Advertisement

Structural Studies on Prokaryotic Cytochromes P450

  • Thomas L. Poulos
  • Jill Cupp-Vickery
  • Huiying Li
Chapter

Abstract

The camphor monooxygenase from Pseudomonas putida, P450cam, has been the single best paradigm for P450 structure and function studies for over two decades.1 Following a wealth of biochemical and biophysical studies on P450cam, the high-resolution crystal structure became available in 1987.2 This was followed by a series of structures on various inhibitor/substrate complexes which revealed some key structure-function relationships in P450s. In addition, with the development of recombinant expression systems for P450cam, it has been possible to use site-directed mutagenesis3,4 with reference to the crystal structure to probe questions of how structure relates to function.

Keywords

Access Channel Carbonyl Oxygen Atom Aqua Ligand Heme Domain Spin Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Raag, R., and Poulos, T. L., 1992, X-ray crystallographic studies of p450cam: Factors controlling substrate metabolism, in: Frontiers in Biotransformations, Vol. 7 (K. Ruckpaul and H. Rein, eds.), Akademie Verlag, Weinheim, pp. 1–43. This review contains references to many of the pioneering works on P450cam, especially from the laboratories of I. C. Gunsalus and S. Sligar.Google Scholar
  2. 2.
    Poulos, T. L., Finzel, B.C., and Howard, A. J., 1987, High-resolution crystal structure of cytochrome P450cam, J. Mol. Biol. 195: 697–700.CrossRefGoogle Scholar
  3. 3.
    Martinis, S. A., Atkins, W. A., Stayton, P.S., and Sligar, S. G., 1989, Aconservedresidue of cytochrome P450 is involved in heme-oxygen stability and activation, J. Am. Chem. Soc. 111: 9252–9253.CrossRefGoogle Scholar
  4. 4.
    Imai, M., Shimada, H., Watanabe, Y., Matsushima-Hibiya, Y, Makino, R., Koga, H., Horiuchi, T., and Ishimura, Y., 1989, Uncoupling of the cytochrome P450cam monoxygenase reaction by a single mutation, threonine-252 to alanine or valine: A possible role of the hydroxy amino acid in oxygen activation, Proc. Natl. Acad. Sci. USA 86: 7823–7827.PubMedCrossRefGoogle Scholar
  5. 5.
    Ravichandran, K. G., Boddupalli, S. S., Haserman, C. A., Peterson, J. A., and Deisenhofer, J., 1993, Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450s, Science 261: 731–736.PubMedCrossRefGoogle Scholar
  6. 6.
    Li, H., and Poulos, T. L., 1994, Modeling protein—substrate interactions in the heme domain of cytochrome P450BM-3, Acta Crystallogr. D51: 21–32.Google Scholar
  7. 7.
    Hasemann, C. A., Ravichandran, K. G., Peterson, J. A., and Deisenhofer, J., 1994, Crystal structure and refinement of P450terp at 2.3 A resolution, J. Mol. Biol. 236: 1169–1185.PubMedCrossRefGoogle Scholar
  8. 8.
    Cupp-Vickery, J., Li, H., and Poulos, T. L., 1994, Preliminary crystallographic analysis of an enzyme involved in erythromycin biosynthesis: Cytochrome P450eryF, Proteins 20: 187–201.CrossRefGoogle Scholar
  9. 9.
    Cupp-Vickery, J., and Poulos, T. L., 1995, Structure of cytochrome P450 eryF: an enzyme involved in erythromycin biosynthesis, Nat. Struct. Biol. 2: 144–153.PubMedCrossRefGoogle Scholar
  10. 10.
    Shaiffe, A., and Hutchinson, C. R., 1987, Macrolide antibiotic biosynthesis: Isolation and characterization of two forms of 6-deoxyerythronolide B hydroxylase from Saccharopolyspora erythaea, Biochemistry 26: 6204–6210.CrossRefGoogle Scholar
  11. 11.
    Andersen, J. K., and Hutchinson, C. R., 1993, Substrate specificity of 6-deoxyerythronolide B hydroxylase, a bacterial cytochrome P450 of erythromycin biosynthesis, Biochemistry 32: 1905–1913.PubMedCrossRefGoogle Scholar
  12. 12.
    Shaiffe, A., and Hutchinson, C. R., 1988, Purification and reconstitution of the electron transport components of 6-deoxyerythronolide B hydroxylase, a cytochrome P450 enzyme of macrolide antibiotic (erythromycin) biosynthesis, J. Bacteriol. 170: 1548–1553.Google Scholar
  13. 13.
    Poulos, T. L., Edwards, S. L., Wariishi, H., and Gold, M. H., 1993, Crystallographic refinement of lignin peroxidase at 2A, J. Biol. Chem. 268: 4429–4440.PubMedGoogle Scholar
  14. 14.
    Kunishima, N., Fukuyama, K., Matsubara, H., Hatanaka, H., Shibano, Y., and Amachi, T., 1994, Crystal structure of the fungal peroxidase from A rthromyces ramosus at 1.9A resolution, J. Mol. Biol. 235: 331–344.PubMedCrossRefGoogle Scholar
  15. 15.
    Valli, K., Wariishi, H., and Gold, M. H., 1990, Oxidation of monoethoxylated aromatic compounds by lignin peroxidase: Role of veratryl alcohol in lignin biodegradation, Biochemistry 29: 8535–8539.PubMedCrossRefGoogle Scholar
  16. 16.
    Ortiz de Montellano, P. R., 1992, Catalytic sites of hemoprotein peroxidases, Annu. Rev. Pharmacol. Toxicol. 32: 89–107.CrossRefGoogle Scholar
  17. 17.
    Kraut, J., 1977, Serine proteases: Structure and mechanism of catalysis, Annu. Rev. Biochem. 46: 331–358.PubMedCrossRefGoogle Scholar
  18. 18.
    Sligar, S. G., and Gunsalus, I. C., 1976, A thermodynamic model of regulation: Modulation of redox equilibria in camphor monoxygenase, Proc. Natl. Acad. Sci. USA 73: 1078–1082.PubMedCrossRefGoogle Scholar
  19. 19.
    Li, H., Darwish, K., and Poulos, T. L., 1991, Characterization of recombinant Bacillus megaterium cytochrome P450BM.3 and its two functional domains, J. Biol. Chem. 266: 11909–11914.PubMedGoogle Scholar
  20. 20.
    Poulos, T. L., Finzel, B. C., and Howard, A. J., 1986, Crystal structure of substrate-free P putida cytochrome P450, Biochemistry 25: 5314–5322.PubMedCrossRefGoogle Scholar
  21. 21.
    Erman, J. E., Vitello, L. B., Miller, M. A., Shaw, A., Brown, K. A., and Kraut, J., 1993, Histidine 52 is a critical residue for rapid formation of cytochrome c peroxidase compound I, Biochemistry 32: 9798–9806.PubMedCrossRefGoogle Scholar
  22. 22.
    Choudhury, K., Sundaramoorthy, M., Mauro, J. M., and Poulos, T. L., 1992, Conversion of the proximal histidine ligand to glutamine restores activity to an inactive mutant of cytochrome c peroxidase, J. Biol. Chem. 267: 25656–25659.PubMedGoogle Scholar
  23. 23.
    Choudhury, K., Sundaramoorthy, M., Hickman, A., Yonetani, T., Woehl, E., Dunn, M. E, and Poulos, T. L., 1994, The role of the proximal ligand in peroxidase catalysis: Crystallographic, kinetic, and spectral studies of cytochrome c peroxidase proximal ligand mutants, J. Biol. Chem. 269: 20239–20249.PubMedGoogle Scholar
  24. 24.
    Dawson, J. H., 1988, Probing structure—function relations in heme-containing oxygenases and peroxidases, Science 240: 433–439.PubMedCrossRefGoogle Scholar
  25. 25.
    Poulos, T. L., and Howard, A. J., 1987, Crystal structures of the metyrapone and phenylimidazole inhibited complexes of cytochrome P450cam, Biochemistry 26: 8165–8174.PubMedCrossRefGoogle Scholar
  26. 26.
    Raag, R., Martinis, S. A., Sligar, S. G., and Poulos, T. L., 1991, Crystal structure of the cytochrome P450cam active site mutant Thr252Ala, Biochemistry 30: 11420–11429.PubMedCrossRefGoogle Scholar
  27. 27.
    Wade, R. C., 1990, Solvation at the active site of cytochrome P450cam, J. Comput. Aided Mol. Des. 4: 199–204.PubMedCrossRefGoogle Scholar
  28. 28.
    Gerber, N. C., and Sligar, S. G., 1992, Catalytic mechanism of cytochrome P450: Evidence for a distal charge relay, J. Am. Chem. Soc. 114: 8742–8743.CrossRefGoogle Scholar
  29. 29.
    Kievan, L., Peone, J., and Madan, S. K., 1973, Molecular oxygen adducts of transition metal complexes, J. Chem. Educ. 50: 670–675.CrossRefGoogle Scholar
  30. 30.
    Raag, R., and Poulos, T. L., 1989, Crystal structure of the carbon monoxide—substrate—cytochrome P450cam ternary complex, Biochemistry 28: 7586–7592.PubMedCrossRefGoogle Scholar
  31. 31.
    Raag, R., and Poulos, T. L., 1989, The structural basis for substrate-induced changes in redox potential and spin equilibrium in cytochrome P450cam, Biochemistry 28: 917–922.PubMedCrossRefGoogle Scholar
  32. 32.
    Raag, R., and Poulos, T. L., 1991, Crystal structures of cytochrome P450cam complexed with camphane, thiocamphor, and adamantane: Factors controlling P450 substrate hydroxylation, Biochemistry 30: 2674–2684.PubMedCrossRefGoogle Scholar
  33. 33.
    Raag, R., Li, H., Jones, B. C., and Poulos, T. L., 1993, Inhibitor-induced conformational change in cytochrome P450cam, Biochemistry 32: 4571–4578.PubMedCrossRefGoogle Scholar
  34. 34.
    Stayton, P. S., Poulos, T. L., and Sligar, S., 1989, Putidaredoxin competitively inhibits cytochrome b5—cytochrome P450cam association: A proposed model for a cytochrome 450cam electron-transfer complex, Biochemistry 28: 8201–8205.PubMedCrossRefGoogle Scholar
  35. 35.
    Stayton, P. S., and Sligar, S. G., 1990, The cytochrome P450cam binding surface as defined by site-directed mutagenesis and electrostatic modeling, Biochemistry 29: 7381–7386.PubMedCrossRefGoogle Scholar
  36. 36.
    Nelson, D. R., and Strobel, H. W., 1988, On the membrane topography of cytochrome P450 proteins, J. Biol. Chem. 263: 6038–6050.PubMedGoogle Scholar
  37. 37.
    Peterson, J. A., 1971, Camphor binding by Pseudomonas putida cytochrome P450, Arch. Biochem. Biophys. 144: 678–693.CrossRefGoogle Scholar
  38. 38.
    Hoa, H. B., and Marden, M. C., 1982, The pressure dependence of the spin equilibrium in camphor-bound ferric cytochrome P450, Eur. J. Biochem. 124: 311–315.CrossRefGoogle Scholar
  39. 39.
    Di Promo, C., Hoa, H. B., Douzou, P., and Sligar, S., 1990, Mutagenesis of a single hydrogen bond in cytochrome P450 alters cation binding and heure solvation, J. Biol. Chem. 265: 5361–5363.Google Scholar
  40. 40.
    Fisher, M. T., and Sligar, S. G., 1983, Control of heme redox potential and reduction rate: A linear free energy relation between potential and ferric spin state equilibrium, J. Am. Chem. Soc. 107: 5018–5019.CrossRefGoogle Scholar
  41. 41.
    Loew, G. H., Collins, J., Luke, B., Waleh, A., and Pudzanowski, K. A., 1986, Theoretical studies on cytochrome P450. Characterization of stable and transient active states, reaction mechanisms and substrate-enzyme interactions, Enzyme 36: 54–78.PubMedGoogle Scholar
  42. 42.
    White, R. E., McCarthy, M.-B., Egeberg, K. D., and Sligar, S. G., 1984, Regioselectivity in the cytochromes P450: Control by protein constraints and by chemical reactivities, Arch. Biochem. Biophys. 228: 493–502.PubMedCrossRefGoogle Scholar
  43. 43.
    Atkins, W. M., and Sligar, S. G., 1988, The roles of active site hydrogen bonding in cytochrome P450cam as revealed by site-directed mutagenesis, J. Biol. Chem. 263: 18842–18849.PubMedGoogle Scholar
  44. 44.
    Atkins, W. M., and Sligar, S. G., 1989, Molecular recognition in cytochrome P450: Alteration of regioselective alkane hydroxylation via protein engineering, J. Am. Chem. Soc. 111: 2715–2717.CrossRefGoogle Scholar
  45. 45.
    Kraulis, P., 1991, MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures, J. Appl. Crystallagr. 24: 946–950.CrossRefGoogle Scholar
  46. 46.
    Evans, S., 1993, SETOR: Hardware lighted three-dimensional solid model representation of macromolecules, J. Mol. Graphics 11: 134–138.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Thomas L. Poulos
    • 1
  • Jill Cupp-Vickery
    • 1
  • Huiying Li
    • 1
  1. 1.Departments of Molecular Biology & Biochemistry and Physiology & BiophysicsUniversity of California, IrvineIrvineUSA

Personalised recommendations