Food Enzymes pp 271-307 | Cite as

Polyphenol Oxidase

  • John R. Whitaker


Polyphenol oxidase (1,2-benzenediol:oxygen oxidoreductase; EC, also known as tyrosinase, phenolase, catechol oxidase, monophenol oxidase, creso-lase, and catecholase, was first discovered in 1856 by Schoenbein (1856) in mushrooms. He noted that something in mushrooms catalyzed the aerobic oxidation of certain compounds in plants. The enzyme is found in many plant tissues (Sherman et al. 1991), in some fungi (especially those that produce brown filaments, Osuga et al. 1994), and in some higher animals, including insects (Sugumaran 1988) and humans (Witkop 1985). In higher plants, the enzyme protects the plant against insects and microorganisms and, when wounded, it forms an impervious scab of melanin against further attack by microorganisms and desiccation (Szent-Györgyi and Vietorisz 1931).


Chlorogenic Acid Histidine Residue Polyphenol Oxidase Broad Bean Neurospora Crassa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernan, V.; Filpula, D.; Herber, W.; Bibb, M.; and Katz, E. 1985. The nucleotide sequence of the tyrosinase gene of Streptomyces antibioticus and characterization of the gene product. Gene 37, 101–110.CrossRefGoogle Scholar
  2. Bouchilloux, S.; Mcmahill, P.; and Mason, H. S. 1963. The multiple forms of mushroom tyrosinase. Purification and molecular properties of the enzymes. J. Biol. Chem. 238, 1699–1707.Google Scholar
  3. Brooks, D. W., and Dawson, C. R. 1966. Aspects of tyrosinase chemistry. In: The Biochemistry of Copper, J. Peisach, P. Aisen, and W. E. Blumberg, eds., Academic Press, New York, pp. 343–357.Google Scholar
  4. Brown, J. M.; Powers, L.; Kincaid, B.; Larrabee, J. A.; and Spiro, T. G. 1980. Structural studies of the hemocyanin active site. 1. Extended X-ray absorption fine structure (EXAFS) analyses. J. Am. Chem. Soc. 102, 4210–4216.CrossRefGoogle Scholar
  5. Cary, J. W.; Lax, A. R.; and Flurkey, W. H. 1992. Cloning and characterization of cDNAs coding for Vicia faba polyphenol oxidase. Plant Mol. Biol. 20, 245253.Google Scholar
  6. Cleland, W. W. 1963a. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim. Biophys. Acta 67, 104–137.CrossRefGoogle Scholar
  7. Cleland, W. W. 1963b. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. II. Inhibition: Nomenclature and theory. Biochim. Biophys. Acta 67, 173–187.CrossRefGoogle Scholar
  8. Cleland, W. W. 1963c. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. III. Prediction of initial velocity and inhibition patterns by inspection. Biochim. Biophys. Acta 67, 188–196.CrossRefGoogle Scholar
  9. Dawson, C. R., and Mallette, M. F. 1945. Copper proteins. Adv. Prot. Chem. 2, 179–248.CrossRefGoogle Scholar
  10. Dietler, C., and Lerch, K. 1982. Reaction inactivation of tyrosinase. In: Oxidases and Related Redox Systems, T. E. King, H. S. Mason, and M. Morrison, eds., Pergamon Press, New York, pp. 305–317.Google Scholar
  11. Eickman, N. C.; Solomon, E. I.; Larrabee, J. A.; Spiro, T. G.; and Lerch, K. 1978. Ultraviolet resonance Raman study of oxytyrosinase. Comparison with oxyhemocyanins. J. Am. Chem. Soc. 100, 6529–6531.CrossRefGoogle Scholar
  12. Fling, M.; Horowitz, N. H.; and Heinemann, S. F. 1963. The isolation and properties of crystalline tyrosinase from Neurospora. J. Biol. Chem. 238, 2045–2053.Google Scholar
  13. Flurkey, W. H. 1994. Isolation and properties of broad bean polyphenol oxidase. Abstract 91 (AGFD), 208th Am. Chem. Soc. National Meeting, Washington, D.C., August 21–25.Google Scholar
  14. Gaykema, W. P. J.; Hol, W. G. J.; Vereuken, J. M.; Soeter, N. M.; Bak, H. J.; and Beintema, J. J. 1984. 3.2 A Structure of the copper-containing, oxygen-carrying protein Panulirus interruptus haemocyanin. Nature 309, 23–29.Google Scholar
  15. Golan-Goldmrsh, A.; Osuga, D. T.; Chen, A. O.; and Whitaker, J. R. 1992. Effect of ascorbic acid and copper on proteins and other polymers. In: The Bioorganic Chemistry of Enzymatic Catalysis: An Homage to Myron L. Bender, V. T. D’Souza and J. Feder, eds., CRC Press, Boca Raton, pp. 61–76.Google Scholar
  16. Golan-Goldhirsh, A., and Whitaker, J. R. 1984. koat inactivation of mushroom polyphenol oxidase. J. Mol. Catal. 32, 141–147.Google Scholar
  17. Gutteridge, S., and Robb, D. 1975. Catecholase activity of Neurospora tyrosinase. Eur. J. Biochem. 54, 107–116.CrossRefGoogle Scholar
  18. Himmelwright, R. S.; Eickman, N. C.; Lubien, C. D.; Lerch, K.; and Solomon, E. I. 1980. Chemical and spectral studies of the binuclear copper active site of Neurospora tyrosinase: Comparison to hemocyanin. J. Am. Chem. Soc. 102, 7339–7344.CrossRefGoogle Scholar
  19. Huber, M.; Hintermann, G.; and Lerch, K. 1985. Primary structure of tyrosinase from Streptomyces glaucescens. Biochemistry 24, 6038–6044.CrossRefGoogle Scholar
  20. Hunt, M. D.; Eannetta, N. T.; Yu, H.; Newman, S. M.; and Steffens, J. C. 1993. cDNA cloning and expression of potato polyphenol oxidase. Plant Mol. Biol. 21, 59–68.Google Scholar
  21. Ingraham, L. L. 1959. Polyphenol oxidase at low pH values. In: Pigment Cell Biology, M. Gordon, ed., Academic Press, New York, pp. 609–617.Google Scholar
  22. Jolley, R. L., JR.; Ross, D. A.; and Mason, H. S. 1969A. The multiple forms of mushroom tyrosinase. Association-dissociation phenomena. J. Biol. Chem. 244, 1593–1599.Google Scholar
  23. Jolley, R. L., Jr.; Nelson, R. M.; and Robb, D. A. 1969B. The multiple forms of mushroom tyrosinase. J. Biol. Chem. 244, 3251–3257.Google Scholar
  24. Keilin, D., and Mann, T. 1938. Polyphenol oxidase: Purification, nature and properties. Proc. Royal Soc. Ser B 125, 187–204.CrossRefGoogle Scholar
  25. Kitanma, N., and Moro-Oka, Y. 1994. Copper-dioxygen complexes. Inorganic and bioinorganic perspectives. Chem. Rev. 94, 737–757.CrossRefGoogle Scholar
  26. Korytowski, W.; Sarna, T.; Kalyanaraman, B.; and Sealey, R. C. 1987. Tyrosinase-catalyzed oxidation of dopa and related catechol (amines): A kinetic electron spin resonance investigation using spin-stabilization and spin label oximetry. Biochim. Biophys. Acta 924, 383–392.CrossRefGoogle Scholar
  27. Kubowitz, F. 1938. Cleavage and resynthesis of polyphenoloxidase and of hemocyanin. Biochem. Z. 299, 32–57.Google Scholar
  28. Kwon, B. S.; Haq, A. K.; Pomerantz, S. H.; and Halaban, R. 1987. Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus. Proc. Natl. Acad. Sci. USA 84, 7473–7477.CrossRefGoogle Scholar
  29. Lerch, K. 1978 Amino acid sequence of tyrosinase from Neurospora crassa. Proc. Natl. Acad. Sci. USA 75, 3635–3639.CrossRefGoogle Scholar
  30. Lerch, K. 1983. Neurospora tyrosinase: Structural, spectroscopic and catalytic activity. Mol. Cell. Biochem. 52, 125–138.Google Scholar
  31. Lerch, K., and Ettlinger, L. 1972. Purification and characterization of a tyrosinase from Streptomyces glaucescens. Eur. J. Biochem. 31, 427–437.CrossRefGoogle Scholar
  32. Lerner, A. B. 1953. Metabolism of phenylalanine and tyrosine. Adv. Enzymol. 14, 73–128.Google Scholar
  33. Macrae, A. R., and Duggleby, R. G. 1968. Substrates and inhibitors of potato tuber phenolase. Phytochemistry 7, 855–861.CrossRefGoogle Scholar
  34. Mason, H. S. 1965. Oxidases. Ann. Rev. Biochem. 34, 595–634.CrossRefGoogle Scholar
  35. Mason, H. S.; Fowlks, W. B.; and Peterson, E. W. 1955. Oxygen transfer and electron transport by the phenolase complex. J. Am. Chem. Soc. 77, 2914–2915.CrossRefGoogle Scholar
  36. Matheis, G., and Whitaker, J. R. 1984. Modification of proteins by polyphenol oxidase and peroxidase and their products. J. Food Biochem. 8, 137–162.CrossRefGoogle Scholar
  37. Mayer, A. M.; Harel, E.; and Ben-Shaul, R. 1966. Assay of cathechol oxidase. A critical comparison of methods. Phytochemistry 5, 783–789.CrossRefGoogle Scholar
  38. Nelson, J. M., and Dawson, C. R. 1944. Tyrosinase. Adv. Enzymol. 4, 99–152.Google Scholar
  39. Olah, A. F., and Mueller, W. C. 1981. Ultrastructural localization of oxidative and peroxidative activities in a carrot suspension cell culture. Protoplasmia 106, 231–248.CrossRefGoogle Scholar
  40. Osuga, D; Van Der Schaaf, A.; and Whitaker, J. R. 1994. Control of polyphenol oxidase activity using a catalytic mechanism. In: Protein Structure-Function Relationships in Foods, R. Y. Yada, R. L. Jackman, and J. L. Smith, eds., Blackie Academic & Professional, Glasgow, Scotland, pp. 62–88.CrossRefGoogle Scholar
  41. Peter, M. G.; Stegmann, H. B.; Dao-Ba, H.; and Scheffler, K. 1985. Detection of semiquinone radicals of N-acyldopamines in aqueous solution. Z. Naturforsch. 40c, 535–538.Google Scholar
  42. Quevedo, W. C., Jr. 1971. Genetic regulation of pigmentation in mammals. In: Bio logy of Normal and Abnormal Melanocytes, T. Kawamura and T. B. Fitzpatrick, eds., University Park Press, Baltimore, MD, pp. 99–115.Google Scholar
  43. Rivas, N. J., and Whitaker, J. R. 1973. Purification and some properties of two polyphenol oxidases from Bartlett pears. Plant Physiol. 52, 501–507.CrossRefGoogle Scholar
  44. Robb, D. A.; Swain, T.; and Mapson, L. W. 1966. Substrates and inhibitors of the activated tyrosinase of broad bean (Vicia faba L.). Photochemistry 5, 665–675.Google Scholar
  45. Robinson, S. P., and Dry, I. B. 1992. Broad bean leaf polyphenol oxidase is a 60kilodalton protein susceptible to proteolytic cleavage. Plant Physiol. 99, 317–323.CrossRefGoogle Scholar
  46. Rodriquez, M. O., and Flurkey, W. H. 1992. A biochemistry project to study mushroom tyrosinase: Enzyme localization, isoenzymes, and detergent activation. J. Chem. Educ. 69, 767–769.CrossRefGoogle Scholar
  47. Saul, S. J., and Sugumaran, M. 1987. Protease mediated prophenoloxidase activation in the hemolymph of the tobacco hornworm, Manduca sexta. Arch. Insect Biochem. Physiol. 5, 1–11.CrossRefGoogle Scholar
  48. Saul, S. J., and Sugumaran, M. 1988. Prophenoloxidase activation in the hemolymph of Sarcophaga bullata larvae. Arch. Insect Biochem. Physiol. 7, 91–103.CrossRefGoogle Scholar
  49. Schartau, W.; Eyerle, F.; Reisinger, P.; Geisert, H.; Storz, H.; and Linzen, B. 1983. Hemocyanin in spiders. XIX. Complete amino acid sequence of subunit d from Eurypelma californicum hemocyanin, and comparison to chain e. HoppeSeyler’s Z. Physiol. Chem. 364, 1383–1409.CrossRefGoogle Scholar
  50. Schneider, H. J.; Drexel, R.; Feldmaier, G.; and Linzen, B. 1983. Hemocyanins in spiders. XVIII. Complete amino-acid sequence of subunit e from Eurypelma californicum hemocyanin. Hoppe-Seyler’s Z. Physiol. Chem. 364, 1357–1381.CrossRefGoogle Scholar
  51. Schoenbein, C. F. 1856. On ozone and oronic actions in mushrooms. Phil. Mag. 11, 137–141Google Scholar
  52. Shaiiar, T.; Hennig, N.; Gutfinger, T.; Hareven, D.; and Lifschitz, E. 1992. The tomato 66.3-kD polyphenoloxidase gene: Molecular identification and developmental expression. The Plant Cell 4, 135–147.Google Scholar
  53. Sherman, T. O.; Vaughn, K. C.; and Duke, S. O. 1991. A limited survey of the phylogenetic distribution of polyphenol oxidase. Phytochemistry 30, 2499–2506.CrossRefGoogle Scholar
  54. Shibahara, A.; Tomita, Y.; Sakakura, T.; Nager, C.; Chaudiiuri, B.; and Müller, R. 1986. Cloning and expression of cDNA encoding mouse tyrosinase. Nucl. Acids Res. 14, 2413–2427.CrossRefGoogle Scholar
  55. Silvers, W. K. 1979. The Coat Colors of Mice: A Model for Mammalian Gene Action and Interaction. Springer-Verlag, New York.CrossRefGoogle Scholar
  56. Solomon, E. I.; Baldwin, M. J.; and Lowrey, M. D. 1992. Electronic structures of active sites in copper proteins: Contributions to reactivity. Chem. Rev. 92, 521–542.CrossRefGoogle Scholar
  57. Solomon, E. I., and Lowery, M. D. 1993. Electronic structure contributions to function in bioinorganic chemistry. Science 259, 1575–1581.CrossRefGoogle Scholar
  58. Sugumaran, M. 1988. Molecular mechanisms for cuticular sclerotization. Adv. Insect Physiol. 21(9), 179–231.Google Scholar
  59. Sugumaran, M. 1990. Prophenoloxidase activation and insect immunity. In: Defense Molecules, J. J. Marchalonis and E. L. Reinisch, eds., Wiley-Liss, New York, pp. 47–62.Google Scholar
  60. Sugumaran, M. 1994. Regulation of phenoloxidase activity in insects. Abstract 93 (AGFD), 208th Am. Chem. Soc. Nat. Meeting, Washington, D.C., August 21–25.Google Scholar
  61. Sugumaran, M.; Hennigan, B.; and O’brien, J. 1987. Tyrosinase catalyzed protein polymerization as an in vitro model for quinone tanning of insect cuticle. Arch. Insect Biochem. Physiol. 6, 9–25.CrossRefGoogle Scholar
  62. Szent-Gyrgyi, A., and Vietorisz, K. 1931. Function and significance of polyphenol oxidase from potatoes. Biochem. Z. 233, 236–239.Google Scholar
  63. Vaughn, K. C. 1987. Polyphenol oxidase. In: Handbook of Plant Cytochemistry, vol. 1, K. C.Vaughn, ed., CRC Press, Boca Raton, pp. 159–162.Google Scholar
  64. Vaughn, K. C., and Duke, S. O. 1981. Tissue localization of polyphenol oxidase in sorghum. Protoplasmia 108, 319–327.CrossRefGoogle Scholar
  65. Whitaker, J. R. 1994. Principles of Enzymology for the Food Sciences, Marcel Dekker, New York, pp. 184–192.Google Scholar
  66. Wilcox, D. E.; Porras, A. G.; Hwang, Y. T.; Lerch, K.; Winkler, M. E.; and Solomon, E. I. 1985. Substrate analogue binding to the coupled binuclear copper active site in tyrosinase. J. Am. Chem. Soc. 107, 4015–4027.CrossRefGoogle Scholar
  67. Witkop, C. J., Jr. 1979. Depigmentations of the general and oral tissues and their genetic foundations. Ala. J. Med. Sci. 16, 331–343.Google Scholar
  68. Witkop, C. J., Jr. 1985. Inherited disorders of pigmentation. In: Genodermatoses: Clinics in Dermatology, vol. 2, R. M. Goodman, ed., J. M. Lippincott, Philadelphia, pp. 70–134.Google Scholar
  69. Wong, T. C.; Lux, B. S.; and Whitaker, J. R. 1971a. Isolation and characterization of polyphenol oxidases of clingstone peach. Plant Physiol. 48, 19–23.CrossRefGoogle Scholar
  70. Wong, T. C.; Lux, B. S.; and Whitaker, J. R. 1971b. Effect of phloroglucinol and resorcinol on the clingstone peach poly-phenol oxidase-catalyzed oxidation of 4-methyl catechol. Plant Physiol. 48, 24–30.CrossRefGoogle Scholar
  71. Wood, B. J. B., and Ingraham, L. L. 1965. Labelled tyrosinase from labelled substrate. Nature 205, 291–292.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • John R. Whitaker

There are no affiliations available

Personalised recommendations