Advertisement

Models and Mechanisms of Cytochrome P450 Action

  • John T. Groves
  • Yuan-Zhang Han
Chapter

Abstract

The reactions catalyzed by the cytochrome P450 family of enzymes have challenged and intrigued chemists for more than two decades. Alkane hydroxylation and olefin epoxidation, particularly, have attracted a sustained worldwide effort, the allure deriving from both a desire to understand the details of biological oxygen activation and transfer and, as well, the sense that catalysts for the practical application of these principles to organic synthesis and to large-scale process chemistry could be of considerable economic value. Cytochrome P450 is able to incorporate one of the two oxygen atoms of an O2 molecule into a broad variety of substrates with concomitant reduction of the other oxygen atom by two electrons to H2O.1 Cytochrome P450 enzymes have been isolated from numerous mammalian tissues (e.g., liver, kidney, lung, intestine, adrenal cortex), insects, plants, yeasts, and bacteria.2 Cytochrome P450 is known to catalyze hydroxylations, epoxidations, N-, S-, and O-dealkylations, N-oxidations, sulfoxidations, dehalogenations, and other reactions.1 The reactive site of all of these enzymes is extraordinarily simple, containing only an iron protoporphyrin IX (1) (Fig. 1) with cysteinate as the fifth ligand, leaving the sixth coordination site to bind and activate molecular oxygen. The local environment of oxygen binding and activation is also very simple, with mostly hydrophobic protein residues and a single threonine hydroxyl which is essential for catalysis for some but not all P450s. The principal catalytic cycle of cytochrome P450 has been much discussed and often reviewed, but the essential features have been agreed upon now for some time. The essential steps involve (Scheme I): (1) binding of the substrate, (2) reduction of the ferric, resting cytochrome P450 to the ferrous state, (3) binding of molecular oxygen to give a ferrous cytochrome P450-dioxygen complex, (4) transfer of the second electron to this complex to give a peroxoiron(III) complex, (5) protonation and cleavage of the O-O bond with the concurrent incorporation of the distal oxygen atom into a molecule of water and the formation of a reactive iron-oxo species, (6) oxygen atom transfer from this oxo complex to the bound substrate, and (7) dissociation of the product. While the first three steps of the enzymatic process have been monitored spectroscopically, the transfer of the second electron, the O-O bond cleavage, and the oxidation of the substrate occur too rapidly and have yet to be observed.3

Figure 1.

Iron protoporphyrin IX.

Keywords

Hydrogen Atom Transfer Ceric Ammonium Nitrate Iron Porphyrin Alkyl Hydroperoxide Partial Charge Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ortiz de Montellano, P. R. (ed.), 1986, Cytochrome P-450: Structure, Mechanism, and Biochemistry, Plenum Press, New York.Google Scholar
  2. 2.
    Dawson, J. H., and Eble, K. S., 1986, Cytochrome P-450: Herne iron coordination structure and mechanisms of action, Adv. Inorg. Bioinorg. Mech. 4: 1–64.Google Scholar
  3. 3a.
    Watanabe, Y., and Groves, J. T., 1992, Molecular mechanism of oxygen activation by cytochrome P-450, in: The Enzymes, 3rd ed., Vol. XX, (D. Sigman, ed.), Academic Press, New York, pp. 406–453.Google Scholar
  4. 3b.
    McMurry, T. J., and Groves, J. T., 1986, Metalloporphyrin models for cytochrome-P-450, in: Cytochrome P-450: Structure, Mechanism, and Biochemistry ( P. R. Ortiz de Montellano, ed.) Plenum Press, New York, pp. 1–28.Google Scholar
  5. 4a.
    Roberts, J. E., Hoffman, B. M., Rutter, R., and Hager, L. P., 1981, Electron-nuclear double resonance of horseradish peroxidase compound I. Detection of the porphyrin it-cation radical, J. Biol. Chem. 256: 2118–2121.PubMedGoogle Scholar
  6. 4b.
    Roberts, J. E., Hoffman, B. M., Rutter, R., and Hager, L. P., 1981, Oxygen-17 ENDOR of horseradish peroxidase compound I, J. Am. Chem. Soc. 103: 7654–7656.CrossRefGoogle Scholar
  7. 4c.
    Penner-Hahn, J. E., McMurry, T. J., Renner, M., Latos-Grazynsky, L., Eble, K. S., Davis, I. M., Balch, A. L., and Groves, J. T., 1983, X-ray absorption spectroscopic studies of high-valent iron porphyrins, J. Biol. Chem. 258: 12761–12764.PubMedGoogle Scholar
  8. 4d.
    Nick, R. J., Ray, G. B., Fish, K. M., Spiro, T. G., and Groves, J. T., 1991, Evidence for a weak Mn=0 bond and a non-porphyrin radical in manganese-substituted horseradish peroxidase compound I, J. Am. Chem. Soc. 113: 1838–1840.CrossRefGoogle Scholar
  9. 4e.
    Mann, T., 1988, An exercise in nostalgia on the theme of David Keilin, in: Oxidases and Related Redox Systems ( T. E. King, H. S. Mason, and M. Morrison, eds.), Liss, New York, pp. 29–49.Google Scholar
  10. 5a.
    Hrycay, E. G., Gustafsson, J. -A., Ingehnan-Sundberg, M., and Ernster, L., 1975, Sodium periodate, sodium chlorite, organic hydroperoxides, and hydrogen peroxide as hydroxylating agents in steroid hydroxylation reactions catalyzed by partially purified cytochrome P 450, Biochem. Biophys. Res. Commun. 66: 209–216.PubMedCrossRefGoogle Scholar
  11. (b).
    Danielsson, H., and Wikvall, K., 1976, On the ability of cumene hydro-peroxide and sodium periodate to support microsomal hydroxylations in biosynthesis and metabolism of bile acids, FEBS Lett. 66: 299–302.PubMedCrossRefGoogle Scholar
  12. (c).
    Gustaffson, J.-A., Hrycay, E. G., and Ernster, L., 1976, Sodium periodate, sodium chlorite, and organic hydroperoxides as hydroxylating agents in steroid hydroxylation reactions catalyzed by adrenocortical microsomal and mitochondrial cytochrome P450, Arch. Biochem. Biophys. 174: 438–451.Google Scholar
  13. (d).
    Gustaffson, J.-A., Rondahl, L., and Bergman, J., 1979, TI iodosylbenzene derivatives as oxygen donors in cytochrome P-450 catalyzed steroid hydroxylations, Biochemistry 18: 865–870.CrossRefGoogle Scholar
  14. (e).
    Gustaffson, J.-A., and Bergman, J., 1976, Iodine-and chlorine-containing oxidation agents as hydroxylating catalysts in cytochrome P-450-dependent fatty acid hydroxylation reactions in rat liver microsomes, FEBS Lett. 70: 276–280.CrossRefGoogle Scholar
  15. (f).
    Groves, J. T., Krishnan, S., Avaria, G. E., and Nemo, T. E., 1980, Studies of the hydroxylation and epoxidation reactions catalyzed by synthetic metalloporphyrinates. Models related to the active oxygen species of cytochrome P-450, Adv. Chem. Ser. Series 191: 277–289.Google Scholar
  16. 6.
    a) Dolphin, D., Forman, A., Borg, D. C., Fayer, J., and Felton, R. H., 1971, Compounds I of catalase and horse radish peroxidase: tt cation radicals, Proc. Natl. Acad. Sci. USA 68: 614–618.CrossRefGoogle Scholar
  17. (b).
    Dolphin, D., and Felton, R. H., 1974, Biochemical significance of porphyrin it cation radicals, Ace. Chem. Res. 7: 26–32.CrossRefGoogle Scholar
  18. 7.
    Peisach, J., Blumberg, W. E., Wittenberg, B. A., and Wittenberg, J. B., 1968, Electronic structure of protoheme proteins. IH. Configuration of the heure and its ligands, J. Biol. Chem. 243: 1871–1880.PubMedGoogle Scholar
  19. 8.
    Loew, G. H., Kert, C. J., Hjelmeland, L. M., and Kirchner, R. F., 1977, Active site models of horseradish peroxidase compound I and a cytochrome P-450 analog: Electronic structure and electric field gradients, J. Am. Chem. Soc. 99: 3534–3536.PubMedCrossRefGoogle Scholar
  20. 9.
    Sawyer, D. T., 1988, Formation, characterization, and reactivity of the oxene adduct of [tetrakis(2,6dichlorophenyl)porphinato]-iron(III)perchlorate in acetonitrile. Model for the reactive intermediate of cytochrome P-450, J. Am. Chem. Soc. 110: 2465–2470.CrossRefGoogle Scholar
  21. (a) Groves, J. T., and Nemo, T. E., 1983, Epoxidation reactions catalyzed by ferric porphyrins. Oxygen transfer from iodosylbenzene, J. Am. Chem. Soc. 105: 5786–5791.CrossRefGoogle Scholar
  22. (b).
    Sevin, A., and Fontecave, M., 1986, Oxygen transfer from iron oxo porphyrins to ethylene. A semiempirical MO/VB approach, J. Am. Chem. Soc. 108: 3266–3272.CrossRefGoogle Scholar
  23. (c).
    Ostovic, D., and Bruice, T. C., 1988, Transition state geometry in epoxidation by iron-oxo porphyrin at the compound I oxidation level. Epoxidation of alkenes catalyzed by a sterically hindered meso-tetrakis(2,6-dibromophenyl)-porphinato iron(III) chloride, J. Am. Chem. Soc. 110: 6906–6908.CrossRefGoogle Scholar
  24. (d).
    Czemuszewicz, R. S., Su, Y. O., Stern, M. K., Macor, K. A., Kim, D., Groves, J. T., and Spiro, T. G., 1988, Oxomanganese(IV) porphyrins identified by resonance Raman and infrared spectroscopy: Weak bonds and the stability of the half filled tzg subshell, J. Am. Chem. Soc. 110: 4158–4165.CrossRefGoogle Scholar
  25. 11.
    a) Groves, J. T., Nemo, T. E., and Myers, R. S., 1979, Hydroxylation and epoxidation catalyzed by iron-porphyrin complexes, J. Am. Chem. Soc. 101: 1032.CrossRefGoogle Scholar
  26. (b).
    Groves, J. T., Haushalter, R. C., Nakamura, M., Nemo, T. E., and Evans, B. J., 1981, High-valent iron-porphyrin complexes related to peroxidase and cytochrome P-450, J. Am. Chem. Soc. 103: 2884.CrossRefGoogle Scholar
  27. (c).
    Groves, J. T., Nemo, T. E., 1983, Hydroxylation reactions catalyzed by ferric porphyrins, J. Am. Chem. Soc. 105: 6243–6248.CrossRefGoogle Scholar
  28. (d).
    Groves, J. T., and Watanabe, Y., 1988, Reactive iron porphyrin derivatives related to the catalytic cycles of cytochrome P450 and peroxidase. Studies of the mechanism of oxygen activation, J. Am. Chem. Soc. 110: 8443–8452.CrossRefGoogle Scholar
  29. (e).
    Groves, J. T., Gross, Z., and Stern, M. K., 1994, Preparation and reactivity of oxoiron(IV) porphyrins, Inorg. Chem. 33: 5065–5072.CrossRefGoogle Scholar
  30. (a) Dicken, C. M., Lu, F.-L., Nee, M. W., and Bruice, T. C., 1985, Kinetics and mechanisms of oxygen transfer in the reaction of p-cyano-N,N-dimethylaniline N-oxide with metalloporphyrin salts. 2. Amine oxidation and oxygen transfer to hydrocarbon substrates accompanying the reaction of p-cyano-N,N-dimethylaniline N-oxide with meso-(tetraphenylporphinato)iron(III) chloride, J. Am. Chem. Soc. 107: 5776–5789.CrossRefGoogle Scholar
  31. (b).
    Balasubramanian, P. N., Lee, R. W., and Bruice, T. C., 1989, Reaction of [meso-tetrakis(2,6-dimethyl-3-sulfonatophenyl)porphinato]iron(III) hydrate with various acyl and alkyl hydroperoxides in aqueous solution, J. Am. Chem. Soc. 111: 8714–8721.CrossRefGoogle Scholar
  32. (c).
    Lindsay-Smith, J. R., Balasubramanian, P. N., Lee, R. W., and Bruice, T. C., 1988, The dynamics of reaction of a water soluble and non-t-oxo dimer forming iron(III) porphyrin with tert-butyl hydroperoxide in aqueous solution. 1. Studies using a trap for immediate oxidation products, J. Am. Chem. Soc. 110: 7411–7418.CrossRefGoogle Scholar
  33. (d).
    Gopinath, E., and Bruice, T. C., 1991, Dynamics of reaction of [5,10,15,20-tetrakis(2,6-dimethyl3-sulfonatophenyl)porphinato]iron(III) hydrate with tert-butyl hydroperoxide in aqueous solution. 3. Comparison of refined kinetic parameters and D2O solvent isotope effects to those for [5,10,15,20tetrakis(2,6-dichloro-3-sulfonatophenyl)porphinato]iron(III) hydrate and iron(III) hydrate, J. Am. Chem. Soc. 113: 4657–4665.CrossRefGoogle Scholar
  34. (e).
    Beck, M. J., Gopinath, E., and Bruice, T. C., 1993, Influence of nitrogen base ligation on the rate of reaction of [5,10,15,20-tetrakis(2,6-dimethyl-3-sulfonatophenyl)porphinato]iron(III) hydrate with t-BuOOH in aqueous solution, J. Am. Chem. Soc. 115: 21–29.CrossRefGoogle Scholar
  35. (f).
    Chin, D. H., Balch, A. L., and LaMar, G. N., 1980, Mechanism of autoxidation of iron(II) porphyrins. Detection of a peroxo-bridged iron(1I1) porphyrin dimer and the mechanism of its thermal decomposition to the oxo-bridged iron(III) porphyrin dimer, J. Am. Chem. Soc. 102: 4344–4350CrossRefGoogle Scholar
  36. Formation of porphyrin ferry] (FeO2+) complexes through the addition of nitrogen bases to peroxobridged iron(III) porphyrins, J. Am. Chem. Soc. 102:1446–1448.Google Scholar
  37. (g).
    Balch, A. L., Chan, Y.-W., Cheng, R.-J., LaMar, G. N., Latos-Grazynsky, L., and Renner, M. W., 1984, Oxygenation patterns for iron(II) porphyrins. Peroxo and ferryl (FetvO) intermediates detected by proton nuclear magnetic resonance spectroscopy during the oxygenation of (tetramesityl-porphyrin)iron(II), J. Am. Chem. Soc. 106: 7779–7785.CrossRefGoogle Scholar
  38. (h).
    Balch, A. L., Latos-Grazynsky, L., and Renner, M. W., 1985, Oxidation of red ferry! [(FetvO)z+] porphyrin complexes to green ferry! [(FetvO)2+] porphyrin radical complexes,. 1. Am. Chem. Soc. 107: 2983–2985.CrossRefGoogle Scholar
  39. (i).
    Balch, A. L., Cornman, C. R., Latos-Grazynsky, L., and Renner, M. W., 1992, Highly oxidized iron complexes of N-methytletra-p-tolylporphyrin, J. Am. Chem. Soc. 114: 2230–2237.CrossRefGoogle Scholar
  40. 13.
    a) Meunier, B., 1986, Metalloporphyrin-catalyzed oxygenation of hydrocarbons, Bull. Soc. Chim. Fr. 1986: 578–594.Google Scholar
  41. (b).
    Meunier, B., 1983, Homogeneous-phase oxidations catalyzed by transition metals: Recent advances, Bull. Soc. Chim. Fr. 1983: 345–366.Google Scholar
  42. (c).
    Groves, J. T., and Stern, M. K., 1987, Olefin epoxidation by manganese(IV) porphyrins. Evidence for two reaction pathways, J. Am. Chem. Soc. 109: 3812–3814.CrossRefGoogle Scholar
  43. (d).
    Groves, J. T., and Stern, M. K., 1988, Synthesis, characterization, and reactivity of oxomanganese(IV) porphyrin complexes, J. Am. Chem. Soc. 110: 8628–8638.CrossRefGoogle Scholar
  44. (e).
    Brown, R. B., Jr., and Hill, C. L., 1988, Catalytic homogeneous functionalization of adamantane. Influence of electronic and structural features of the metallo-porphyrin catalyst on atom transfer selectivity (oxygenation versus acidification/halogenation), J. Org. Chem. 53: 5762–5768.CrossRefGoogle Scholar
  45. (f).
    De Poorter, B., Ricci, M., and Meunier, B., 1985, Ozone as oxygen donor in the catalytic hydroxylation of saturated hydrocarbons, Tetrahedron Lett. 26: 4459–4462.CrossRefGoogle Scholar
  46. (g).
    De Poorter, B., Ricci, M., and Meunier, B., 1985, Catalytic hydroxylation of saturated hydrocarbons with the sodium hypohalite/manganese porphyrin system, J. Mol. Catal. 31: 221–224.CrossRefGoogle Scholar
  47. (h).
    Mansuy, D., Bartoli, J. F., and Momenteau, M., 1982, Alkane hydroxylation catalyzed by metalloporphyrins: Evidence for different active oxygen species with alkylhydroperoxides and iodosobenzene as oxidants, Tetrahedron Lett. 23: 2781–2784.CrossRefGoogle Scholar
  48. (i).
    Battioni, P., Renaud, J.-P., Bartoli, J. F., and Mansuy, D., 1986, Hydroxylation of alkanes by hydrogen peroxide: An efficient system using manganese porphyrins and imidazole as catalysts, J. Chem. Soc. Chem. Commun. 1986: 341–343.CrossRefGoogle Scholar
  49. (j).
    Stern, M. K., and Groves, J. T., 1992, Oxygen transfer reactions of oxo-manganese porphyrins, in: Manganese Redox Enzymes, ( V. Pecoraro, ed.), Verlag Chemie, Weinheim, pp. 233–259Google Scholar
  50. (a) Tabushi, I., 1988, Reductive dioxygen activation by use of artificial P-450 systems, Coord. Chem. Rev. 86: 1–42.CrossRefGoogle Scholar
  51. (b).
    Mansuy, D., Fontecave, M., and Bartoli, J. F.,1983, Monooxygenase-like dioxygen activation leading to alkane hydroxylation and olefin epoxidation by a manganese(III)(porphyrin) —ascorbate biphasic system, J. Chem. Soc., Chem. Commun. 1983: 253–254Google Scholar
  52. (c).
    Battioni, P., Bartoli, J. F., Leduc, P., Fontecave, M., and Mansuy, D., 1987, A new and efficient biomimetic system for hydrocarbon oxidation by dioxygen using manganese porphyrins, imidazole, and zinc, J. Chem. Soc. Chem. Commun. 1987: 791–792.CrossRefGoogle Scholar
  53. (d).
    Leduc, P., Battioni, P., Bartoli, J. F., and Mansuy, D., 1988, A biomimetic electrochemical system for the oxidation of hydrocarbons by dioxygen catalyzed by manganese porphyrins and imidazole, Tetrahedron Lett. 29: 205–208.CrossRefGoogle Scholar
  54. (e).
    Creager, S. E., and Murray, R. W., 1987, Electrochemical reactivity of manganese(II) porphyrins. Effects of dioxygen, benzoic anhydride, and axial ligands, Inorg. Chem. 26: 2612.CrossRefGoogle Scholar
  55. (f).
    Mansuy, D., 1993, Activation of alkanes: The biomimetic approach, Coord. Chem. Rev. 125: 129–141.Google Scholar
  56. 15.
    a) Groves, J. T., and Kruper, W. J., Jr., 1979, Preparation and characterization of an oxoporphinatochromium(V) complex, J. Am. Chem. Soc. 101: 7613.CrossRefGoogle Scholar
  57. (b).
    Groves, J. T., and Haushalter, R. C., 1981, E.S.R. evidence for chromium(V) porphyrinates, J. Chem. Soc. Chem. Commun. 1981: 1165–1166.CrossRefGoogle Scholar
  58. (c).
    Takahashi, T., 1985, The generation, characterization and reaction of high valent oxo-, imido-, and nitrodometalloporphyrins of chromium, manganese, and ruthenium (catalytic amination, aziridine, electrochemical oxidation, photolysis), Ph.D. dissertation University of Michigan.Google Scholar
  59. (d).
    Creager, S. E., and Murray, R. W., 1985, Electrochemical studies of oxo(meso-tetraphenylporphinato)chromium(IV). Direct evidence for epoxidation of olefins by an electrochemically generated formal chromium(V) state, Inorg. Chem. 24: 3824–3828.CrossRefGoogle Scholar
  60. (e).
    Garrison, J. M., and Bruice, T. C., 1989, Intermediates in the epoxidation of alkenes by cytochrome P-450 models. 3. Mechanism of oxygen transfer from substituted oxochromium(V) porphyrins to olefinic substrates, J. Am. Chem. Soc. 111: 191–198.CrossRefGoogle Scholar
  61. (f).
    Groves, J. T., and Quinn, R., 1984, Models of oxidized heme proteins. Preparation and characterization of a trans-dioxoruthenium(VI) porphyrin complex, Inorg. Chem. 23: 3844–3846.CrossRefGoogle Scholar
  62. (g).
    Groves, J. T., and Quinn, R., 1985, Aerobic epoxidation of olefins with ruthenium porphyrin catalysts, J. Am. Chem. Soc. 107: 5790–5792.CrossRefGoogle Scholar
  63. (h).
    Groves, J. T., and Ahn, K.-H.,1987, Characterization of an oxoruthenium(IV) porphyrin complex, Inorg. Chem. 26: 3831–3833.Google Scholar
  64. (a) Penner-Hahn, J. E., McMurry, T. J., Renner, M., Latos-Grazynsky, L., Eble, K. S., Davis, I. M., Balch, A. L., Groves, J. T., Dawson, J. R., and Hodgson, K. O., 1983, X-ray absorption spectroscopic studies of high-valent iron porphyrins: Horseradish peroxidase (HRP) compounds I and II, J. Biol. Chem. 258: 12761–12764.Google Scholar
  65. (b).
    Groves, J. T., Quinn, R., McMurry, T. J., Lang, G., and Boso, B., 1984, Porphyrins from iron(III) porphyrin cation radicals, J. Chem. Soc., Chem. Commun. 1984: 1455–1456.Google Scholar
  66. (c).
    Boso, B., Lang, G., McMurry, T. J., and Groves, J. T., 1983, Mössbauer effect study of tight spin coupling in oxidized chloro-5,10,15,20-tetra-(mesityl)-porphyrinato-iron(III), J. Chem. Phys. 79: 1122–1126.CrossRefGoogle Scholar
  67. (d).
    Penner-Hahn, J. E., Eble, K. S., McMurry, T. J., Renner, M., Balch, A. L., Groves, J. T., Dawson, J. H., and Hodgson, K. 0., 1986, Structural characterization of horseradish peroxidase using EXAFS spectroscopy. Evidence for Fe=O ligation in compounds I and II, J. Am. Chem. Soc. 108: 7819–7825.Google Scholar
  68. (e).
    Watanabe, Y., Yamaguchi, K., Morishima, I., Takehira, K., Shimizu, M., Hayakawa, T., and Orita, H., 1991, Remarkable solvent effect on the shape-selective oxidation of olefins catalyzed by iron(III) porphyrins, Inorg. Chem. 30: 2581–2582.CrossRefGoogle Scholar
  69. (f).
    Mandon, D., Weiss, R., Jayaraj, K., Gold, A., Terner, J., Bill, E., and Trautwein, A. X., 1992, Models for peroxidase compound I: Generation and spectroscopic characterization of new oxoferryl porphyrin it cation radical species, Inorg. Chem. 31: 4404–4409.CrossRefGoogle Scholar
  70. (g).
    Tsuchiya, S., 1991, Stable oxo-iron(IV) Porphyrin it radical cation related to the oxidation cycles of cytochrome P-450 and peroxidase, J. Chem. Soc. Chem. Commun. 1991: 716–717.CrossRefGoogle Scholar
  71. (h).
    Ozawa, S., Watanabe, Y., and Morishima, I., 1992, Preparation and characterization of a novel oxoiron(IV) chlorin it-cation radical complex. The first model for compound I of chlorin-containing heme enzymes, Inorg. Chem. 31: 4042–4043.CrossRefGoogle Scholar
  72. (i).
    Ozawa, S., Watanabe, Y., and Morishima, I., 1994, Spectroscopic characterization of peroxo-iron(III) chlorin complexes. The first model for a reaction intermediate of cytochrome d, Inorg. Chem. 33: 306–313.CrossRefGoogle Scholar
  73. 17.
    a) Tajima, K., Shigematsu, M., Jinno, J., Ishizu, K., and Ohya-Nishiguchi, H., 1990, Generation of Fe(III)OEP-hydrogen peroxide complex (OEP = octaethylporphyrinato) by reduction of Fe(ll)OEPoxygen with ascorbic acid sodium salt, J. Chem. Soc. Chem. Commun. 2: 144–145.Google Scholar
  74. (b).
    Yamaguchi, K., Watanabe, Y., and Morishima, I., 1992, Push effect on the heterolytic O-0 bond cleavage of peroxoiron(III) porphyrin adducts, Inorg. Chem. 31: 156–157.CrossRefGoogle Scholar
  75. (c).
    Higuchi, T., Uzu, S., and Hirobe, M., 1990, Synthesis of a highly stable iron porphyrin coordinated by alkylthiolate anion as a model for cytochrome P-450 and its catalytic activity in oxygen-oxygen bond cleavage, J. Am. Chem. Soc. 112: 7051–7053.CrossRefGoogle Scholar
  76. (d).
    Higuchi, T., Shimada, K., Maruyama, N., and Hirobe, M., 1993, Heterolytic oxygen-oxygen bond cleavage of peroxy acid and effective alkane hydroxylation in hydrophobic solvent mediated by an iron porphyrin coordinated by thiolate anion as a model for cytochrome P-450, J. Am. Chem. Soc. 115: 7551–7552.CrossRefGoogle Scholar
  77. (e).
    Adachi, S.-i., Nagano, S., Ishimori, K., Watanabe, Y., Morishima, I., Egawa, T., Kitagawa, T., and Makino, R., 1993, Roles of proximal ligand in heure proteins: Replacement of proximal histidine of human myoglobin with cysteine and tyrosine by site-directed mutagenesis as models for P-450, chloroperoxidase, and catalase, Biochemistry 32: 241–252.PubMedCrossRefGoogle Scholar
  78. (f).
    McCandlish, E., Miksztal, A. R., Nappa, M., Sprenger, A. Q., Valentine, J. S., Stong, J. D., and Spiro, T. G., 1980, Reactions of superoxide with iron porphyrins in aprotic solvents. A high spin ferric porphyrin peroxo complex, J. Am. Chem. Soc. 102: 4268–4271.CrossRefGoogle Scholar
  79. (g).
    Burstyn, J. N., Roe, J. A., Miksztal, A. R., Schaevitz, B. A. Lang, G., and Valentine, J. S., 1988, Magnetic and spectroscopic characterization of an iron porphyrin peroxide complex. Peroxoferrioctaethylporphyrin(1-), J. Am. Chem. Soc. 110: 1382–1388.Google Scholar
  80. (h).
    Dawson, J. H., Holm, R. H., Trudell, J. R., Barth, G., Linder, R. E., Bunnenberg, E., Djerassi, C., and Tang, S.C., 1976, Magnetic circular dichroism studies. 43. Oxidized cytochrome P-450. Magnetic circular dichroism evidence for thiolate ligation in the substrate-bound form. Implications for the catalytic mechanism, J. Am. Chem. Soc. 98: 3707–3709.PubMedCrossRefGoogle Scholar
  81. (i).
    Patzelt, H., and Woggon, W.-D., 1992, Oxygen insertion into nonactivated carbon-hydrogen bonds: The first observation of 02 cleavage by a P-450 enzyme model in the presence of a thiolate ligand, Hely. Chim. Acta 75: 523–530.CrossRefGoogle Scholar
  82. (a) Groves, J. T., McClusky, G. A., White, R. E., and Coon, M. J., 1978, Aliphatic hydroxylation by highly purified liver microsomal cytochrome P-450, Biochem. Biophys. Res. Commun. 81: 154.CrossRefGoogle Scholar
  83. (b).
    Groves, J. T., and Subramanian, D. V., 1984, Evidence for radical intermediates in allylic hydroxylation by cytochrome P-450, J. Am. Chem. Soc. 106: 2177.CrossRefGoogle Scholar
  84. (c).
    Hjelmeland, L. M., Aronow, L, and Trudell, J., 1977, Intramolecular determination of primary kinetic isotope effects in hydroxylations catalyzed by cytochrome P-450, Biochem. Biophys. Res. Commun. 76: 541–549.CrossRefGoogle Scholar
  85. (d).
    Foster, A. B., Jarman, M., Stevens, J. D., Thomas, P., and Westwood, J. H., 1974, Isotope effects in 0- and N-demethylations mediated by rat liver microsomes. Application of direct insertion electron impact mass spectrometry, Chem. Biol. Interact. 9: 327–340.PubMedCrossRefGoogle Scholar
  86. (e).
    Miwa, G. T., Walsh, J. S., and Lu, A. Y., 1984, Kinetic isotope effects on cytochrome P-450-catalyzed oxidation reactions. The oxidative 0-dealkylation of 7-ethoxycoumarin, J. Biol. Chem. 259: 3000–3004.PubMedGoogle Scholar
  87. (f).
    Traylor, T. G., Hill, K. W., Fann, W.-P., Tsuchiya, S., and Dunlap, B. E., 1992, Aliphatic hydroxylation catalyzed by iron(III) porphyrins, J. Am. Chem. Soc. 114: 1308–1312.CrossRefGoogle Scholar
  88. (g).
    Fish, K. M., Avaria, G. E., and Groves, J. T., 1988, Rearrangement of alkyl hydroperoxides mediated by cytochrome P-450: Evidence for the oxygen rebound mechanism, in: Microsomes and Drug Oxidations ( J. O. Miners, D. J. Birkett, R. Drew, B. K. May, and M.E. McManus, eds.), Taylor & Francis, London, pp. 176–183.Google Scholar
  89. (h).
    Vaz, A. D. N., and Coon, M. J., 1994, On the mechanism of action of cytochrome P450: Evaluation of hydrogen abstraction in oxygen-dependent alcohol oxidation, Biochemistry 33: 6442–6449.PubMedCrossRefGoogle Scholar
  90. 19.
    a) Griller, D., and Ingold, K. U., 1980, Free-radical clocks, Acc. Chem. Res. 13: 317–323.CrossRefGoogle Scholar
  91. (b).
    Ortiz de Montellano, P. R., and Steams, R. A., 1987, Timing of the radical recombination step in cytochrome P-450 catalysis with ring-strained probes, J. Am. Chem. Soc. 109: 3415–3420.CrossRefGoogle Scholar
  92. (c).
    Bowry, V. W., Lusztyk, J., and Ingold, K. U., 1989, Calibration of the bicyclo[2.1.0]pent-2-yl radical ring opening and an oxygen rebound rate constant for cytochrome P-450, J. Am. Chem. Soc. 111: 1927–1928.CrossRefGoogle Scholar
  93. (d).
    Bowry, V. W., Lusztyk, J., and Ingold, K. U., 1991, Calibration of a new horologery of fast radical clocks. Ring-opening rates for ring-and a-alkyl-substituted cyclopropylcarbinyl radicals and for the bicyclo[2.1.0]pent-2-y1 radical, J. Am. Chem. Soc. 113: 5687–5698.CrossRefGoogle Scholar
  94. (e).
    Bowry, V. W., and Ingold, K. U., 1991, A radical clock investigation of microsomal cytochrome P-450 hydroxylation of hydrocarbons. Rate of oxygen rebound, J. Am. Chem. Soc. 113: 5699–5707.CrossRefGoogle Scholar
  95. 20.
    Stearns, R. A., and Ortiz de Montellano, P. R., 1985, Cytochrome P-450 catalyzed oxidation of quadricyclane. Evidence for a radical cation intermediate, J. Am. Chem. Soc. 107: 4081–4082.CrossRefGoogle Scholar
  96. 21.
    a) Gassman, P. G., and Yamaguchi, R., 1982, Electron transfer from highly strained polycyclic molecules, Tetrahedron 38: 1113–1122.CrossRefGoogle Scholar
  97. (b).
    Meinwald, J., Labana, S. S., and Chadha, M. S., 1963, Peracid reactions. III. The oxidation of bicyclo[2.2.1]heptadiene, J. Am. Chem. Soc. 85: 582.CrossRefGoogle Scholar
  98. 22.
    Baciocchi, E., Crescenzi, M., and Lanzalunga, 0., 1990, Hydrogen atom transfer versus electron transfer in iron(III) porphyrin catalyzed benzylic oxidations, J. Chem. Soc. Chem. Commun. 1990: 687–688.CrossRefGoogle Scholar
  99. 23(a).
    (a) Inchley, P., Lindsay Smith, J. R., and Lower, R. J., 1989, Model systems for cytochrome P450 dependent monooxygenases. Part 6. The hydroxylation of saturated carbon-hydrogen bonds with etraphenylporphyrinatoiron(III) chloride and iodosylbenzene, New J. Chem. 13: 669–676.Google Scholar
  100. (b).
    Khanna, R. K., Sutherlin, J. S., and Lindsey, D., 1990, Mechanisms in a biomimetic hydroxylation of a chemical probe: 5-Nitroacenaphthene, J. Org. Chem. 26: 6233–6234.CrossRefGoogle Scholar
  101. 24.
    a) Dobson, J. C., Seok, W. K., and Meyer, T. J., 1986, Epoxidation and catalytic oxidation of olefins based on a RUty=O/Rutt=OH2 couple, Inorg. Chem. 25: 1513.CrossRefGoogle Scholar
  102. (b).
    Groves, J. T., Han, Y., and Van Engen, D., 1990, Co-ordination of styrene oxide to a sterically hindered ruthenium(II) porphyrin, J. Chem. Soc. Chem. Commun. 1990: 436–437.CrossRefGoogle Scholar
  103. (a) Ostovic, D., and Bruice, T. C., 1989, Intermediates in the epoxidation of alkenes by cytochrome P-450 models. 5. Epoxidation of alkenes catalyzed by a steric ally hindered (meso-tetrakis(2,6-dibromophenyl)porphinato)iron(IH)chloride, J. Am. Chem. Soc. 111: 6511–6517.CrossRefGoogle Scholar
  104. (b).
    Bruice, T. C., 1988, The mechanisms of oxygen transfer from acyl and alkyl hydroperoxides to metal(III) porphyrins and the epoxidation of alkenes by the resultant hypervalent metal-oxo porphyrin products, Aldrichimica Acta 21: 87–94.Google Scholar
  105. (c).
    White, P. W., 1990, Mechanistic studies and selective catalysis with cytochrome P-450 model systems, Bioorg. Chem. 18: 440–456.CrossRefGoogle Scholar
  106. (d).
    Ostovic, D., and Bruice, T. C., 1992, Mechanism of alkene epoxidation by iron, chromium, and manganese higher valent oxo-metalloporphyrins, Acc. Chem. Res., 25: 314–320.CrossRefGoogle Scholar
  107. (e).
    Arasasingham, R. D., He, G.-X., and Bruice, T. C., 1993, Mechanism of manganese porphyrin-catalyzed oxidation of alkenes. Role of manganese(IV)-oxo species, J. Am. Chem. Soc. 115: 7985–7991.CrossRefGoogle Scholar
  108. 26.
    Ortiz de Montellano, P. R., Mangold, B. L. K., Wheeler, C., Kunze, K. L., and Reich, N. O., 1983, Stereochemistry of cytochrome P-450-catalyzed epoxidation and prosthetic heure alkylation, J. Biol. Chem. 258: 4208–4213.Google Scholar
  109. 27.
    a) Guengerich, F. P., and Macdonald, T. L., 1984, Chemical mechanisms of catalysis by cytochromes P-450: A unified view, Acc. Chem. Res. 17: 9–16.CrossRefGoogle Scholar
  110. (b).
    Liebler, D. C., and Guengerich, F. P., 1983, Olefin oxidation by cytochrome P-450: Evidence for group migration in catalytic intermediates formed with vinylidene chloride and trans-1-phenyl-1-butene, Biochemistry 22: 5482–5489.PubMedCrossRefGoogle Scholar
  111. (c).
    Miller, R. E., and Guengerich, F. P., 1982, Oxidation of trichloroethylene by liver microsomal cytochrome P-450: Evidence for chlorine migration in a transition state not involving trichloroethylene oxide, Biochemistry 21: 1090–1097.PubMedCrossRefGoogle Scholar
  112. 28.
    a) Mansuy, D., Leclaire, J., Fontecave, M., and Momenteau, M., 1984, Oxidation of monosubstituted olefins by cytochromes P-450 and heure models: Evidence for the formation of aldehydes in addition to epoxides and allylic alcohols, Biochem. Biophys. Res. Commun. 119: 319–325.CrossRefGoogle Scholar
  113. (b).
    Wistuba, D., Nowotny, H.-P., Trager, O., and Schurig V., 1989, Cytochrome P-450-catalyzed asymmetric epoxidation of simple prochiral and chiral aliphatic alkenes: Species dependence and effect of enzyme induction on enantioselective oxirane formation, Chirality 1: 127–136.PubMedCrossRefGoogle Scholar
  114. (c).
    Ortiz de Montellano, P.R., Fruetel, J. A., Collins, J. R., Camper, D. L., and Loew, G. H., 1991, Theoretical and experimental analysis of the absolute stereochemistry of cis-ß-methylstyrene epoxidation by cytochrome P450cam, J. Am. Chem. Soc. 113: 3195–3196.CrossRefGoogle Scholar
  115. 29.
    Bruice, T. C., and Castellino, A. J., 1988, Intermediates in the epoxidation of alkenes by cytochrome P-450 models. 2. Use of the trans-2,trans-3-diphenylcyclopropyl substituent in a search for radical intermediates, J. Am. Chem. Soc. 110: 7512–7519.CrossRefGoogle Scholar
  116. 30.
    Garrison, J. M., Ostovic, D., and Bruice, T. C., 1989, Is a linear relationship between the free energies of activation and one-electron oxidation potential evidence for one-electron transfer being rate determining? Intermediates in the epoxidation of alkenes by cytochrome P-450 models. 4. Epoxidation of a series of alkenes by oxo(meso-tetrakis(2,6-dibromophenyl)porphinato)chromium(V), J. Am. Chem. Soc. 111: 4960–4966.CrossRefGoogle Scholar
  117. 31.
    a) Groves, J. T., and Watanabe, Y., 1986, On the mechanism of olefin epoxidation by oxo-iron porphyrins, J. Am. Chem. Soc. 108: 507–508.CrossRefGoogle Scholar
  118. (b).
    Lindsay Smith, J. R., and Sleath, P. R., 1982, Model systems for cytochrome P450 dependent mono-oxygenases. Part 1. Oxidation of alkenes and aromatic compounds by tetraphenylporphinatoiron(III) chloride and iodosylbenzene, J. Chem. Soc. Perkin Trans. II 1982: 1009–1015.Google Scholar
  119. (c).
    Bortolini, O., and Meunier, B., 1984, Enhanced selectivity by an `open-well effect’ in a metalloporphyrin-catalyzed oxygenation reaction, J. Chem. Soc. Perkin Trans. II, 1984: 1967.CrossRefGoogle Scholar
  120. (d).
    Traylor, T. G., and Xu, F., 1988, Model reactions related to cytochrome P-450. Effects of alkene structure on the rates of epoxide formation, J. Am. Chem. Soc. 110: 1953–1958.CrossRefGoogle Scholar
  121. (e).
    Samsel, E. G., Srinivasan, K., and Kochi, J. K., 1985, Mechanism of the chromium-catalyzed epoxidation of olefins. Role of oxochromium(V) cations, J. Am. Chem. Soc. 107: 7606–7617.CrossRefGoogle Scholar
  122. 32.
    Seyferth, D., Mui, J. Y.-P., and Damrauer, R., 1968, Halomethyl-metal compounds. XIX. Further studies of the aryl(bromodichloromethyl)mercury-olefin reaction, J. Am. Chem. Soc. 90: 6182–6186.CrossRefGoogle Scholar
  123. 33.
    Nishimura, J., Furukawa, J., Kawabata, N., and Kitayama, M., 1971, Relative reactivity of olefins in cycloaddition with zinc carbenoid, Tetrahedron 27: 1799–1806.CrossRefGoogle Scholar
  124. 34.
    Ogata, Y., and Tabushl, I., 1961, Kinetics of the epoxidation of substituted a-methylstilbenes, J. Am. Chem. Soc. 83: 3440.CrossRefGoogle Scholar
  125. 35.
    Schubert, W. M., and Keefe, J. R., 1972, Acid-catalyzed hydration of styrenes, J. Am. Chem. Soc. 94: 559–566.CrossRefGoogle Scholar
  126. 36.
    Yates, K., McDonald, R. S., and Shapiro, S. A., 1973, Kinetics and mechanisms of electrophilic addition. I. Comparison of second-and third-order brominations, J. Org. Chem. 38: 2460–2464.CrossRefGoogle Scholar
  127. 37.
    a) Traylor, T. G., and Miksztal, A. R., 1989, Alkene epoxidations catalyzed by iron(III), manganese(IlI), and chromium(III) porphyrins. Effects of metal and porphyrin substituents on selectivity and regiochemistry of epoxidation, J. Am. Chem. Soc. 111: 7443–7448.CrossRefGoogle Scholar
  128. (b).
    Traylor, T. G., Tsuchiya, S., Byun, Y. S., and Kim, C. 1993, High-yield epoxidations with hydrogen peroxide and tert-butyl hydroperoxide catalyzed by iron(III) porphyrins: Heterolytic cleavage of hydroperoxides, J. Am. Chem. Soc. 115: 2775–2781.CrossRefGoogle Scholar
  129. 38.
    Traylor, T. G., Nakano, T., Dunlap, B. E., and Traylor, P. S., 1986, Mechanisms of hemin-catalyzed alkene epoxidation. The effect of catalyst on the regiochemistry of epoxidation, J. Am. Chem. Soc. 108: 2782–2784.CrossRefGoogle Scholar
  130. (a) Collman, J. P., Kodadek, T., Raybuck, S. A., and Meunier, B.,1983, Oxygenation of hydrocarbons by cytochrome P-450 model compounds: Modification of reactivity by axial ligands, Proc. Natl. Acad. Sci. USA 80: 7039–7044.Google Scholar
  131. (b).
    Collman, J. P., Brauman, J. I., Meunier, B., Hayashi, T., Kodadek, T., and Raybuck, S. A., 1985, Epoxidation of olefins by cytochrome P-450 model compounds: Kinetics and stereochemistry of oxygen atom transfer and origin of shape selectivity, J. Am. Chem. Soc. 107: 2000–2005.CrossRefGoogle Scholar
  132. (c).
    Col lman, J. P., Kodadek, T., and Brauman, J. I., 1986, Oxygenation of styrene by cytochrome P-450 model systems. A mechanistic study, J. Am. Chem. Soc. 108: 2588–2594.CrossRefGoogle Scholar
  133. (d).
    Collman, J. P., Brauman, J. I., Hampton, P. D., Tanaka, H., Bohle, D. S., and Hembre, R. T., 1990, Mechanistic studies of olefin epoxidation by a manganese porphyrin and hypochlorite: An alternative explanation of saturation kinetics, J. Am. Chem. Soc. 112: 7980–7984CrossRefGoogle Scholar
  134. 40.
    Watanabe,Y., and Groves, J. T., 1988, Oxygen activation by metalloporphyrins, heterolytic and homolytic O-0 bond cleavage reactions of (acylperoxo)manganese(III) porphyrins, in: Studies in Organic Chemistry. The Role of Oxygen in Chemistry and Biochemistry, Vol. 33 ( W. Ando and Y. Moro-Oka, eds.) Elsevier, Amsterdam, pp. 471–476.Google Scholar
  135. 41.
    Sharpless, B., Teranishi, A. Y., and Bäckvall, J. E., 1977, Chromyl chloride oxidations of olefins. Possible role of organometallic intermediates in the oxidations of olefins by oxo transition metal species, J. Am. Chem. Soc. 99: 3120–3128.CrossRefGoogle Scholar
  136. 42.
    a) Grubbs, R. H., 1978, The olefm metathesis reaction, Prog. Inorg. Chem. 24: 1–50.CrossRefGoogle Scholar
  137. (b).
    Grubbs, R. H., and Tumas, W., 1989, Polymer synthesis and organotransition metal chemistry, Science 243: 907–915.PubMedCrossRefGoogle Scholar
  138. (c).
    Schrock, R. R., 1990, Living ring-opening metathesis polymerization catalyzed by well-characterized transition-metal alkylidene complexes, Acc. Chem. Res. 23: 158–165.CrossRefGoogle Scholar
  139. (a) Tjaden, E. B., and Stryker, J. M., 1990, Nucleophilic addition of enolates to the central carbon of transition-metal tl 3-allyl complexes. Metallacyclobutane formation, reversibility of nucleophilic addition, and synthesis of a cyclopropyl ketones, J. Am. Chem. Soc. 112: 6420–6422.CrossRefGoogle Scholar
  140. (b).
    Ivin, K. J., Rooney, J. I., Stewart, C. D., Green, M. L. H., and Mahtab, R., 1978, Mechanism for the stereospecific polymerization of olefins by Ziegler-Natta catalysts, J. Chem. Soc., Chem. Commun. 1978: 604–606.Google Scholar
  141. (c).
    Brookhart, M. H., Timmers, D., Tucker, J. R., Williams, G. D., Husk, G. R., Brunner, H., and Hammer, B., 1983, Enantioselective cyclopropane synthesis using the chiral carbene complexes (SFeSC)- and (RFeSC)-(CsHs)(CO)(Ph2R*P)Fe:CHCHj (R* = (S)-2-methyl-butyl). Role of metal vs. ligand chirality in the optical induction, J. Am. Chem. Soc. 105: 6721–6723.CrossRefGoogle Scholar
  142. (d).
    Yang, G. K., and Bergman, R. G., 1983, Characterization and evidence for alkylation of hydridodicarbonylcyclopentadienylrhenate(I) ion [CpRe(CO)2H]“ in the conversion of dihydrodicarbonylcyclopentadienylrhenium [CpRe(CO)2H2] to CpRe(CO)2R2. Synthesis of a rhenacyclopentane and its thermolysis to methylcyclopropane, J. Am. Chem. Soc. 105: 6500–6501.CrossRefGoogle Scholar
  143. (e).
    Klein, D. P., Hayes, J. C., and Bergman, R. G., 1988, Insertion of (1i5-CSMes)(PMes)Ir into the carbon-hydrogen bonds of functionalized organic molecules: A C-H activation route to 2-oxa-and 2-azametallacyclobutanes, potential models for olefin oxidation intermediates, J. Am. Chem. Soc. 110: 3704–3706.CrossRefGoogle Scholar
  144. (f).
    Hayasi, Y., and Schwartz, J., 1981, Reaction between epoxides and (3-diketonate complexes of low-valent vanadium and molybdenum, Inorg. Chem. 20: 3473.CrossRefGoogle Scholar
  145. (g).
    Lenarda, M., Pahor, N. B., Calligaris, M., Graziani, M., and Radaccio, L., 1978, Synthesis and crystal structure of 3,3,4-tricyano-2,2-bis(triphenyl-phosphine)- 1 -oxa-2-plati nacyclobutane, J. Chem. Soc. Dalton Trans. 1978: 279–282.CrossRefGoogle Scholar
  146. (h).
    Osborne, R. B., and Ibers, J. A., 1982, The reactions of platinum(0) and palladium(0) tertiary phosphine complexes with phenyl dicyanooxiranes, J Organomet. Chem. 232: 371–385.Google Scholar
  147. (i).
    Schlodder, R., Ibers, J. A., Lenarda, M., and Graziani, M., 1974, Structure and mechanism of formation of the metallooxacyclobutane complex bis(triphenylarsine)tetracyanooxiraneplatinum, the product of the reaction between tetracyanooxirane and tetrakis (triphenylarsine)platinum, J. Am. Chem. Soc. 96: 6893–6900.CrossRefGoogle Scholar
  148. (j).
    Su, F.-M., Cooper, C., Geib, S. J., Rheingold, A. L., and Mayer, J. M., 1986, Synthesis and characterization of high-valent oxo olefin and oxo carbonyl complexes. Crystal and molecular structure of W(0)C12(CH2:CH2)(PMePh2)2, J. Am. Chem. Soc. 108: 3545–3547.CrossRefGoogle Scholar
  149. (k).
    Bryan, J. C., Geib, S. J., Rheingold, A. L., Mayer, J. A., 1987, Oxidative addition of carbon dioxide, epoxides, and related molecules to WCl2(PMePh2)4 yielding tungsten(IV) oxo, imido, and 8 sulfido complexes. Crystal and molecular structure of W(0)C12(CO)(PMePh2)2, J. Am. Chem. Soc. 109: 2826–2828.CrossRefGoogle Scholar
  150. (l).
    Atagi, L. M., Over, D. E., McAlister, D. R., and Mayer, J. A., 1991, On the mechanism of oxygen-atom or nitrene-group transfer in reactions of epoxides and aziridines with tungsten(II) compounds, J. Am. Chem. Soc. 113: 870–874.CrossRefGoogle Scholar
  151. 44.
    a) Groves, J. T., Avaria-Neisser, G. E., Fish, K. M., Imachi, M., and Kuczkowski, R. L., 1986, Hydrogen-deuterium exchange during propylene epoxidation by cytochome P-450, J. Am. Chem. Soc. 108: 3837–3838.CrossRefGoogle Scholar
  152. (b).
    Groves, J. T., Fish, K. M., Avaria-Neisser, G. E., Imachi, M., and Kuczkowski, R. L., 1988, A unique deuterium/proton exchange during cytochrome P-450 mediated epoxidation of propene and butene, Prog. Clin. Biol. Res. 274: 509–524.PubMedGoogle Scholar
  153. 45.
    a) Castellino, A. J., and Bruice, T. C., 1988, Intermediates in the epoxidation of alkenes by cytochrome P-450 models. 1. cis-Stilbene as a mechanistic probe, J. Am. Chem. Soc. 110: 158–162.CrossRefGoogle Scholar
  154. (b).
    Mirafzal, G. A., Kim, T., Liu, J., and Bauld, N. L., 1992, Cation radical probes. Development and application to metalloporphyrin-catalyzed epoxidation, J. Am. Chem. Soc. 114: 10968–10969.CrossRefGoogle Scholar
  155. 46.
    a) Komives, E. A., and Ortiz de Montellano, P. R., 1987, Mechanism of oxidation of rc bonds by cytochrome P-450. Electronic requirements of the transition state in the turnover of phenylacetylenes, J. Biol. Chem. 262: 9793–9802.Google Scholar
  156. (b).
    Kunze, K. L., Mangold, B. L. K., Beilan, H. S., Ortiz de Montellano, P. R., 1983, The cytochrome P-450 active site. Regiospecificity of prosthetic heure alkylation by olefins and acetylenes, J. Biol. Chem. 258: 4202–4207.PubMedGoogle Scholar
  157. (c).
    Ortiz de Montellano, P. R., Beilan, H. S., Kunze, K. L., and Mico, B. A., 1981, Destruction of cytochrome P-450 by ethylene. Structure of the resulting prosthetic heure adduct, J. Biol. Chem. 1981: 4395–4399.Google Scholar
  158. (d).
    Luke, B. T., Collins, J. R., Loew, G. H., and Mclean, A. D., 1990, Theoretical investigations of terminal alkenes as putative suicide substrates of cytochrome P-450, J. Am. Chem. Soc. 112: 8686–8691.CrossRefGoogle Scholar
  159. (e).
    Mashiko, T., Dolphin, D., Nakano, T., and Miksztal, A. R., 1985, N-Alkyl-porphyrin formation during the reactions of cytochrome P-450 model systems, J. Am. Chem. Soc. 107: 3735–3736.CrossRefGoogle Scholar
  160. 47.
    Ahn, K.-11., and Groves, J. T., 1994, Shape-selective oxygen transfer to olefins catalyzed by sterically hindered iron porphyrins, Korean J. Chem. 15 (11): 957–961.Google Scholar
  161. 48.
    Groves, J. T., Ahn, K.-H., and Quinn, R., 1988, Cis-trans isomerization of epoxides catalyzed by ruthenium(II) porphyrins, J. Am. Chem. Soc. 110: 4217–4220.CrossRefGoogle Scholar
  162. 49.
    a) Collman, J. P., Hampton, P. D., and Brauman, J. I., 1990, Suicide inactivation of cytochrome P-450 model compounds by terminal olefins. 1. A mechanistic study of heure N-alkylation and epoxidation, J. Am. Chem. Soc. 112: 2977–2986.CrossRefGoogle Scholar
  163. (b).
    Collman, J. P., Hampton, P. D., and Brauman, J. I., 1990, Suicide inactivation of cytochrome P-450 model compounds by terminal olefins. 2. Steric and electronic effects in heme N-alkylation and epoxidation, J. Am. Chem. Soc. 112: 2986–2998.CrossRefGoogle Scholar
  164. (c).
    Meunier, B., 1988, Are intermediates with a metal-carbon bond involved in oxygenation reactions catalyzed by metalloporphyrins? Gazz. Chim. Ital. 118: 485–493.Google Scholar
  165. (d).
    Dolphin, D., Matsumoto, A., and Shortman, C., 1989, (3-Hydroxy-alkyl a-metallophyrins. Models for epoxide and alkene generation from cytochrome P-450, J. Am. Chem. Soc. 111: 411–413.Google Scholar
  166. (e).
    Nakano, T., Traylor, T. G., and Dolphin, D., 1990, The formation of N-alkyl-porphyrins during epoxidation of ethylene catalyzed by iron(III) meso-tetrakis(2,6-dichlorophenyl)porphyrin, Can. J. Chem. 68: 1504–1506.CrossRefGoogle Scholar
  167. (f).
    Mashiko, T., Dolphin, D., Nakano, T, and Traylor, T. G., 1985, N-Allcylporphyrin formation during the reactions of cytochrome P-450 model systems, J. Am. Chem. Soc. 107: 3735–3736.CrossRefGoogle Scholar
  168. 50.
    Collman, J. P., Zhang, X., Lee, V. J., Uffelman, E. S., and Brauman, J. I., 1993, Regioselective and enantioselective epoxidation catalyzed by metalloporphyrins, Science 261: 1404–1411.PubMedCrossRefGoogle Scholar
  169. 51.
    a) Meunier, B., Carvalho, M. E., Bortolini, O., and Momenteau, M., 1988, Proximal effect of the nitrogen ligands in the catalytic epoxidation of olefins by the sodium hypochlorite/manganese(III) porphyrin system, Inorg. Chem. 27: 161–164.CrossRefGoogle Scholar
  170. (b).
    Creager, S. E., and Murray, R. W., 1987, Electrochemical reactivity of manganese(II) porphyrins. Effects of dioxygen, benzoic anhydride, and axial ligands, Inorg. Chem. 26: 2612–2618.CrossRefGoogle Scholar
  171. (c).
    Battioni, J. P., Renaud, J. F., Bartoli, J. F., Reina-Artiles, M., Fort, M., and Mansuy, D., 1988, Monooxygenase-like oxidation of hydrocarbons by hydrogen peroxide catalyzed by manganese porphyrins and imidazole: Selection of the best catalytic system and nature of the active oxygen species, J. Am. Chem. Soc. 110: 8462–8470.CrossRefGoogle Scholar
  172. (d).
    Nappa, M. J., and McKinney, R. J., 1988, Selectivity control by axial ligand modification in manganese porphyrin-catalyzed oxidations, Inorg. Chem. 27: 3740–3745.CrossRefGoogle Scholar
  173. (e).
    Nappa, M. J., and Tolman, C. A., 1985, Steric and electronic control of iron porphyrin catalyzed hydrocarbon oxidations, Inorg. Chem. 24: 4711–4719.CrossRefGoogle Scholar
  174. 52.
    Champion, P. M., 1989, Elementary electronic excitations and the mechanism of cytochrome P450, J. Am. Chem. Soc. 111: 3433–3434.CrossRefGoogle Scholar
  175. (a) Dawson, J., and Sono, M., 1987, Cytochrome P-450 and chloroperoxidase: Thiolate-ligated heure enzymes. Spectroscopic determination of their active-site structures and mechanistic implications of thiolate ligation, Chem. Rev. 87: 1255–1276.CrossRefGoogle Scholar
  176. (b).
    Dawson, J., 1988, Probing structure-function relations in heme-containing oxygenases and peroxidases, Science 240: 433–439.PubMedCrossRefGoogle Scholar
  177. 54.
    Chang, C. K., and Kuo, M.-S., 1979, Reaction of iron(III) porphyrins and iodosoxylene. The active oxene complex of cytochrome P-450, J. Am. Chem. Soc. 101: 3413–3415.CrossRefGoogle Scholar
  178. 55.
    Grieco, P. A., and Stuk, T. L., 1990, Remote oxidation of unactivated carbon-hydrogen bonds in steroids via oxometalloporphinates, J. Am. Chem. Soc. 112: 7799–7801.CrossRefGoogle Scholar
  179. 56.
    Breslow, R., Brown, A. B., McCullough, R. D., and White, R. W., 1989, Substrate selectivity in epoxidation by metalloporphyrin and metallosalen catalysts carrying binding groups, J. Am. Chem. Soc. 111: 4517–4518.CrossRefGoogle Scholar
  180. (a) Cook, B. R., Reinert, T. J., and Suslick, K. S., 1986, Shape-selective alkane hydroxylation by metalloporphyrin catalysts, J. Am. Chem. Soc. 108: 7281–7286.CrossRefGoogle Scholar
  181. (b).
    Suslick, K. S., and Cook, B. R., 1987, Regioselective epoxidations of dienes with manganese(III) porphyrin catalysts, J. Chem. Soc. Chem. Commun. 1987: 200–202.CrossRefGoogle Scholar
  182. 58.
    a) Collman, J. P., Zhang, X., Hembre, R. T., and Brauman, J. I., 1990, Shape-selective olefin epoxidation catalyzed by manganese picnic basket porphyrins, J. Am. Chem. Soc. 112: 5356–5357.CrossRefGoogle Scholar
  183. (b).
    Coltman, J. P., Lee, V. J., Zhang, X., Ibers, J. A., and Brauman, J. I., 1993, Enantioselective epoxidation of unfunctionalized olefins catalyzed by threitol-strapped manganese porphyrins, J. Am. Chem. Soc. 115: 3834–3835.CrossRefGoogle Scholar
  184. 59.
    a) Groves, J. T., and Neumann, R., 1989, Regioselective oxidation catalysis in synthetic phospholipid vesicles. Membrane spanning steroidal metallo-porphyrins, J. Am. Chem. Soc. 111: 2900–2909.CrossRefGoogle Scholar
  185. (b).
    Groves, J. T., and Neumann, R., 1988, Enzymic regioselectivity in the hydroxylation of cholesterol catalyzed by a membrane spanning metalloporphyrin, J. Org. Chem. 53: 3891–3893.CrossRefGoogle Scholar
  186. (c).
    Groves, J. T., and Neumann, R., 1987, Membrane-spanning steroidal metalloporphyrins as site-selective catalysts in synthetic vesicles, J. Am. Chem. Soc. 109: 5045–5047.CrossRefGoogle Scholar
  187. 60.
    Groves, J. T., and Myers, R. S., 1983, Catalytic asymmetric epoxidation with chiral iron porphyrins, J. Am. Chem. Soc. 105: 5791–5796.CrossRefGoogle Scholar
  188. 61.
    Mansuy, D., Battioni, P., Renaud, J.-P., and Guerin, P., 1985, Asymmetric epoxidation of alkenes catalyzed by a basket-handle iron-porphyrin bearing amino acids, J. Chem. Soc. Chem. Commun. 1985: 155–156.CrossRefGoogle Scholar
  189. 62.
    O’Malley, S., and Kodadek, T., 1989, Synthesis and characterization of the “chiral wall” porphyrin: A chemically robust ligand for metal-catalyzed asymmetric epoxidations, J. Am. Chem. Soc. 111: 9116–9117.CrossRefGoogle Scholar
  190. 63.
    Naruta, Y., Tani, F., and Maruyama, K., 1989, Synthesis of chiral “twin coronet” porphyrins and catalytic and asymmetric epoxidation of olefms, Chem. Leu. 1989: 1269–1272.CrossRefGoogle Scholar
  191. 64.
    a) Groves, J. T., and Viski, P., 1990, Asymmetric hydroxylation, epoxidation, and sulfoxidation catalyzed by vaulted binaphthyl metalloporphyrins, J. Org. Chem. 55: 3628–3634.CrossRefGoogle Scholar
  192. (b).
    Groves, J. T., and Viski, P., 1989, Asymmetric hydroxylation by a chiral iron porphyrin, J. Am. Chem. Soc. 111: 8537–8538.CrossRefGoogle Scholar
  193. 65.
    Sheldon, R. A., and Kochi, J. K., 1981, Metal Catalyzed Oxidations of Organic Compounds, Academic Press, New York.Google Scholar
  194. 66.
    Koola, J. D., and Kochi, J. K., 1987, Nickel catalysis of olefin epoxidation, Inorg. Chem. 26: 908–916.CrossRefGoogle Scholar
  195. (b).
    Samsel, E. G., Srinivasan, K., and Kochi, J. K., 1985, Mechanism of the chromium-catalyzed epoxidation of olefins. Role of oxochromium(V) cations, J. Am. Chem. Soc. 107: 7606–7617.CrossRefGoogle Scholar
  196. (c).
    Srinivasan, K., and Kochi, J. K., 1985, Synthesis and molecular structure of oxochromium(V) cations. Coordination with donor ligands, Inorg. Chem. 24: 4671–4679.CrossRefGoogle Scholar
  197. 67.
    a) Jorgensen, K. A., 1989, Transition-metal-catalyzed epoxidations, Chem. Rev. 89: 431.CrossRefGoogle Scholar
  198. (b).
    Holm, R., 1987, Metal-centered oxygen atom transfer reactions, Chem. Rev. 87:1401–1449.Google Scholar
  199. 68.
    a) Collins, T. J., and Gorden-Wylie, S.W., 1990, Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes. J. Am. Chem. Soc. 112: 2801–2803.CrossRefGoogle Scholar
  200. (b).
    Ozaki, S., Mimura, H., Yasuhara, N., Masui, M., Yamagata, Y., Yomita, K., and Collins, T. J., 1990, Synthesis of chiral square planar cobalt(III) complexes and catalytic asymmetric epoxidations with these complexes, J. Chem. Soc. Perkin Trans. 1990: 353–360.Google Scholar
  201. (c).
    Kinnery, J. F., Albert, J. S., and Burrows, C. J., 1988, Mechanistic studies of alkene epoxidation catalyzed by nickel(II) cyclam complexes. Oxygen-18 labeling and substituent effects, J. Am. Chem. Soc. 110: 6124–6129.CrossRefGoogle Scholar
  202. (d).
    Leung. W.-H., and Che, C.-M., 1989, Oxidation chemistry of ruthenium-salen complexes, Inorg. Chem. 28: 4619–4622.CrossRefGoogle Scholar
  203. 69.
    a) Zhang, W., Loebach, J. L., Wilson, S. R., and Jacobsen, E. N., 1989, A manganese(V)-oxo complex, J. Am. Chem. Soc. 111: 4511–4513.CrossRefGoogle Scholar
  204. (b).
    Chang, S., Galvin, J. M., and Jacobsen, E. N., 1994, Effect of chiral quaternary ammonium salts on (salen)Mn-catalyzed epoxidation of cis-olefins. A highly enantioselective, catalytic route to trans-epoxides, J. Am. Chem. Soc. 116: 6937–6938.CrossRefGoogle Scholar
  205. (c).
    Brandes, B. D., and Jacobsen, E. N., 1994, Highly ennantioselective, catalytic epoxidation of trisubstituted olefins, J. Org. Chem. 59: 4378–4380.CrossRefGoogle Scholar
  206. (d).
    Deng, L., and Jacobsen, E. N., 1992, A practical, highly enantioselective synthesis of the taxol side chain via asymmetric catalysis, J. Org. Chem. 57: 4320–4323.CrossRefGoogle Scholar
  207. (e).
    Zhang, W., and Jacobsen, E. N., 1991, Asymmetric olefin epoxidation with sodium hypochlorite catalyzed by easily prepared chiral Mn(III) salen complexes, J. Org. Chem. 56: 2296–2298.CrossRefGoogle Scholar
  208. 70.
    Marietta, M. A., 1993, Nitric oxide synthase structure and mechanism, J Biol. Chem. 268: 1 2231.Google Scholar
  209. 71.
    Stuehr, D. J., Kwon, N. S., Nathan, C. F., and Griffith, O.W., 1991, Nw-hydroxy-L-arginine is an intermediate in the biosynthesis of nitric oxide from L-arginine, J. Biol. Chem. 266: 6259.PubMedGoogle Scholar
  210. 72.
    a) White, K. A., and Marietta, M. A., 1992, Nitric oxide synthase is a cytochrome P-450 type hemoprotein, Biochemistry 31: 6627.CrossRefGoogle Scholar
  211. (b).
    McMillan, K., Bredt, D. S., Hirsch, D. J., Snyder, S. H., Clark, J. E., and Masters, B. S. S., 1992, Cloned, expressed rat cerebellar nitric oxide synthase contains stoichiometric amounts of heme, which binds carbon monoxide, Proc. Natl. Acad. Sci. USA 89: 1141–1145.CrossRefGoogle Scholar
  212. 73.
    Parli, C. J., Wang, N., and McMahon, R. E., 1971, The enzymatic N-hydroxylation of an imine, J. Biol. Chem. 246: 6953.PubMedGoogle Scholar
  213. 74.
    Korth, H.-G., Sustmann, R., Thater, C., Butler, A. R., and Ingold, K. U., 1994, On the mechanism of the nitric oxide synthase-catalyzed conversion of Nw-hydroxy-L-arginine to citrulline and nitric oxide, J. Biol. Chem. 269: 17776–17779.PubMedGoogle Scholar
  214. 75.
    Vaz, A. D. N., Roberts, E. S., and Coon, M. J., 1991, Olefin formation in the oxidative deformylation of aldehydes by cytochrome P-450. Mechanistic implication for catalysis by oxygen-derived peroxide, J. m. Chem. Soc. 113: 5886.CrossRefGoogle Scholar
  215. 76.
    Watanabe, Y., and Ishimura, Y., 1989, A model study on aromatase cytochrome P-450 reaction: Transformation of androstene-3,17,19-trione to 10b-hydroxyester-4-ene-3,17-dione, J. Am. Chem. Soc. 111: 8047.CrossRefGoogle Scholar
  216. 77.
    Klatt, P., Schmidt, G. U., and Mayer, B., 1993, Multiple catalytic function of brain nitric oxide synthase, J. Biol. Chem. 268: 14781.PubMedGoogle Scholar
  217. 78.
    Fukuto, J. M., Stuehr, D. J., Feldman, P. L., Bova, M. P., and Wong, P., 1993, Peracid oxidation of an N-hydroxyguanidine compound: A chemical model for the oxidation of Nw-hydroxy-L-arginine by nitric oxide synthase, J. Med. Chem. 36: 2666.PubMedCrossRefGoogle Scholar
  218. 79.
    Boucher, J. L., Genet, A., Vadon, S., Delaforge, M., and Mansuy, D., 1992, Formation of nitric oxides and citrulline upon oxidation of Nw-hydroxyl-L-arginine by hemeprotein, Biochem. Biophys. Res. Commun. 184: 1158.PubMedCrossRefGoogle Scholar
  219. 80.
    Andronik-Lion, V., Boucher, J. L., Delaforge, M., and Mansuy, D., 1992, Formation of nitric oxide by cytochrome P450-catalyzed oxidation of aromatic amidoximes, Biochem. Biophys. Res. Commun. 184: 452.CrossRefGoogle Scholar
  220. 81.
    Nishinaga, A., Yamazaki, S., Miwa, T., and Matsuura, T., 1991, Co(salen) catalyzed oxidation of oximes with t-butyl hydroperoxide, React. Kinet. Catal. Lett. 43: 273.CrossRefGoogle Scholar
  221. 82(a).
    Babcock, G. T., and Varotsis, C., 1993, Discrete steps in dioxygen activation—The cytochrome oxidase/02 reaction, J. Bioenerg. Biomembr. 25 (2): 71–80.PubMedCrossRefGoogle Scholar
  222. (b).
    Han, S., Ching, Y.-c., and Rousseau, D. L., 1990, Ferryl and hydrox intermediates in the reaction of oxygen with reduced cytochrome c oxidase, Nature 348: 89–90.PubMedCrossRefGoogle Scholar
  223. (c).
    Varotsis, C., Zhang, Y., Appelman, E. H., and Babcock, G. T., 1993, Resolution of the reaction sequence during the reduction of 02 by cytochrome oxidase, Proc. Natl. Acad. Sci. USA 90: 237–241.PubMedCrossRefGoogle Scholar
  224. 83(a).
    DeRose, V. J., Liu, K. E., Kurtz, D. M., Jr., Hoffman, B. M., and Lippard, S. J., 1993, Proton ENDOR identification of bridging hydroxide ligands in mixed-valent diiron centers of proteins: Methane monooxygenase and semimet azidohemerythrin, J. Am. Chem. Soc. 115: 6440.CrossRefGoogle Scholar
  225. (b).
    Lee, S.-K., Fox, B. G., Froland, W. A., Lipscomb, J. D., and Münck, E., 1993, A transient intermediate of the methane monooxygenase catalytic cycle containing an FetvFety cluster, J. Am. Chem. Soc. 115: 6450.CrossRefGoogle Scholar
  226. (c).
    Fox, B. G., Hendrich, M. P., Surerus, K. K., Andersson, K. K., Froland, W. A., Lipscomb, J. D., and Münck, E.,1993, Mössbauer, EPR, and ENDOR studies of the hydroxylase and reductase components of methane monooxygenase from Methylosinus trichosporium OB3b, J. Am. Chem. Soc. 115: 3688.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • John T. Groves
    • 1
  • Yuan-Zhang Han
    • 1
  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA

Personalised recommendations