome P-450IA2 inhibits enzyme activity, Biochem. J. 266: 497–504.PubMedGoogle Scholar
  188. 188.
    Edwards, R. J., Murray, B. P., Murray, S., Singleton, A. M., Davies, D. S., and Boobis, A. R., 1993, An inhibitory monoclonal anti-protein antibody and an anti-peptide antibody share an epitope on rat cytochrome P-450 enzymes CYP1A1 and CYP1A2, Biochim. Biophys. Acta 1161: 38–46.PubMedCrossRefGoogle Scholar
  189. 189.
    Edwards, R. J., Sesardic, D., Murray, B. P., Singleton, A. M., Davies, D. S., and Boobis, A. R., 1992, Identification of the epitope of a monoclonal antibody which binds to several cytochromes P450 in the CYP1A subfamily, Biochem. Pharmacol. 43: 1737–1746.PubMedCrossRefGoogle Scholar
  190. 190.
    Devereux, J., Haeberli, P., and Smithies, O., 1984, A comprehensive set of sequence analysis programs for the VAX, Nucleic Acids Res. 12: 387–395.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Claes Von Wachenfeldt
    • 1
  • Eric F. Johnson
    • 1
  1. 1.Division of Biochemistry, Department of Molecular and Experimental MedicineThe Scripps Research InstituteLa JollaUSA

Personalised recommendations