Food Enzymes pp 170-211 | Cite as

Lipolytic Enzymes

  • Dominic W. S. Wong


Lipolytic enzymes consist of two major groups, the lipases, which are triacylglycerol acylhydrolase (EC, and the phospholipases A1 ( and A2 (, which are phosphoglyceride acyl hydrolases. Although phospholipases C ( and D ( are not acylhydrolases, they are nonetheless commonly included as lipolytic enzymes. The triacylglycerol lipases are found widely in animals, plants, and microorganisms. Animal lipases include pancreatic, gastric, and intestinal lipases, and also lipases found in milk. The present discussion covers the well-studied pancreatic lipase and phospholipase A2. Microbial lipases will also be included because of their increasing importance in industrial applications


Bile Salt Pancreatic Lipase Catalytic Triad Lipolytic Enzyme Interfacial Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abousalham, A.; Chaillan, C.; Kerfelec, B.; Foglizzo, E.; and Chapus, C. 1992. Uncoupling of catalysis and colipase binding in pancreatic lipase by limited proteolysis.Protein Engineering 5, 105–111CrossRefGoogle Scholar
  2. Akesson, B.; Gronowitz, S.; and Herslof, B. 1976. Stereospecificity of hepatic lipases.FEBS Lett.71, 241–244CrossRefGoogle Scholar
  3. Akesson, B.; Gronowitz, S.; and Herslof, B. 1983. Stereospecificity of different lipases.Lipids 18, 313–318CrossRefGoogle Scholar
  4. Akita, H.; Enoki, Y.; Yamada, H.; and Oishi, T. 1989. Enzymatic hydrolysis in organic solvents for kinetic resolution of water-insoluble a-acyloxy esters with immobilized lipases.Chem. Pharm. Bull. 37, 2876–2878CrossRefGoogle Scholar
  5. Alford, J. A.; Pierce, D. A.; and Suggs, F. G. 1964. Activity of microbial lipases on natural fats and synthetic triglycerides.J. Lipid Res. 5, 390–394Google Scholar
  6. Baba, T.; Downs, D.; Jackson, K. W.; Tang, J.; and Wang, C.-S. 1991. Structure of human milk bile salt activated lipase.Biochemistry 30, 500–510CrossRefGoogle Scholar
  7. Baillargeon, M. W. 1990. Purification and specificity of lipases fromGeotrichum candidum. Lipids 25, 841–848CrossRefGoogle Scholar
  8. Benkouka, F.; Guidoni, A. A.; Decaro, J. D.; Bonicel, J. J.; Desnuelle, P. A.; and Rovery, M. 1982. Porcine pancreatic lipase. The disulfide bridges and the sulfhydryl groups.Eur. J. Biochem. 128, 331–341CrossRefGoogle Scholar
  9. Benzonana, G. 1974. Some properties of an exocellular lipase fromRhizopus arrhizus. Lipids 9, 166–172CrossRefGoogle Scholar
  10. Benzonana, G., and Esposito, S. 1971. The positional and chain specificities ofCandida cylindracea lipase.Biochim. Biophys. Acta 231, 15–22CrossRefGoogle Scholar
  11. Bertolini, M. C.; Laramee, L.; Thomas, D. Y.; Cygler, M.; Schrag, J. D.; and Vernet, T. 1994. Polymorphism in the lipase genes ofGeotrichum candidum strains.Eur. J. Biochem. 219, 119–125CrossRefGoogle Scholar
  12. Blow, D. 1991. Lipases research the surface.Nature 351, 444–445CrossRefGoogle Scholar
  13. Bodmer, M. W.; Angal, S.; Yarranton, G. T.; Harris, T. J. R.; Lyons, A.; King, D. J.; Pieroni, G.; Riviere, C.; Verger, R.; and Lowe, P. A. 1987. Molecular cloning of a human gastric lipase and expression of the enzyme in yeast.Biochim. Biophys. Acta 909, 237–244CrossRefGoogle Scholar
  14. Boel, E.; Huge-Jensen, B.; Christensen, M.; Thim, L.; and Fill, N. P. 1988. Rhizomucor miehei triglyceride lipase is synthesized as a precursor.Lipids 23, 701–706CrossRefGoogle Scholar
  15. Bonicel, J.; Couchoud, P.; Foglizzo, E.; Desnuelle, P.; and Chapus, C. 1981. Amino acid sequence of horse colipase B.Biochim. Biophys. Acta 669, 39–45CrossRefGoogle Scholar
  16. Borgstrom, B., and Donner, J. 1975. Binding of bile salts to pancreatic colipase and lipase.J. Lipid Res. 16, 287–292Google Scholar
  17. Borgstrom, B.; Erlanson, C.; and Sternby, B. 1974. Further two co-lipases from porcine pancreas.Biochem. Biophys. Res. Comm. 59, 902–906CrossRefGoogle Scholar
  18. Borgstrom, B.; Erlanson-Albertsson, C.; and Wieloch, T. 1979. Pancreatic colipase: Chemistry and physiology.J. Lipid Res. 20, 805–816Google Scholar
  19. Bosc-Bierne, I.; Perrot, C.; Sarda, L.; and Rathelot, J. 1985. Inhibition of pancreatic colipase by antibodies and Fab fragments. Selective effects of two fractions of antibodies on the functional sites of the cofactor.Biochim. Biophys. Acta 827, 109–118CrossRefGoogle Scholar
  20. Bosc-Bierne, I.; Rothelot, J.; Canzoni, P.; Julien, R.; Bechis, G.; Gregoire, J.; Rochat, H.; and Sarda, L. 1981. Isolation and partial structural characterization of chicken pancreatic colipase.Biochim. Biophys. Acta. 667, 225–232CrossRefGoogle Scholar
  21. Bourne, Y.; Martinez, C.; Kerfelec, B.; Lombardo, D.; Chapus, C and Cambillau, C. 1994. Horse pancreatic lipase. The crystal structure refined at 2.3 A resolution.J. Mol. Biol. 238, 709–732CrossRefGoogle Scholar
  22. Brady, L.; Brzozowski, A. M.; Derewenda, Z. S.; Dodson, E.; Dodson, G.; Tolley, S.; Turkenburg, J. P.; Christiansen, L.; Huge-Jesen, B.; Norskov, L.; Thim, L.; and Menge, U. 1990. A serine protease triad forms the catalytic centre of a triacylglycerol lipase.Nature 343, 767–770CrossRefGoogle Scholar
  23. Brenner, S. 1988. The molecular evolution of genes and proteins: A tale of two serines.Nature 334, 528–530CrossRefGoogle Scholar
  24. Brockerhoff, H. 1970. Substrate specificity of pancreatic lipase. Influence of the structure of fatty acids on the reactivity of esters.Biochim. Biophys. Acta 212, 92–101CrossRefGoogle Scholar
  25. Brockerhoff, H. 1973. A model of pancreatic lipase and the orientation of enzymes at interfaces.Chem. Phys. Lipids 10, 215–222CrossRefGoogle Scholar
  26. Brzozowski, A. M.; Derewenda, U.; Derewenda, Z. S.; Dodson, G. G.; Lawson, D. W.; Turkenburg, J. P.; Bjorkling, F.; Huge-Jensen, B.; Patkar, S. A.; and Thim, L. 1991. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex.Nature 351, 491–494CrossRefGoogle Scholar
  27. Cai, S.-J.; Wong, D. M.; Chen, S.-H.; and Chan, L. 1989. Structure of the human hepatic triglyceride lipase gene.Biochemistry 28, 8966–8971CrossRefGoogle Scholar
  28. Cambou, B., and Klibanov, A. M. 1984. Preparative production of optically active esters and alcohols using esterase-catalyzed stereospecific transesterification in organic media.J. Am. Chem. Soc. 106, 2687–2692CrossRefGoogle Scholar
  29. Canioni, P.; Julien, R.; Rathelot, J.; and Sarda, L. 1977. Pancreatic and microbial lipase: A comparison of the interaction of pancreatic colipase with lipases of various origins.Lipids 12, 393–397CrossRefGoogle Scholar
  30. Chaillan, C.; Kerfelec, B.; Foglizzo, E.; and Chapus, C. 1992. Direct involvement of the C-terminal extremity of pancreatic lipase (403–449) in colipase binding.Biochem. Biophys. Res. Comm. 184, 206–211CrossRefGoogle Scholar
  31. Chaillan, C.; Rogalska, E.; Chapus, C.; and Lombardo, D. 1989. A cross-linked complex between horse pancreatic lipase and colipase.FEBS Lett.257, 443–446CrossRefGoogle Scholar
  32. Chapus, C.; Sari, H.; Semeriva, M.; and Desnuelle, P 1975. Role of colipase in the interfacial adsorption of pancreatic lipase at hydrophilic interfaces.FEB Lett.58, 155–158CrossRefGoogle Scholar
  33. Chapus, C., and Semeriva, M. 1976. Mechanism of pancreatic lipase action. 2. Catalytic properties of modified lipases.Biochemistry 15, 4988–4991CrossRefGoogle Scholar
  34. Chapus, C.; Semeriva, M.; Bovier-Lapierre, C.; and Desnuelle, P 1976. Mechanism of pancreatic lipase action. 1. Interfacial activation of pancreatic lipase.Biochemistry 15, 4980–4987CrossRefGoogle Scholar
  35. Charles, M.; Astier, M.; Sauve, P.; and Desnuelle, P. 1975. Interactions of colipase with bile salt micelles. I. Ultracentrifugation studies.Eur. J. Biochem. 58, 555–559CrossRefGoogle Scholar
  36. Cygler, M.; Grochulski, P.; Kazlauskas, R. J.; Schrag, J. D.; Bouthillier, F.; Rubin, B.; Serreqi, A. N.; and Gupta, A. K. 1994. A structural basis for the chiral preferences of lipases.J. Am. Chem. Soc. 116, 3180–3186CrossRefGoogle Scholar
  37. Datcheva, V. K.; Kiss, K.; Solomon, L.; and Kyler, K. S. 1991. Asymmetric hydroxylation with lipoxygenase: The role of group hydrophobicity on regioselectivity.J. Am. Chem. Soc. 13, 270–274CrossRefGoogle Scholar
  38. De Caro, J. D.; Behnke, W. K.; Bonicel, J. J.; Desnuelle, P. A.; and Rovery, M. 1983. Nitration of the tyrosine residues of porcine pancreatic colipase with tetranitromethane and properties of the nitrated derivatives.Biochim. Biophys. Acta 747, 253–262CrossRefGoogle Scholar
  39. De Caro, J.; Boudouard, M.; Bonicel, J.; Guidon, A.; Desnuelle, P; and Rovery, M. 1981. Porcine pancreatic lipase: Completion of the primary structure.Biochim. Biophys. Acta 671, 129–138CrossRefGoogle Scholar
  40. De Caro, J. D.; Round, P.; and Rovery, M. 1986. Hydrolysis of p-nitrophenyl acetate by the peptide chain fragment (336–449) of porcine pancreatic lipase.Eur. J. Biochem. 158, 601–607CrossRefGoogle Scholar
  41. Dennis, E. A. 1983. Phospholipases.The Enzymes 16, 307–353CrossRefGoogle Scholar
  42. Derewenda, U.; Brzozowski, A. M.; Lawson, D. W.; and Derewenda, Z. S. 1992b. Catalysis at the interface: The anatomy of a conformation change in a triglyceride lipase.Biochemistry 31, 1532–1541CrossRefGoogle Scholar
  43. Derewenda, Z. S., and Derewenda, U. 1991. Relationships among serine hydrolases: Evidence for a common structural motif in triacylglyceride lipases and esterases.Biochem. Cell Biochem. 69, 842–851CrossRefGoogle Scholar
  44. Derewenda, Z. S.; Derewenda, U.; and Dodson, G. G. 1992a. The crystal and molecular structure of theRhizomucor miehei triacylglyceride lipase at 1.9 A resolution.J. Mol. Biol. 227, 818–839CrossRefGoogle Scholar
  45. Derewenda, Z. S., and Sharp, A. M. 1993. News from the interface: The molecular structures of triacylglyceride lipases.TIBS 18, 20–25Google Scholar
  46. Dijkstra, B. W.; Drenth, J.; Kalk, K. H.; and Vandermaelen, P. J. 1978. Three-dimensional structure and disulfide bond corrections in bovine pancreatic phospholipase A2.J. Mol. Biol. 124, 53–60CrossRefGoogle Scholar
  47. Dijkstra, B. W.; Drenth, J.; and Kalk, K. H. 1981a. Active site and catalytic mechanism of phospholipase A2.Nature 289, 604–606CrossRefGoogle Scholar
  48. Dijkstra, B. W.; Kalk, K. H.; Hol, W. G. J.; and Drenth, J. 1981b. Structure of bovine pancreatic phospholipase A2 at 1.7 A resolution.J. Mol. Biol. 147, 97–123CrossRefGoogle Scholar
  49. Dijkstra, B. W.; Kalk, K. H.; Drenth, J.; De Haas, G. H.; Egmond, M. R.; and Slotboom, A. J. 1984. Role of the N-terminus in the interaction of pancreatic phospholipase A2 with aggregated substrates. Properties and crystal structure of transaminated phospholipase A2.Biochemistry 23, 2759–2766CrossRefGoogle Scholar
  50. Dijkstra, B. W.; Renetseder, R.; Kalk, K. H.; Hol, W. G. J.; and Drenth, J. 1983a. Structure of porcine pancreatic phospholipase A2 at 2.6 A resolution and comparison with bovine phospholipase A2.J. Mol. Biol. 168, 163–179CrossRefGoogle Scholar
  51. Dijkstra, B. W.; Van Nes, G. J. H.; Kalk, K. H.; Brandenburg, N. P.; Hol, W. G. J.; and Drenth, J. 1982. The structure of bovine pancreatic prophospholipase A2 at 3.0 A resolution.Acta. Cryst. B38, 793–799Google Scholar
  52. Dijkstra, B. W.; Weijer, W. J.; and Wierenga, R. K. 1983b. Polypeptide chains with similar amino acid sequences but a distinctly different conformation.FEBS Lett.164, 25–27CrossRefGoogle Scholar
  53. Donne-Opden Kelder, G. M.; De Haas, G. H.; and Egmond, M. R. 1983. Localization of the second calcium ion binding site in porcine and equine phospholipase A2.Biochemistry 22, 2470–2478CrossRefGoogle Scholar
  54. Dupureur, C. M.; Yu, B.-Z.; Jain, M. K.; Noel, J.-P.; Deng, T.; LI, Y.; Byeon, I.-J. L.; and Tsai, M.-D. 1992. Phospholipase A2 engineering. Structural and functional roles of highly conserved active site residues tyrosine-52 and tyrosine-73.Biochemistry 31, 6402–6413CrossRefGoogle Scholar
  55. Erlanson-Albertsson, C. 1980. Measurement of the binding of colipase to a tri-glycerol substrate.Biochim. Biophys. Acta 617, 371–382CrossRefGoogle Scholar
  56. Erlanson, C.; Barrowman, J. A.; and Borgstrom, B. 1977. Chemical modifications of pancreatic colipase.Biochim. Biophys. Acta 489, 150–162CrossRefGoogle Scholar
  57. Erlanson, M. C.; Bianciietta, J.; Joffre, J.; Guidoni, A.; and Rovery, M. 1974a. The primary structure of porcine colipase II. 1. The amino acid sequence.Biochim. Biophys. Acta 359, 186–197CrossRefGoogle Scholar
  58. Erlanson, C.; Charles, M.; Astier, M.; and Desnuelle, P. 1974b. The primary structure of porcine colipase II. II. The disulfide bridges.Biochim. Biophys. Acta 359, 198–203CrossRefGoogle Scholar
  59. Erlanson, C.; Fernlund, P.; and Borgstrom, B. 1973. Purification and characterization of two proteins with co-lipase activity from porcine pancreas.Biochim. Biophys. Acta 310, 437–445CrossRefGoogle Scholar
  60. Evenberg, A.; Meyer, H.; Gaastra, W.; Verheij, H. M.; and De Haas, G. H. 1977. Amino acid sequence of phospholipase A2 from horse pancreas.J. Biol. Chem. 252, 1189–1196Google Scholar
  61. Fleer, E. A. M.; Verheij, H. M.; and De Haas, G. H. 1978. The primary structure of bovine pancreatic phospholipase A2.Eur. J. Biochem. 82, 261–269CrossRefGoogle Scholar
  62. Foelsche, E.; Hickel, A.; Honig, H.; and Seufer-Wasserthal, P. 1990. Lipase-catalyzed resolution of acylic amino alcoholprecursors. J. Org. Chem.55, 1749–1753CrossRefGoogle Scholar
  63. Fritsche, K.; Syldatk, C.; Wagner, F.; Hengelsberg, H.; and Tacke, R. 1989. Enzymatic resolution of rac-1,1-dimethyl-l-sila-cyclohexan-2-ol by ester hydrolysis or transesterification using a crude lipase preparation ofCandida cylindracea. Appl. Microbiol. Biotechnol.31, 107–111CrossRefGoogle Scholar
  64. Fuji, T.; Tatara, T.; and Minagawa, M. 1986. Studies on applications of lipolytic enzyme in detergent. I. Effect of lipase fromCandida cylindracea on removal of olive oil from cotton fabric.JAOCS 63, 796–799CrossRefGoogle Scholar
  65. Gardner, C. W. 1980. Boronic acid inhibitors of porcine pancreatic lipase.J. Biol. Chem. 255, 5064–5068Google Scholar
  66. Gelb, M. H.; Jain, M. K.; and Berg, O. 1992. Interfacial enzymology of phospholipase Az.Bioorganic and Medicinal Chemistry Letters 2, 1335–1342CrossRefGoogle Scholar
  67. Goldberg, M.; Thomas, D.; and Legoy, M.-D. 1990. Water activity as a key parameter of synthesis reactions: The example of lipase in biphasic (liquid/solid) media.Enzyme Microb. Technol. 12, 976–981CrossRefGoogle Scholar
  68. Gotz, F.; Popp, F.; Korn, E.; and Schleifer, K. H. 1985. Complete nucleotide sequence of the lipase fromStaphylococcus hyicus cloned inStaphylococcus carnosus. Nucl. Acids Res.13, 5895–5906CrossRefGoogle Scholar
  69. Granon, S. 1986. Spectrofluorimetric study of the bile salt micelle binding site of pig and horse colipases.Biochim. Biophys. Acta 874, 54–60CrossRefGoogle Scholar
  70. Grochulski, P.; Bouthillier, F.; Kazlauskas, R. J.; Serrequi, A. N.; Schrag, J. D.; Ziomek, E.; and Cygler, M. 1994A. Analogs of reaction intermediates identify a unique substrate binding site inCandida rugosa lipase.Biochemistry 33, 3494–3500Google Scholar
  71. Grochulski, P.; Li, Y.; Schrag, J. D.; Bouthillier, F.; Smith, P.; Harrison, D.; Rubin, B.; and Cygler, M. 1993. Insights into interfacial activation from an open structure ofCandida rugosa lipase.J. Biol. Chem. 268, 12843–12847Google Scholar
  72. Grochulski, P.; Li, Y.; Schrag, J. D.; and Cygler, M. 1994b. Two conformational states ofCandida rugosa lipase.Protein Science 3, 82–91CrossRefGoogle Scholar
  73. Guidoni, A.; Benkouka, F.; De Caro, J.; and Rovery, M. 1981. Characterization of the serine reacting with diethylp-nitrophenyl phosphate in porcine pancreatic lipase.Biochim. Biophys. Acta 660, 148–150CrossRefGoogle Scholar
  74. Gutman, A. L.; Zuobi, K.; and Guibe-Jampel, E. 1990. Lipase catalyzed hydrolysis of y-substituted a-aminobutyrolactones.Tetrahedron Letters 31, 2037–2038CrossRefGoogle Scholar
  75. Halling, P. J. 1989. Lipase-catalyzed reactions in low-water organic media: Effects of water activity and chemical modification.Biochem. Soc. Trans. 17, 1142–1145Google Scholar
  76. Hayes, D. G., and Gulari, E. 1990. Esterification reactions of lipase in reverse micelles.Biotechnol. Bioengineer. 35, 793–801CrossRefGoogle Scholar
  77. Hennen, W. J.; Sweers, H. M.; Wang, Y.-F.; and Wo G, C.-H. 1988. Enzymes in carbohydrate synthesis: Lipase-catalyzed selective acylation and deacylation of furanose and pyranosederivatives. J. Org. Chem 53, 4939–4945Google Scholar
  78. Hjorth, A.; Carriere, F.; Cudrey, C.; Woldike, H.; Boel, E.; Lawson, D. M.; Ferrato, F.; Cambillau, C.; Dodson, G. G.; Thim, L.; and Verger, R. 1993. A structural domain (the lid) found in pancreatic lipases is absent in the guinea pig (phospho)lipase.Biochemistry 32, 4702–4707CrossRefGoogle Scholar
  79. Huge-Jensen, B.; Galluzzo, D. R.; and Jensen, R. G. 1987. Partial characterization of free and immobilized lipases fromMucor miehei. Lipids 22, 559–565CrossRefGoogle Scholar
  80. Inagaki, M.; Hiratake, J.; Hishioka, T.; and Oda, J. 1989. Lipase-catalyzed stereoselective acylation of [1,1’-Binaphthyl]-2,2’-diol and deacylation of its esters in an organic solvent.Agric. Biol. Chem. 53, 1879–1884CrossRefGoogle Scholar
  81. Ishihara, H.; Okuyama, H.; Ikezawa, H.; and Tejima, S. 1975. Studies on lipase fromMucor javanicus. Biochim. Biophys. Acta 388, 413–422CrossRefGoogle Scholar
  82. Jacobsen, T.; Olsen, J.; and Allermann, K. 1990. Substrate specificity ofGeotrichum candidum lipase preparations.Biotechnol. Lett. 12, 121–126CrossRefGoogle Scholar
  83. Jain, M. K., and Berg, O. G. 1989. The kinetics of interfacial catalysis by phospholipase A2 and regulation of interfacial activation: Hopping versus scooting.Biochim. Biophys. Acta 1002, 127–156CrossRefGoogle Scholar
  84. Jensen, R. G. 1974. Characteristics of the lipase from the mold,Geotrichum candidum: A review.Lipids 9, 149–157CrossRefGoogle Scholar
  85. Jensen, R. G., Dejong, F. A., and Clarks, R. H. 1983. Determination of lipase specificity.Lipids 18, 239–252CrossRefGoogle Scholar
  86. Jensen, R. G.; Gerrior, S. A.; Hagerty, M. M.; and Mcmahon, K. E. 1978. Preparation of acylglycerols and phospholipids with the aid of lipolytic enzymes.JAOCS 55, 422–427CrossRefGoogle Scholar
  87. Julien, R.; Bechis, G.; Gregoire, J.; Rathelot, J.; Rochat, H.; and Sarda, L. 1980. Evidence for the existence of two isocolipases in horse pancreas.Biochim. Biophys. Res. Comm. 95, 1245–1252CrossRefGoogle Scholar
  88. Kaimal, T. N. B., and Saroja, M. 1989. The active site composition of porcine pancreatic lipase: Possible involvement of lysine.Biochim. Biophys. Acta 999, 331–334CrossRefGoogle Scholar
  89. Kanerva, L. T.; Vihanto, J.; Halme, M. H.; Loponen, J. M.; and Euranto, E. K. 1990. Solvent effects in lipase-catalyzed transesterification reactions.Acta Chem. Scand. 44, 1032–1035CrossRefGoogle Scholar
  90. Kerfelec, B.; Foglizzo, E.; Bonicel, J.; Bougis, P. E.; and Chapus, C. 1992. Sequence of horse pancreatic lipase as determined by protein and cDNA sequencing. Implication for p-nitrophenyl acetate hydrolysis by pancreatic lipases.Eur. J. Biochem. 206, 279–287CrossRefGoogle Scholar
  91. Kirchgessner, T. G.; Chuat, J.-C.; Heinzmann, C.; Etienne, J.; Guilhot, S.; Sven-Son, K.; Ameis, D.; Pilon, C.; D’auriol, L.; Andalibi, A.; Schotz, M. C.; Galibert, F.; and Lusts, A. J. 1989. Organization of the human lipoprotein lipase gene and evolution of the lipase gene family.Proc. Natl. Acad. Sci. 86, 9647–9651CrossRefGoogle Scholar
  92. Kirchgessner, T. G.; Svenson, K. L.; Lusls, A. J.; and Schotz, M. C. 1987. The sequence of cDNA encoding lipoprotein lipase.J. Biol. Chem. 262, 8463–8466Google Scholar
  93. Kirchner, G.; Scollar, M. P.; and Klibanov, A. M. 1985. Resolution of racemic mixture via lipase catalysis in organic solvents.J. Am. Chem. Soc. 107, 7072–7076CrossRefGoogle Scholar
  94. Klibanov, A. M. 1990. Asymmetric transformations catalyzed by enzymes in organic solvents.Acc. Chem. Res. 23, 114–120CrossRefGoogle Scholar
  95. Kloosterman, M.; Elferink, V. H. M.; Van Lersel, J.; Roskam, J.-H.; Meijer, E. M.; Hulshof, L. A.; and Sheldon, R. A. 1988. Lipases in the preparation of ß-blockers.TIBTECH 6, 251–256CrossRefGoogle Scholar
  96. Komaromy, M., and Schotz, M. C. 1987. Cloning of rat hepatic lipase cDNA: Ev idence for a lipase gene family.Proc. Natl. Acad. Sci. USA 84, 1526–1530CrossRefGoogle Scholar
  97. Kossiakoff, A. A., and Spencer, S. A. 1981. Direct determination of the protonation states of aspartic acid-102 and histidine-57 in the tetrahedral intermediate of the serine protease: Neutron structure of trypsin.Biochemistry 20, 6462–6474CrossRefGoogle Scholar
  98. Kugimiya, W.; Otani, Y.; Hashimoto, Y.; and Takagi, Y. 1986. Molecular cloning and nucelotide sequence of the lipase gene fromPseudomonas fragi. Biochem. Biophys. Res. Comm.141, 185–190CrossRefGoogle Scholar
  99. Kuipers, O. P.; Franken, P. A.; Hendriks, R.; Verheij, H. M.; and De Haas, G. H. 1990. Function of the fully conserved residues Asp99, Tyr52 and Tyr73 in phospholipase A2.Protein Engineering 4, 199–204CrossRefGoogle Scholar
  100. Kuipers, O. P.; Thunnissen, M. M. G. M.; De Geus, P.; Dijkstra, B. W.; Drenth, J.; Verheij, H. M.; and De Haas, G. H. 1989. Enhanced activity and altered specificity of phospholipase AZ by deletion of a surface loop.Science 244, 82–85CrossRefGoogle Scholar
  101. Ladner, W. E., and Whitesides, G. M. 1984. Lipase catalyzed hydrolysis as a route to esters of chiral epoxy alcohol.J. Am. Chem. Soc. 106, 7251–7252CrossRefGoogle Scholar
  102. Larsson, A., and Erlanson-Albertsson, C. 1981. The identity and properties of two forms of activated colipase from porcine pancreas.Biochim. Biophys. Acta 664, 538–548CrossRefGoogle Scholar
  103. Larsson, A., and Erlanson-Albertsson, C. 1983. The importance of bile salt for the reactivation of pancreatic lipase by colipase.Biochim. Biophys. Acta 750, 171–177CrossRefGoogle Scholar
  104. Lee, C. Y., and Iandolo, J. J. 1986. Lysogenic conversion of Staphylococcal lipase is caused by insertion of the bacteriophage L54a genome into the lipase structural gene.J. Bacteriol. 166, 385–391Google Scholar
  105. Linfield, W. M.; Barauskas, R. A.; Sivieri, L.; Serota, S.; and Stevenson, R. W., SR. 1984. Enzymatic fat hydrolysis and synthesis.JAOCS 61, 191–195Google Scholar
  106. Longhi, S.; Lotti, M.; Fusetti, F.; PIzzi, E.; Tramontano, A.; and Alberghina, L. 1992. Homology-derived three-dimensional structure prediction ofCandida cylindracea lipase.Biochim. Biophys. Acta 1165, 129–133CrossRefGoogle Scholar
  107. Lowe, M. F.; Rosenblum, J. L.; and Strauss, A. W. 1989. Cloning and characterization of human pancreatic lipase cDNA.J. Biol. Chem. 264, 20042–20048Google Scholar
  108. Lowe, M. F. 1992. The catalytic site residues and interfacial binding of human pancreatic lipase.J. Biol. Chem. 267, 17069–17073Google Scholar
  109. Macrae, A. R. 1983. Lipase-catalyzed interesterifaction of oils and fats.JAOCS 60, 291–294CrossRefGoogle Scholar
  110. Mahe-Gouhier, N., and Leger, C. L. 1988 Immobilized colipase affinities for lipases B, A, C and their terminal peptide (336 149): The lipase recognition site lysine residues are located in the C-terminal region.Biochim. Biophys. Acta 962, 91–97CrossRefGoogle Scholar
  111. Maraganore, J. M., and Heinrikson, R. L. 1986. Which class of serine is involved in the lipase mechanism.TIBS 11, 497–498Google Scholar
  112. Margolin, A. L.; Tai, D.-F.; and Klibanov, A. M. 1987. Incorporation of D-amino acids into peptides via enzymatic condensation in organic solvents.J. Am. Chem. Soc. 109, 7885–7887CrossRefGoogle Scholar
  113. Meyer, H.; Puijk, W. C.; Dijkman, R.; Foda-Van Der Hoorn M. M. E. L., Pattus, F.; Slotboom, A. J.; and De Haas G. H. 1979a. Comparative studies of tyrosine modification in pancreatic phospholipases. 2. Properties of the nitrotyrosyl, aminotyrosyl, and dansylaminotyrosyl derivatives of pig, horse, and ox phospholipases A2 and their zymogens.Biochemistry 18, 3589–3597Google Scholar
  114. Meyer, H.; Verhoef, H.; Hendriks, F. F. A.; Slotboom, A. J.; and De Haas, G. H. 1979b. Comparative studies of tyrosine modification in pancreatic phospholipases. 1. Reaction of tetranitromethane with pig, horse, and ox phospholipase Az and their zymogens.Biochemistry 18, 3582–3588CrossRefGoogle Scholar
  115. Mickel, F. S.; Weidenbach, F.; Swarovsky, B.; Laforge, K. S.; and Scheele, G. A. 1989. Structure of the canine pancreatic lipase gene.J. Biol. Chem. 264, 12895–12901Google Scholar
  116. Miller, D. A.; Prausnitz, J. M.; and Blanch, H. W. 1991. Kinetics of lipase-catalyzed interesterification of triglycerides in cyclohexane.Enzyme Microb. Technol. 13, 98–103CrossRefGoogle Scholar
  117. Morley, N. H.; Kuxsts, A.; Buchnea, D.; and Myher, J. J. 1975. Hydrolysis of diacylglycerols by lipoprotein lipase.J. Biol. Chem. 250, 3414–3418Google Scholar
  118. Nakamura, K.; Ishihara, K.; Ohno, A.; Uemura, M.; Nishimura, H.; and Hayashi, Y. 1990. Kinetic resolution of (I16-arene)chromium complexes by a lipase.Tetrahedron Letters 31, 3603–3604CrossRefGoogle Scholar
  119. Nelson, J. H. 1972. Enzymatically produced flavors for fatty systems.JAOCS 49, 559–562CrossRefGoogle Scholar
  120. Noble, M. E. M.; Cleasby, A.; Johnson, L. N.; Egmond, M. R.; and Frenken, L. G. J. 1993. The crystal structure of triacylglycerol lipase fromPseudomonas glumae reveals a partially redundant catalytic aspartate.FEBS Lett.331, 123–128CrossRefGoogle Scholar
  121. Okumura, S.; Iwai, M.; and Tsujisaka, Y. 1976. Positional specificities of four kinds of microbial lipases.Agric. Biol. Chem. 40, 655–660CrossRefGoogle Scholar
  122. Ota, T.; Takano, S.; and Hasegawa, T. 1990. Synthesis of C18-fatty acid esters in organic solvent by lipase fromCandida cylindracea. Agric. Biol. Chem.54, 1571–1572CrossRefGoogle Scholar
  123. Paltauf, F.; Esfandi, F.; and Holasek, A. 1974. Stereospecificity of lipases. Enzymic hydrolysis of enantiomeric alkyl diacylglycerols by lipoprotein lipase, lingual lipase and pancreatic lipase.FEBS Lett.40, 119–123CrossRefGoogle Scholar
  124. Patton, J. S.; Albertsson, P.-A.; Erlanson, C.; and Borgstrom, B. 1978. Binding of porcine pancreatic lipase and colipase in the absence of substrate studied by two-phase partition and affinity chromatography.J. Biol. Chem. 253, 4195–4202Google Scholar
  125. Pierrot, M.; Astier, J.-P.; Astier, M.; Charles, M.; and Drenth, J. 1982. Pancreatic colipase: Crystallographic and biochemical aspects.Eur. J. Biochem. 123, 347–354CrossRefGoogle Scholar
  126. Plummer, T. H., Jr., and Sarda, L. 1973. Isolation and characterization of the gly copeptides of porcine pancreatic lipases LA and LB.J. Biol. Chem. 248, 7865–7869Google Scholar
  127. Puijx, W. C.; Verheij, H. M.; and De Haas, G. H. 1977. The primary structure of phospholipase A2 from porcine pancreas.Biochim. Biophys. Acta 492, 254–259CrossRefGoogle Scholar
  128. Ramaswamy, S.; Morgan, B.; and Oehlschlager, A. C. 1990. Porcine pancreatic lipase mediated selective acylation of primary alcohols in organic solvents.Tetrahedron Letters 31, 3405–3408CrossRefGoogle Scholar
  129. Ransac, S.; Rogalska, E.; Gargouri, Y.; Deveer, A. M. T. J.; Paltauf, F.; De Haas, G. H.; and Verger, R. 1990. Stereoselectivity of lipases. I. Hydrolysis of enantiomeric glyceride analogues by gastric and pancreatic lipases, a kinetic study using the monomolecular film technique.J. Biol. Chem. 265, 20263–20270Google Scholar
  130. Rati-Ielot, J.; Bosc-Bierne, I.; Guy-Crotte, O.; Delori, P.; Rochat, H.; and Sarda, L. 1983. Isolation and characterization of colipase from porcine and human pancreatic juice by immunoaffinity chromatography.Biochim. Biophys. Acta.744,115–118 Google Scholar
  131. Renetseder, R.; Dijkstra, B. W.; Huizinga, K.; Kalk, K. H.; and Drenth, J. 1988. Crystal structure of bovine pancreatic phospholipase Az covalently inhibited by p-bromo-phenacyl-bromide.J. Mol. Biol. 200, 181–188CrossRefGoogle Scholar
  132. Riddihough, G. 1993. Picture an enzyme at work.Nature 362, 793CrossRefGoogle Scholar
  133. Rogalska, E.; Ransac, S.; and Verger, R. 1990. Stereoselectivity of lipases. II. Stereoselective hydrolysis of triglycerides by gastric and pancreatic lipases.J. Biol. Chem. 265, 20271–20276Google Scholar
  134. Rollof, J.; Hedstrom, S. A.; and Nilsson-Ehle, P. 1987. Positional specificity and substrate preference of purifiedStaphylococcus aureus lipase.Biochim. Biophys. Acta 921, 370–377CrossRefGoogle Scholar
  135. Sarda, L., and Desnuelle, P 1958. Action of pancreatic lipase on emulsified esters.Biochim. Biophys. Acta 30, 513–521CrossRefGoogle Scholar
  136. Schrag, J. D., and Cygler, M. 1993. 1.8 A refined structure of the lipase from Geotrichum candidum. J. Mol. Biol. 230, 575–591Google Scholar
  137. Schrag, J. D.; Li, Y.; Wu, S.; and Cygler, M. 1991. Ser-His-Glu triad forms the catalytic site of the lipase fromGeotrichum candidum. Nature 351, 761–764CrossRefGoogle Scholar
  138. Schrag, J. D.; Windler, F. K.; and Cygler, M. 1992. Pancreatic lipases: Evolutionary intermediates in a positional change of catalytic carboxylates?J. Biol. Chem. 267, 4300–4303Google Scholar
  139. Scott, D. L.; White, S. P.; Otwinowski, Z.; Yuan, W.; Gelb, M. H.; and Sigler, P. B. 1990. Interfacial catalysis: The mechanism of phospholipase AZ.Science 250, 1541–1546CrossRefGoogle Scholar
  140. Seing, H.; Üchibori, T.; Nishitani, T.; and Inamasu, S. 1984. Enzymatic synthesis of carbohydrate esters of fatty acid (1) Esterification of sucrose, glucose, fructose, and sorbitol.JAOCS 61, 1761–1765CrossRefGoogle Scholar
  141. Semeriva, M.; Chapus, C.; Bonier-Lapierre, C.; and Desnuelle, P. 1974. On the transient formation of an acyl enzyme intermediate during the hydrolysis of p-nitrophenyl acetate by pancreatic lipase.Biochem. Biophys. Res. Comm. 58, 808–813CrossRefGoogle Scholar
  142. Shimada, Y.; Sugihara, A.; Iizumi, T.; and Tominaga, Y. 1990. cDNA cloning and characterization of Geotrichum candidum lipase II.J. Biochem. 107, 703–707Google Scholar
  143. Shimada, Y.; Sugihara, A.; Tominaga, Y.; Iizumi, T.; and Tsunasawa, S. 1989. cDNA molecular cloning of Geotrichum candidum lipase. J. Biochem. 106, 383–388Google Scholar
  144. Sidebottom, C. M.; Charton, E.; Dunn, P. P.; Mycock, G.; Davies, C.; Sutton, J. L.; Macrae, A. R.; and Slabas, A. R. 1991.Geotrichum candidum produces several lipases with markedly different substrate specificities.Eur. J. Biochem. 202, 485–491Google Scholar
  145. Sims, H. F., and Lowe, M. E. 1992. The human colipase gene: Isolation, chromosomal location, and tissue-specific expression.Biochemistry 31, 7120–7125CrossRefGoogle Scholar
  146. Slaich, P. K.; Primrose, W. U.; Robinson, D. H.; Wharton, C. W.; White, A. J.; Drabble, K.; and Roberts, G. C. K. 1992. The binding of amide substrate analogues to phospholipase Az. Studies by 13C-nuclear-magnetic-resonance and infrared spectroscopy.Biochem. J. 288, 167–173Google Scholar
  147. Slotboom, A. J.; Jansen, E. H. J. M.; Vlijm, IT.; and Pattus, F. 1978. Ca F-4 Binding to porcine pancreatic phospholipase AZ and its function in enzyme-lipid interaction.Biochemistry 17, 4593–4600CrossRefGoogle Scholar
  148. Sternby, B., and Borgstrom, B. 1979. Purification and characterization of human pancreatic colipase.Biochim. Biophys. Acta 572, 235–243CrossRefGoogle Scholar
  149. Sternby, B.; Engstrom, A.; and Hellman, U. 1984A. Purification and characterization of pancreatic colipase from the dogfish(Squalus acanthius). Biochim. Biophys. Acta 789, 159–163Google Scholar
  150. Sternby, B.; Engstrom, A.; Hellman, U.; Vihert, A. M.; Sternby, N.-H.; and Borgstrom, B. 1984B. The primary sequence of human pancreatic colipase.Biochim. Biophys. Acta 784, 75–80Google Scholar
  151. Stevenson, R. W.; Luddy, F. E.; and Rothbart, H. L. 1979. Enzymatic acyl exchange to vary saturation in di-and triglycerides.JAOCS 56, 676–680CrossRefGoogle Scholar
  152. Sugihara, A.; Shimada, Y.; and Tominaga, Y. 1990. Separation and characterization of two molecular forms ofGeotrichum candidum lipase.J. Biochem. 107, 426–430Google Scholar
  153. Sweers, H. M., and Wong, C.-H. 1986. Enzyme-catalyzed regioselective deacylation of protected sugars in carbohydrate synthesis.J. Am. Chem. Soc. 108, 6421–6422CrossRefGoogle Scholar
  154. Tanaka, T.; Ono, E.; Ishihara, M.; Yamanaka, S.; and Takinami, K. 1981. Enzymatic acyl exchange of triglyceride in n-hexane.Agric. Biol. Chem. 45, 2387–2389CrossRefGoogle Scholar
  155. Therisod, M., and Klibanov, A. M. 1986. Facile enzymatic preparation of monoacylated sugars in pyridine.J. Am. Chem. Soc. 108, 5638–5640CrossRefGoogle Scholar
  156. Thunnissen, M. M. G. M.; Ab, E.; Kalk, K. H.; Drenth, J.; Kijkstra, B. W.; Kuipers, O. P.; Dijkman, R.; De Haas, G. H.; and Verheij, H. M. 1990. X-Ray structure of phospholipase A2 complexed with a substrate-derived inhibitor.Nature 347, 689–691CrossRefGoogle Scholar
  157. Triantaphylides, C.; Langrand, G.; Illet, H.; Rangheard, M. S.; Buono, G.; and Baratti, J. 1988. On the use of lipase specificity. Application to flavour chemistry. In:Bigflavour 87, ed. P. Schreier, Walter de Gruyter, Berlin and Hawthorne, New YorkGoogle Scholar
  158. Tsujisaka, Y.; Okumura, S.; and Iwai, M. 1977. Glyceride synthesis by four kinds of microbial lipase.Biochim. Biophys. Acta 489, 415–422CrossRefGoogle Scholar
  159. Uemura, A.; Nozaki, K.; Yamashita, J.-I.; and Yasumoto, M. 1989. Regioselective deprotection of 3’, 5’-O-acylated pyrimidine nucleosides by lipase and esterase.Tetrahedron Letters 30, 3819–3820CrossRefGoogle Scholar
  160. Uppenberg, J.; Hansen, M. T.; Patkar, S.; and Jones, T. A. 1994. The sequence, crystal structure determination and refinement of two crystal forms of lipase B fromCandida antarctica. Structure 2, 293–308CrossRefGoogle Scholar
  161. Vadehra, D. V. 1974.Staphylococcal lipases.Lipids 9, 158–165CrossRefGoogle Scholar
  162. Valivety, R. H.; Halling, P. J.; and Macrae, A. R. 1992a. Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents.Biochim. Biophys. Acta 1118, 218–222CrossRefGoogle Scholar
  163. Valivety, R. H.; Halling, P. J.; and Macrae, A. R. 1992b.Rhizomucor miehei lipase remains highly active at water activity below 0.0001.FEBS Lett. 301, 258–260Google Scholar
  164. Van Dam-Mieras, M. C. E.; Slotboom, A. J.; Pieterson, W. A.; and De Haas, G. H. 1975. The interaction of phospholipase A2 with micellar interfaces. The role of the N-terminal region.Biochemistry 14, 5387–5394CrossRefGoogle Scholar
  165. Van Tilbeurgh, H.; Egloff, M.-P.; Martinez, C.; Rugani, N.; Verger, R.; and Cambillau, C. 1993. Interfacial activation of the lipase-prolipase complex by mixed micelles revealed by x-ray crystallography.Nature 362, 814–820CrossRefGoogle Scholar
  166. Van Tilbeurgh, H.; Sarda, L.; Verger, R.; and Cambillau, C. 1992. Structure of the pancreatic lipase-procolipase complex.Nature 359, 159–162CrossRefGoogle Scholar
  167. Veeraragavan, K.; Colpitts, T.; and Gibbs, B. F. 1990. Purification and characterization of two distinct lipases fromGeotrichum candidum. Biochim. Biophys. Acta 1044, 26–33CrossRefGoogle Scholar
  168. Verger, R. 1976. Interfacial enzyme kinetics of lipolysis.Ann. Rev. Biophys. Bioeng. 5, 77–177CrossRefGoogle Scholar
  169. Verger, R. 1980. Enzyme kinetics of lipolysis.Methods in Enzymology 64, 340–392CrossRefGoogle Scholar
  170. Verhagen, J.; Veldink, G. A.; Egmond, M. R.; Vliegenthart, J. F. G.; Boldingh, J.; and Van Der Star, J. 1978. Steady-state kinetics of the anaerobic reaction of soybean lipoxygenase-1 with linoleic acid and 13-L-hydroperoxylinoleic acid.Biochim. Biophys. Acta 529, 369–379CrossRefGoogle Scholar
  171. Verheij, H. M.; Volwerk, J. J.; Jansen, E. H. J. M.; Puyk, W. C.; Dijkstra, B. W.; Drenth, J.; and De Haas, G. H. 1980. Methylation of histidine-48 in pancreatic phospholipase AZ. Role of histidine and calcium ion in a catalytic mechanism.Biochemistry 19, 743–750CrossRefGoogle Scholar
  172. Wang, Y.-F.; Lalonde, J. J.; Momongan, M.; Bergbreiter, D. E.; and Wong, C.-H. 1988. Lipase-catalyzed irreversible transesterifications using enol esters as acylating reagents: Preparative enantio-and regioselective synthesis of alcohols, glycerol derivatives, sugars, and organometallics.J. Am. Chem. Soc. 110, 7200–7205CrossRefGoogle Scholar
  173. Warshel, A.; Naray-Szabo, G.; Sussman, F.; and Hwang, J.-K. 1989. How do serine proteases really work?Biochemistry 28, 3629–3637CrossRefGoogle Scholar
  174. Waszkowycz, B., and Hillier, I. H. 1989. Aspects of the mechanism of catalysis in phospholipase A2. A combined ab initio molecular orbital and molecular mechanics study.J. Chem. Soc. Perkin Trans. II 1989, 1795–1800CrossRefGoogle Scholar
  175. Waszkowycz, B., and Hillier, I. H. 1990. A theoretical study of hydrolysis by phospholipase Az: The catalytic role of the active site and substrate specificity.J. Chem. Soc. Perkin Trans. II 1990, 1259–1268CrossRefGoogle Scholar
  176. Wells, M. A. 1971. Evidence for 0-acyl cleavage during hydrolysis of 1, 2-diacyl-snglycero-3-phosphorylcholine by the phospholipase Az ofCrotalus adamanteus venom.Biochim. Biophys. Acta 248, 80–85CrossRefGoogle Scholar
  177. White, S. P.; Scott, D. L.; Otwinowski, Z.; Gelb, M. H.; and Sigler, P. B. 1990. Crystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue.Science 250, 1560–1563CrossRefGoogle Scholar
  178. Wieloch, T.; Borgstrom, B.; Falk, K.-E.; and Forsen, S. 1979. High-resolution proton magnetic resonance study of porcine colipase and its interactions with taurodeoxycholate.Biochemistry 18, 1622–1628CrossRefGoogle Scholar
  179. Wieloch, T., and Falk, K.-E. 1978. An NMR study of a tyrosine and two histidine residues in the structure of porcine pancreatic colipase.FEBS Lett.85, 271–274CrossRefGoogle Scholar
  180. Winkler, F. K.; D’arcy, A.; and Hunziker, W. 1990. Structure of human pancreatic lipase.Nature 343, 771–774CrossRefGoogle Scholar
  181. Xie, Z.-F., and Sakai, K. 1989. Preparation of a chiral building block based on 1,3syn-diol usingPseudomonasfluorescens lipase and its application to the synthesis of a hunger modulator.Chem. Pharm. Bull. 37, 1650–1752CrossRefGoogle Scholar
  182. Yang, C.-Y.; Gu, Z.-W.; Yang, H.-X.; Rohde, M. F.; Gotto, A. M., Jr.; and Pownall, H. J. 1989. Structure of bovine milk lipoprotein lipase.J. Biol. Chem. 264, 16822–16827Google Scholar
  183. Yokozeki, K.; Yamanaka, S.; Takinami, K.; Hirose, Y.; Tanaka, A.; Sonomoto, K.; and Fukui, S. 1982. Application of immobilized lipase to regio-specific interesterification of triglyceride in organic solvent.Eur. J. Appl. Microbiol. Biotechnol. 14, 1–5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Dominic W. S. Wong

There are no affiliations available

Personalised recommendations