Summary and Perspective

Assessing Test Effectiveness—The Identification of Good Tumor Markers
  • Carleton T. Garrett
  • Stewart Sell
Part of the Contemporary Biomedicine book series (CB, volume 12)


The earlier chapters of this volume have attempted to identify potential new target molecules that may represent useful cancer markers and have provided information regarding their biological function as well as the potential or actual clinical utilization to the extent that such information is known. These candidate tumor markers reflect alterations in antigenic composition and alterations in gene expression and gene structure. A listing of some of the antigenic and genetic alterations judged to be most promising is presented in Table 1. Which of these will ultimately be incorporated into clinical practice is unknown. Selection of more effective tumor markers will lead to improvement in the quality of patient care, whereas selection of ineffective markers will inflate health care costs without perceived benefit. The latter will serve to cast added doubt on the usefulness for supporting development of new markers in the future.


Tumor Marker Positive Test Result Test Effectiveness Anaplastic Tumor Laboratory Practitioner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aziz, K. J. and P. E. Maxim (1993), Clin. Chem. 39, 2439–2443.PubMedGoogle Scholar
  2. Bloch, D. A. and H. C. Kraemer (1989), Biometrics 45, 269–287.PubMedCrossRefGoogle Scholar
  3. Boyko, E. J. (1994), Med. Decis. Making 14, 175–179.PubMedCrossRefGoogle Scholar
  4. Burk, M. D. (1990), Am. J. Clin. Pathol. 94, 663, 664.Google Scholar
  5. Cohen, J. (1960), Educ. Psychol. Meas. 20, 37–46.CrossRefGoogle Scholar
  6. Committee for Evaluating Medical Technologies, Institute of Medicine, National Academy of Sciences (1985), National Academy Press, Washington, DC, pp. 70–175.Google Scholar
  7. Connell, F. A. and T. D. Koepsell (1985), Am. J. Epidemiol. 121, 744–753.PubMedCrossRefGoogle Scholar
  8. Cossman, J., B. Zehnbauer, C. T. Garrett, L. J. Smith, M. Williams, E. S. Jaffe, L. O. Hanson, and J. Love (1991), Am. J. Clin. Pathol. 95, 347–354.Google Scholar
  9. Council on Scientific Affairs and the Council on Medical Service, American Medical Association (1992), Arch. Intern. Med. 152, 46–50.CrossRefGoogle Scholar
  10. Diamond, G. A., M. Hirsch, J. S. Forrester, H. M. Staniloff, R. Vas, S. W. Halpern, and H. J. C. Swan (1981), Circulation 63, 915–921.PubMedCrossRefGoogle Scholar
  11. Diamond, G. A. and T. A. Denton (1993), Ann. Intern. Med. 118, 455–464.PubMedGoogle Scholar
  12. Diamond, G. A., F. A. Denton, and J. M. Matloff (1993), J. Am. College Cardiol. 22, 343–352.CrossRefGoogle Scholar
  13. Eddy, D. M., V. Hasselbald, and R. Shachter (1990), Int. J. Technol. Assess. in Health Care 6, 31–55.CrossRefGoogle Scholar
  14. Fleiss, J. L. (1981), Statistical Methods for Rates and Proportions, 2nd ed. John Wiley, New York.Google Scholar
  15. Galen, R. S. and S. R. Gambino (1975), Beyond Normality: the Predictive Value and Efficiency of Medical Diagnoses. John Wiley, New York.Google Scholar
  16. Garrett, C. T., A. Ferreira-Centeno, and S. Nasim (1993), Clin. Chim. Acta 217, 85–103.PubMedCrossRefGoogle Scholar
  17. Irwig, L., A. N. A. Tosteson, C. Gatsonis, J. Lau, G. Colditz, T. C. Chalmers, and F. Mosteller (1994), Ann. Intern. Med. 120, 667–676.PubMedGoogle Scholar
  18. Johnson, H. A. (1970), Science 168, 1545–1550.PubMedCrossRefGoogle Scholar
  19. Johnson, H. A. (1989), Ann. Clin. Lab. Sci. 19, 323–331.PubMedGoogle Scholar
  20. Johnson, H. A. (1993), Ann. Clin. Lab. Sci. 23, 159–164.PubMedGoogle Scholar
  21. Kraemer, H. C. (1987), Psychoneuroendocrinology 12, 411–427.PubMedCrossRefGoogle Scholar
  22. Kraemer, H. C. (1988), Am. Statistician 42, 37–49.Google Scholar
  23. Kraemer, H. C. (1992), Evaluating Medical Tests-Objective and Quantitative Guidelines. Sage, Newbury Park, CA.Google Scholar
  24. Laird, N. M. and F. Mosteller (1990), Int. J. Technol. Assess. in Health Care 6, 5–30.CrossRefGoogle Scholar
  25. Logue, L. J. (1993), Clin. Chem. 39, 2435–2438.PubMedGoogle Scholar
  26. Metz, C. E., D. J. Goodenough, and K. Rossmann (1973), Radiology 109, 297–303.PubMedGoogle Scholar
  27. Midgette, A. S., T. A. Stukel, and B. Littenberg (1993), Med. Decis. Making 13, 253–257.PubMedCrossRefGoogle Scholar
  28. Moses, L. E., D. Shapiro, and B. Littenberg (1993), Statistics in Med. 12, 1293–1316.CrossRefGoogle Scholar
  29. Simel, D. L., G. P. Samsa, and D. B. Matchar (1991), J. Clin. Epidemiol. 44, 763–770.PubMedCrossRefGoogle Scholar
  30. Somoza, E. (1994), Med. Decis. Making 14, 157–168.PubMedCrossRefGoogle Scholar
  31. Somoza, E. and D. Mossman (1992), Med. Decis. Making 12, 179–188.PubMedCrossRefGoogle Scholar
  32. Somoza, E., L. Soutullo-Esperon, and D. Mossman (1989), Int. J. Biomed. Comput. 24, 153–189.PubMedCrossRefGoogle Scholar
  33. Sox, H., S. Stern, D. Owens, and H. L. Abrams (1989), Assessment of Diagnostic Technology in Health Care-Rationale, Methods, Problems, and Directions. National Academic Press, Washington, DC.Google Scholar
  34. Steinberg, E. P. and S. Graziano (1990), QRB Qual. Rev. Bull. 16, 218–222.PubMedCrossRefGoogle Scholar
  35. Werner, M. (1993), Clin. Chem. 39, 1361–1368.PubMedGoogle Scholar
  36. Werner, M., M. S. Ballo, and J. V. Gallagher (1993), Clin. Chim. Acta 217, 39–55.PubMedCrossRefGoogle Scholar
  37. Werner, M., S. H. Brooks, and R. Wette (1973), Human Pathol. 4, 17–30.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Carleton T. Garrett
  • Stewart Sell

There are no affiliations available

Personalised recommendations