Advertisement

Food Enzymes pp 124-169 | Cite as

Proteolytic Enzymes

  • Dominic W. S. Wong
Chapter

Abstract

The term protease refers to all enzymes that hydrolyze peptide bonds. Other names include peptidase and peptide hydrolase. This group of enzymes can be subdivided into exopeptidases and endopeptidases for exo-acting and endo-acting patterns. Endopeptidase is used synonymously with proteinase.

Keywords

Proteolytic Enzyme Carbonyl Oxygen Carbonyl Carbon Peptide Substrate Oxyanion Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Subtilisn

  1. Argade, P. V.; Gerke, G. K.; Weber, J. P.; and Peticolas, W. L. 1984. Resonance raman carbonyl frequencies and ultraviolet absorption maxima as indicators of the active site environment in native and unfolded chromophoric acyl-achymotrypsin. Biochemistry 23, 299–304.CrossRefGoogle Scholar
  2. Bachouchin, W. W., and Roberts, J. D. 1978. Nitrogen-15 nuclear magnetic resonance spectroscopy. The state of histidine in the catalytic triad of a-lytic protease. Implications for the charge-relay mechanism of peptide-bond cleavage by serine proteases. J. Am. Chem. Soc. 100, 8041–8047.CrossRefGoogle Scholar
  3. Bech, L. M.; Sorensen, S. B.; and Breddam, K. 1992. Mutational replacements in subtilisin 309. Va1104 has a modulating effect on the P4 substrate preference. Eur. J. Biochem. 209, 869–874.CrossRefGoogle Scholar
  4. Bender, M. L.; Clement, G. E.; Kezdy, F. J.; and Heck, H. D. A. 1964. The correlation of the pH (pD) dependence and the stepwise mechanism of a-chymotrypsin-catalyzed reaction. J. Am. Chem. Soc. 86, 3680–3689.CrossRefGoogle Scholar
  5. Bender, M. L., and Philipp, M. 1973. Subtilisin catalysis of nonspecific anilide hydrolyses. J. Am. Chem. Soc. 95, 1665–1666.CrossRefGoogle Scholar
  6. Bode, W.; Papamokos, E.; and Musil, D. 1987. The high-resolution x-ray crystal structure of the complex formed between subtilisin Carlsberg and eglin c, an elastic inhibitor from the leech Hirudo medicinalis. Structural analysis, subtilisin structure and interface geometry. Eur. J. Biochem. 166, 673–692.CrossRefGoogle Scholar
  7. Bode, W.; Papamokos, E.; Musil, D.; Seemueller, U.; and Fritz, H. 1986. Refined 1.2 A crystal structure of the complex formed between subtilisin Carlsberg and the inhibitor eglin c. Molecular structure of eglin and its detailed interaction with subtilisin. EMBO J. 5, 813–818.Google Scholar
  8. Bott, R.; Ultsch, M.; and Kossiakoff, A. 1988. The three-dimensional structure of Bacillus amyloliquefaciens subtilisin at 1.8 A and an analysis of the structural consequences of peroxide inactivation. J. Biol. Chem. 263, 7895–7906.Google Scholar
  9. Branden, C., and Tooze, J. 1991. Introduction to Protein Structure. Garland Publishing, Inc., New York and London.Google Scholar
  10. Braxton, S., and Wells, J A. 1991. The importance of a distal hydrogen bonding group in stabilizing the transition state in subtilisin BPN’. J. Biol. Chem. 266, 11797–11800.Google Scholar
  11. Bromme, D.; Peters, K.; Fink, S.; and Fittkau, S. 1986. Enzyme-substrate interactions in the hydrolysis of peptide substrate by thermitase, subtilisin BPN’, and proteinase K. Arch. Biochem. Biophys. 244, 439–446.CrossRefGoogle Scholar
  12. Bryan, P.; Pantoliano, M. W.; Quill, S. G.; Hsiao, H.-Y.; and Poulos, T. 1986. Site-directed mutagenesis and the role of the oxyanion hole in subtilisin. Proc. Natl. Acad. Sci. USA 83, 3743–3745.CrossRefGoogle Scholar
  13. Bycroft, M., and Fersht, A. R. 1988. Assignment of histidine resonances in the H NMR (500 MHz) spectrum of subtilisin BPN’ using site-directed mutagenesis. Biochemistry 27, 7390–7394.CrossRefGoogle Scholar
  14. Cartedr, P., and Wells, J. A. 1988. Dissecting the catalytic triad of a serine protease. Nature 332, 564–568.CrossRefGoogle Scholar
  15. Daggett, V.; Schroder, S.; and Kollman, P. 1991. Catalytic pathway of serine proteases: Classical and quantum mechanical calculations. J. Am. Chem. Soc. 113, 8926–8935.CrossRefGoogle Scholar
  16. Drenth, J.; Hol, W. G. J.; Jansonius, J. N.; and Koekoek, R. 1972. Subtilisin Novo. The three-dimensional structure and its comparison with subtilisin BPN’. Eur. J. Biochem. 26, 177–181.CrossRefGoogle Scholar
  17. Estell, D. A.; Graycar, T. P.; Miller, J. V.; Powers, D. B.; Burnier, J. P.; Ng, P. G.; and Wells, J. A. 1986. Probing steric and hydrophobic effects on enzyme-substrate interactions by protein engineering. Science 233, 659–663.CrossRefGoogle Scholar
  18. Fersht, A. R., and Requena, Y. 1971. Equilibrium and rate constants for the inter-conversion of two conformations of a-chymotrypsin. J. Mol. Biol. 60, 279–290.CrossRefGoogle Scholar
  19. Gron, H.; Meldal, M.; and Breddam, K. 1992. Extensive comparison of the substrate preferences of two subtilisins as determined with peptide substrates which are based on the principle of intramolecular quenching. Biochemistry 31, 60116018.Google Scholar
  20. Heinz, D. W.; Priestle, J. P.; Rahuel, J.; Wilson, K. S.; and Grutter, M. G. 1991. Refined crystal structures of subtilisin Novo in complex with wild-type and two mutant eglins. Comparison with other serine proteinase inhibitor complexes. J. Mol. Biol. 217, 353–371.CrossRefGoogle Scholar
  21. Henderson, R. 1970. Structure of crystalline a-chymotrypsin IV. The structure of indoleacryloyl-a-chymotrypsin and its relevance to the hydrolytic mechanism of the enzyme. J. Mol. Biot 54, 341–354.CrossRefGoogle Scholar
  22. Hmono, S.; Akagawa, H.; Mitsui, Y.; and Iitaka, Y. 1984. Crystal structure at 2.6 A resolution of the complex of subtilisin BPN’ with Streptomyces subtilisin inhibitor. J. Mol. Biol. 178, 389–413.CrossRefGoogle Scholar
  23. Hunkapiller, M. W.; Forgac, M. D.; Yu, E. H.; and Richards, J. H. 1979. 13C NMR studies of the binding of soybean trypsin inhibitor to trypsin. Biochem. Biophys. Res. Comm. 87, 25–31.Google Scholar
  24. Hunkapillar, M. W.; Smallcombe, S. H.; Whitaker, D. R.; and Richard, J. H. 1973. Carbon nuclear magnetic resonance studies of the histidine residue in a-lytic protease. Implications for the catalytic mechanism of serine proteases. Biochemistry 12, 4732–4743.CrossRefGoogle Scholar
  25. Hwang, J.-K., and Warshel, A. 1987. Semiquantitative calculations of catalytic free energies in genetically modified enzymes. Biochemistry 26, 2669–2673.CrossRefGoogle Scholar
  26. Ikemura, H.; Takagi, H.; and Inouye, M. 1987. Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli. J. Biol. Chem. 262, 7859–7864.Google Scholar
  27. Jacobs, M.; Eliasson, M.; Uhlen, M.; and Flock, J.-I. 1985. Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucl. Acids. Res. 13, 8913–8926.CrossRefGoogle Scholar
  28. Jordan, F., and Polgar, L. 1981. Proton nuclear magnetic resonance evidence for the absence of a stable hydrogen bond between the active site aspartate and histidine residues of native subtilisins and for its presence in thiolsubtilisins. Biochemistry 20, 6366–6370.CrossRefGoogle Scholar
  29. Jordan, F.; Polgar, L.; and Tous, G. 1985. Proton magnetic resonance studies of the states of ionization of histidines in native and modified subtilisins. Biochemistry 24, 7711–7717.CrossRefGoogle Scholar
  30. Keay, I., and Moser, P. W. 1969. Differentiation of alkaline proteases from Bacillus species. Biochem. Biophys. Res. Comm. 34, 600–605.CrossRefGoogle Scholar
  31. Kollman, P. A., and Haves, D. M. 1981. Theoretical calculations on proton-transfer energetics: Studies of methanol, imidazole, formic acid, and methanethiol as models for the serine and cysteine proteases. J. Am. Chem. Soc. 103, 2955–2961.CrossRefGoogle Scholar
  32. Komiyama, M., and Bender, M. L. 1979. Do cleavages of amides by serine proteases occur through a stepwise pathway involving tetrahedral intermediates? Proc. Natl. Acad. Sci. USA 76, 557–560.CrossRefGoogle Scholar
  33. Kossiakoff, A. A., and Spencer, S. A. 1981. Direct determination of protonation states of aspartic acid-102 and histidine-57 in the tetrahedral intermediate of the serine proteases: Neutron structure of trypsin. Biochemistry 20, 6462–6473.CrossRefGoogle Scholar
  34. Kraut, J. 1971. subtilisin: X-Ray structure. The Enzymes 3, 547–560.Google Scholar
  35. Kurihara, M.; Markland, F. S.; and Smith, E. L. 1972. Subtilisin amylosacchariticus III. Isolation and sequence of the chymotryptic peptides and the complete amino acid sequence. J. Biol. Chem. 247, 5619–5631.Google Scholar
  36. Lindquist, R. N., and Terry, C. 1974. Inhibition of subtilisin by boronic acids, potential analogs of tetrahedral reaction intermediates. Arch. Biochem. Biophys. 160, 135–144.CrossRefGoogle Scholar
  37. Markland, F. S., and Smith, E. L. 1967. Subtilisin BPN’. VII. Isolation of cyanogen bromide peptides and the complete amino acid sequence. J. Biol. Chem. 242, 5198–5211.Google Scholar
  38. Markley, J. L.; Travers, F.; and Balny, C. 1981. Lack of evidence for a tetrahedral intermediate in the hydrolysis of nitroanilide substrate by serine proteinases. Eur. J. Biochem. 120, 477–485.CrossRefGoogle Scholar
  39. Matthews, B. W.; Sigler, P. B.; Henderson, R.; and Blow, D. W. 1967. Three-dimensional structure of tosyl-a-chymotrypsin. Nature 214, 652–656.CrossRefGoogle Scholar
  40. Matthews, D. A.; Alden, R. A.; Birktoft, J. J.; Freer, S. T.; and Kraut, J. 1975. X-Ray crystallographic study of boronic acid adducts with subtilisin BPN’ (Novo). J. Biol. Chem. 250, 7120–7126.Google Scholar
  41. Matthews, D. A.; Alden, R. A.; Birktoft, J. J.; Freer, S. T.; and Kraut, J. 1977. Re-examination of the charge relay system in subtilisin and comparison with other serine proteases. J. Biol. Chem. 252, 8875–8883.Google Scholar
  42. Mcphalen, C. A., and James, M. N. G. 1988. Structural comparison of two serine proteinase-protein inhibitor complexes: Eglin-C-subtilisin Carlsberg and CI-2subtilisin Novo. Biochemistry 27, 6582–6598.CrossRefGoogle Scholar
  43. Mcphalen, C. A.; Svendsen, I.; Jonassen, I.; and James, M. N. G. 1985. Crystal and molecular structure of chymotrypsin inhibitor 2 from barley seeds in complex with subtilisin Novo. Proc. Natl. Acad. Sci. USA 82, 7242–7246.CrossRefGoogle Scholar
  44. Morihara, K., and Oka, T. 1970. Subtilisin BPN’: Inactivation by chloromethyl ketone derivatives of peptide substrates. Arch. Biochem. Biophys. 138, 526–531.CrossRefGoogle Scholar
  45. Morihara, K., and Oka, T. 1977. A kinetic investigation of subsites S,’ and S2’ in a-chymotrypsin and subtilisin BPN. Arch. Biochem. Biophys. 178, 188 - 194.CrossRefGoogle Scholar
  46. Morihara, K.; Oka, T.; and Tsuzukl, H. 1970. Subtilisin BPN’: Kinetic study with oligopeptides. Arch. Biochem. Biophys. 138, 515–525.CrossRefGoogle Scholar
  47. Morihara, K.; Oka, T.; and Tsuzuiu, H. 1974. Comparative study of various serine alkaline proteinases from microorganisms. Arch. Biochem. Biophys. 165, 7279.CrossRefGoogle Scholar
  48. Morihara, K.; Tsuzum, H.; and Oka, T. 1971. Comparison of various types of subtilisins in size and properties of the active site. Biochem. Biophys. Res. Comm. 42, 1000–1006.CrossRefGoogle Scholar
  49. Nedkov, P.; Oberthur, W.; and Braunitzer, G. 1985. Determination of the complete amino acid sequence of subtilisin DY and its comparison with the primary structures of the subtilisin BPN’, Carlsberg and amylosacchariticus. Biol. Chem. Hoppe-Seyler 366, 421–430.CrossRefGoogle Scholar
  50. O’connell, T. P.; Finucane, M. D.; and Malthouse, J. P. G. 1993. The use of 13C n.m.r. and saturation transfer to detect tetrahedral intermediates in reactions catalyzed by chymotrypsin and also in an amide inhibitor complex. Biochem. Soc. Trans. 22, 30S.Google Scholar
  51. Olaitan, S. A.; Delange, R. J.; and Smith, E. L. 1968. The structure of subtilisin Novo. J. Biol. Chem. 243, 5296–5301.Google Scholar
  52. Philipp, M., and Bender, M. L. 1983. Kinetics of subtilisin and thiolsubtilisin. Mol. Cell. Biochem. 51, 5–32.CrossRefGoogle Scholar
  53. Polgar, L., and Bender, M. L. 1967. The reactivity of thiol-subtilisin, an enzyme containing a synthetic functional group. Biochemistry 6, 610–620.CrossRefGoogle Scholar
  54. Poulos, T. L.; Alden, R. A.; Freer, S. T.; Birktoft, J. J.; and Kraut, J. 1976. Polypeptide halomethyl ketones bind to serine proteases as analogs of the tetrahedral intermediate. J. Biol. Chem. 251, 1097–1103.Google Scholar
  55. Rao, S. N.; Singh, U. C.; Bash, P. A.; and Kollman, P. A. 1987. Free energy perturbation calculation on binding and catalysis after mutating Asn155 in subtilisin. Nature 328, 551–554.CrossRefGoogle Scholar
  56. Robertus, J. D.; Alden, R. A.; and Kraut, J. 1971. On the identity of subtilisins BPN’ and Novo. Biochem. Biophys. Res. Comm. 42, 334–339.CrossRefGoogle Scholar
  57. Robertus, J. D.; Alden, R. A.; Birktoft, J. J.; Kraut, J.; Powers, J. C.; and Wilcox, P. E. 1972A. An x-ray crystallographic study of the binding of peptide chloromethyl ketone inhibitors to subtilisins BPN’. Biochemistry 11, 2439–2449.Google Scholar
  58. Robertus, J. D.; Kraut, J.; Alden, R. A.; and Birktoft, J. J. 1972B. Subtilisin; a stereochemical mechanism involving transition-state stabilization. Biochemistry 11, 4293–4303.Google Scholar
  59. Robillard, G. T.; Powers, J. C.; and Wilcox, P. E. 1972. A chemical and crystallographic study of carbamyl-chymotrypsin A. Biochemistry 11, 1773.CrossRefGoogle Scholar
  60. Robillard, G. T., and Shulman, R. G. 1974. High resolution nuclear magnetic resonance studies of the active site of chymotrypsin. II. Polarization of histidine 57 by substrate analogues and competitive inhibitors. J. Mol. Biol. 86, 541–558.CrossRefGoogle Scholar
  61. Schechter, I., and Berger, A. 1967. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Comm. 27, 157–162.CrossRefGoogle Scholar
  62. Scheiner, S., and Lipscomb, W. N. 1976. Molecular orbital studies of enzyme activity: Catalytic mechanism of serine proteinases. Proc. Natl. Acad. Sci. USA 73, 432–436.CrossRefGoogle Scholar
  63. Smith, E. L.; Delange, R. J.; Evans, W. H.; Landon, M.; and Markland, F. 1968. Subtilisin Carlsberg. V. The complete sequence; comparison with subtilisin BPN’; evolutionary relationship. J. Biol. Chem. 243, 2184–2191.Google Scholar
  64. Stahl, M. L., and Ferrari, E. 1984. Replacement of the Bacillus subtilis subtilisin structural gene with an in vitro-derived deletion mutation. J. Bacteriol. 158, 411–418.Google Scholar
  65. Stamato, F. M. L. G.; Longo, E.; and Yoshioka, L. M. 1984. The catalytic mechanism of serine proteases: Single proton versus double proton transfer. J. Theor. Biol. 107, 329–338.CrossRefGoogle Scholar
  66. Stein, R. L.; Elrod, J. P.; and Schowen, R. L. 1983. Correlative variations in enzyme-derived and substrate-derived structures of catalytic transition states. Implications for the catalytic strategry of acyl-transfer enzymes. J. Am. Chem. Soc. 105, 2446–2452.CrossRefGoogle Scholar
  67. Takeuchi, Y.; Satow, Y.; Nakamura, K. T.; and Mitsui, Y. 1991. Refined crystal structures of the complex of subtilisin BPN’ and Streptomyces subtilisin inhibitor at 1.8 A resolution. J. Mol. Biol. 221, 309–325.Google Scholar
  68. Tonge, P. J., and Carey, P. R. 1990. Length of the acyl carbonyl bond in acyl-serine proteases correlates with reactivity. Biochemistry 29, 10723–10727.CrossRefGoogle Scholar
  69. Tonge, P. J., and Carey, P. R. 1992. Forces, bond lengths, and reactivity: Fundamental insight into the mechanism of enzyme catalysis. Biochemistry 31, 9122–9125.CrossRefGoogle Scholar
  70. Vasantha, N.; Thompson, L. D.; Rhodes, C.; Banner, C.; Nagle, J.;and Filpula, D. 1984. Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J. Bacteriol. 159, 811–819.Google Scholar
  71. Warshel, A.; Naray-Szabo, G.; Sussman, F.; and Hwang, J.-K. Warshel, A., and Russell, S. 1986. Theoretical correlation of structure and energetics in the catalytic reaction of trypsin. J. Am. Chem. Soc. 108, 6569–6579.CrossRefGoogle Scholar
  72. Wells, J. A.; Cunningham, B. C.; Graycar, T. P.; and Estell, D. A. 1987B. Recruitment of substrate-specificity properties from one enzyme into a related one by protein engineering. Proc. Natl. Acad. Sci. USA 84, 5167–5171.Google Scholar
  73. Wells, J. A., and Estell, D. A. 1988. Subtilisin-an enzyme designed to be engineered. TIBS 13, 291–297.Google Scholar
  74. Wells, J.; Ferrari, E.; Henner, D. J.; Estell, D. A.; and Chen, E. Y. 1983. Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucl. Acids Res. 11, 7911–7925.CrossRefGoogle Scholar
  75. Wells, G. B.; Mustafi, D.; and Makinen, M. W. 1994. Structure at the active site of an acylenzyme of a-chymotrypsin and implications for the catalytic mechanism. J. Biol. Chem. 269, 4577–4586.Google Scholar
  76. Wells, J. A.; Powers, D. B.; Bott, R. R.; Graycar, T. P.; and Estell, D. A. 1987A. Designing substrate specificity by protein engineering of electrostatic interactions. Proc. Natl. Acad. Sci. USA 84,1219–1223.Google Scholar
  77. Wright, C. S. 1972. Comparison of the active site stereochemistry and substrate conformation in a-chymotrypsin and subtilisin BPN’. J. Mol. Biol. 67, 151–163.CrossRefGoogle Scholar
  78. Wright, C. S.; Alden, R. A.; and Kraut, J. 1969. Structure of subtilisin BPN’ at 2.5 A resolution. Nature 221, 235–242.CrossRefGoogle Scholar
  79. Alecio, M. R.; Dann, M. L.; and Lowe, G. 1974. The specificity of the S,’ subsite of papain. Biochem. J. 141, 495–501.Google Scholar
  80. Asboth, B.; Maier, Z.; and Polgar, L. 1988. Cysteine proteases: The SZPZ hydrogen bond is more important for catalysis than is the analogous S,P, bond. FEBS Lett. 233, 339–341.CrossRefGoogle Scholar
  81. Asboth, B.; Stokum, E.; Khan, I. U.; and Polgar, L. 1985. Mechanism of action of cysteine proteinases: Oxyanion binding site is not essential in the hydrolysis of specific substrate. Biochemistry 24, 606–609.CrossRefGoogle Scholar
  82. Baker, E. N. 1980. Structure of actinidin, after refinement at 1.7 A resolution. J. Mol. Biol. 141, 441–484.CrossRefGoogle Scholar
  83. Baker, E. N., and Drenth, J. 1987. The thiol proteases: structure and mechanism. In: Biological Macromolecules and Assembles. vol. 3. Active Sites of Enzymes. F. A. Jumak and A. McPherson, eds., Wiley & Sons, New York.Google Scholar
  84. Bendall, M. R.; Cartwright, I. L.; Clark, P. I.; Lowe, G.; and Nurse, D. 1977. Inhibition of papain by N-acyl-aminoacetaldehydes and N-acyl-aminopropanones. Eur. J. Biochem. 79, 201–209.CrossRefGoogle Scholar
  85. Bode, W.; Engh, R.; Musil, D.; Thiele, U.; Huber, R.; Karshikov, A.; Brzin, J.; Kos, J.; and Turk, V. 1988. The 2.0 A x-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J. 7, 2593–3599 (1988).Google Scholar
  86. Brubacher, L. J., and Bender, M. L. 1966. The preparation and properties of transcinnamoyl-papain. J. Am. Chem. Soc. 88, 5871–5880.CrossRefGoogle Scholar
  87. Carne, A., and Moore, C. H. 1978. The amino acid sequence of the tryptic peptides from actinidin, a proteolytic enzyme from the fruit of Actinidia chinensis. Biochem. J. 173, 73–83.Google Scholar
  88. Creighton, D. J., and Schamp, D. J. 1980. Solvent isotope effects on tautomerization equilibria of papain and model thiolamines. FEBS Lett. 110, 313–318.CrossRefGoogle Scholar
  89. Delaisse, J.-M.; Eeckhout, Y.; and Vaes, G. 1984. In vivo and in vitro evidence for the involvement of cysteine proteinases in bone resorption. Biochem. Biophys. Res. Comm. 125, 441–447.CrossRefGoogle Scholar
  90. Drenth, J.; Jansonius, J. N.; Koekoek, R.; and Wolthers, B. G. 1971. Papain, x-ray structure. The Enzymes 3, 485–499.CrossRefGoogle Scholar
  91. Drenth, J.; Kalk, K. H.; and Swen, H. M. 1976. Binding of chloromethyl ketone substrate analogues to crystalline papain. Biochemistry 15, 3731–3739.CrossRefGoogle Scholar
  92. Falanga, A., and Gordon, S. G. 1985. Isolation and characterization of cancer procoagulant: A cysteine proteinase from malignant tissue. Biochemistry 24, 5558–5567.CrossRefGoogle Scholar
  93. Frankfater, A., and Kuppy, T. 1981. Mechanism of association of N-acetyl-L-phenylalanylglycinal to papain. Biochemistry 20, 5517–5524.CrossRefGoogle Scholar
  94. Gamcsik, M. P.; Malthouse, J. P. G.; Primrose, W. U.; Mackenzie, N. E.; Boyd, A. S. F.; Russell, R. A.; and Scott, A. I. 1983. Structure and stereochemistry of tetrahedral inhibitor complexes of papain by direct NMR observation. J. Am. Chem. Soc. 105, 6324–6325.CrossRefGoogle Scholar
  95. Garcia-Echeverria, C., and Rich, D. H. 1992A. New intramolecularly quenched fluorogenic peptide substrates for the study of the kinetic specificity of papain. FEBS Lett. 297, 100–102.Google Scholar
  96. Garcia-Echeverria, C., and Rich, D. H. 1992B. Effect of P2’ substituents on kinetic constants for hydrolysis by cysteine proteinases. Biochem. Biophys. Res. Comm. 187, 615–619.Google Scholar
  97. Glazer, A. N., and Smith, E. L. 1971. Papain and other plant sulfhydryl proteolytic enzymes. The Enzymes 3, 501–547.CrossRefGoogle Scholar
  98. Goto, K.; Murachi, T.; and Takahashi, N. 1976. Structural studies on stem bromelain isolation, characterization and alignment of the cyanogen bromide fragments. FEBS Lett. 62, 93–95.CrossRefGoogle Scholar
  99. Goto, K.; Takahashi, N.; and Murachi, T. 1980. Structural studies on stem bromelain. Int. J. Peptide Protein Res. 15, 335–341.CrossRefGoogle Scholar
  100. Greighton, D. J.; Gessouroun, M. S.; and Heapes, J. M. 1980. Is the thiolateimidazolium ion pair the catalytically important form of papain? FEBS Lett. 110, 319–322.CrossRefGoogle Scholar
  101. Huber, R., and Bode, W. 1978. Structural basis of the activation and action of trypsin. Acc. Chem. Res. 11, 114–122.CrossRefGoogle Scholar
  102. Johnson, F. A.; Lewis, S. D.; and Shafer, J. A. 1981. Perturbations in the free energy and enthalpy of ionization of histidine-159 at the active site of papain as determined by fluorescence spectroscopy. Biochemistry 20, 52–58.CrossRefGoogle Scholar
  103. Kamphuis, I. G.; Drenth, J.; and Baker, E. N. 1985. Thiol proteases. Comparative studies based on the high-resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem bromelain. J. Mol. Biol. 182, 317–329.CrossRefGoogle Scholar
  104. Kamphuis, I. G.; Kalk, K. H.; Swarte, M. B. A.; and Drenth, J. 1984. Structure of papain refined at 1.65 A resolution. J. Mol. Biol. 179, 233–256.CrossRefGoogle Scholar
  105. Kowlessur, D.; Thomas, E. W.; Topham, C. M.; Templeton, W.; and Brocklehurst, K. 1990. Dependence of the P2–S2 stereochemical selectivity of papain on the nature of the catalytic-site chemistry. Biochem. J. 266, 653–660.Google Scholar
  106. Laskowski, M., and Kato, I. 1980. Protein inhibitors of proteinases. Ann. Rev. Biochem. 49, 593–626.CrossRefGoogle Scholar
  107. Lewis, S. D.; Johnson, F. A.; Ohno, A. K.; and Shaper, J. A. 1978. Dependence of the catalytic activity of papain on the ionization of two acidic groups. J. Biol. Chem. 253, 5080–5086.Google Scholar
  108. Lewis, S. D.; Johnson, F. A.; and Shafer, J. A. 1976. Potentiometric determination of ionizations at the active site of papain. Biochemistry 15, 5009–5017.CrossRefGoogle Scholar
  109. Lewis, S. D.; Johnson, F. A.; and Shafer, J. A. 1981. Effect of cysteine-25 on the ionization of histidine-159 in papain as determined by proton nuclear magnetic resonance spectroscopy. Evidence for a His-159-Cys-25 ion pair and its possible role in catalysis. Biochemistry 20, 48–51.CrossRefGoogle Scholar
  110. Lowe, G., and Williams, A. 1965. Direct evidence for an acylated thiol as an intermediate in papain-and ficin-catalyzed hydrolyses. Biochem. J. 96, 189 - 193.Google Scholar
  111. Lowe, G., and Yuthavong, Y. 1971. Kinetic specificity in papain-catalyzed hydrolyses. Biochem. J. 124, 107–115.Google Scholar
  112. Lynn, K. G. 1983. Definition of the site of reactivity of the ancestral protease of the papain type. Phytochemistry 22, 2485–2487.CrossRefGoogle Scholar
  113. Machleidt, W.; Thiele, U.; Laber, B.; Assfalg-Macheidt, I.; Esterl, A.; Wiegand, G.; Kos, J.; Turk, V.; and Bode, W. 1989. Mechanism of inhibition of papain by chicken egg white cystatin Inhibition constants of N-terminally truncated forms and cyanogen bromide fragments of the inhibitor. FEBS Lett. 243, 234–238.CrossRefGoogle Scholar
  114. Mackenzie, N. E.; Grant, S. K.; Scott, A. I.; and Malthouse, P. G. 1986. 13C NMR study of the stereospecificity of the thiohemiacetals formed on inhibition of papain by specific enantiomeric aldehydes. Biochemistry 25, 2293–2298.Google Scholar
  115. Mackenzie, N. E.; Malthouse, P. G.; and Scott, A. I. 1985. Chemical synthesis and papain-catalyzed hydrolysis of N-a-benzyloxycarbonyl-L-lysine p-nitroanilide. Biochem. J. 226, 601–606.Google Scholar
  116. Malthouse, J. P. G.; Gamcsik, M. P.; Boyd, A. S. F.; Mackensize, N E; and Scott, A. I. 1982. Cryoenzymology of proteases: NMR detection of a productive thioacyl derivative of papain at subzero temperature. J. Am. Chem. Soc. 104, 6811–6813.CrossRefGoogle Scholar
  117. Menard, R.; Carriere, J.; Laflamme, P.; Plouffe, C.; Khouri, H. E.; Vernet, T.; Tessier, D. C.; THOMAS, D. Y.; and STORER, A. C. 1991A. Contribution of the glutamine 19 side chain to transition-state stabilization in the oxyanion hole of papain. Biochemistry 30, 8924–8928.Google Scholar
  118. Menard, R.; Khouri, H. E.; Plouffe, C.; Dupras, R.; Ripoll, D.; Vernet, T.; Tessier, D. C.; Laliberte, F.; Thomas, D. Y.; and Storer, A. C. 1990. A protein engineering study of the role of aspartate 158 in the catalytic mechanism of papain. Biochemistry 29, 6706–6713.CrossRefGoogle Scholar
  119. Menard, R.; Khouri, H. E.; Plouffe, C.; Laflamme, P.; Dupras, R.; Vernet, T.; Tessier, D. C.; Thomas, D. Y.; and Storer, A. C. 1991B. Importance of hydrogen-bonding interactions involving the side chain of Asp 158 in the catalytic mechanism of papain. Biochemistry 30, 5531–5538.Google Scholar
  120. Migliorini, M., and Creighton, D. J. 1986. Active-site ionization of papain. An evaluation of the potentiometric difference titration method. Eur. J. Biochem. 156, 189 - 192.CrossRefGoogle Scholar
  121. Mitchel, R. E. J.; Chaiken, I. M.; and Smith, E. L. 1970. The complete amino acid sequence of papain. J. Biol. Chem. 245, 3485–3492.Google Scholar
  122. Moon, J. B.; Coleman, R. S.; and Hanzlik, R. P. 1986. Reversible covalent inhibition of papain by a peptide nitrile. C NMR evidence for a thioimidate ester adduct. J. Am. Chem. Soc. 108, 1350–1351.CrossRefGoogle Scholar
  123. Muller-Esterl, W.; Fritz, H.; Kellermann, J.; Lottspeich, F.; Machleidt, W.; Turk, V. 1985. Genealogy of mammalian cysteine proteinase inhibitors. Common evolutionary origin of stefins, cystalins and kininogens. FEBS Lett. 191, 221–226.Google Scholar
  124. O’leary, M. H.; Urberg, M.; and Young, A. P. 1974. Nitrogen isotope effects on the papain-catalyzed hydrolysis of N-benzoyl-L-argininamide. Biochemistry 13, 2077–2081.CrossRefGoogle Scholar
  125. Polgar, L. 1973. On the mode of activation of the catalytically essential sulfhydryl group of papain. Eur. J. Biochem. 33, 104–109.CrossRefGoogle Scholar
  126. Polgar, L. 1974. Mercaptide-imidazolium ion-pair: The reactive nucleophile in papain catalysis. FEBS Lett. 47, 15–18.CrossRefGoogle Scholar
  127. Poole, A. R.; Tiltman, K. J.; Recklies, A. D.; and Stoker, T. A. M. 1978. Differences in secretion of the proteinase cathepsin B at the edges of human breast carcinomas and fibroadenomas. Nature 273, 545–547.CrossRefGoogle Scholar
  128. Roberts, D. D.; Lewis, S. D.; Ballou, D. P.; Olson, S. T.; and Shafer, J. A. 1986. Reactivity of small thiolate anions and cysteine-25 in papain toward methyl methanethiosulfonate. Biochemistry 25, 5595–5601.CrossRefGoogle Scholar
  129. Schack, P., and Kaarsholm, N. C. 1984. Absence in papaya peptidase A catalyzed hydrolysis of a pKa–4 present in papain-catalyzed hydrolyses. Biochemistry 23, 631–635.CrossRefGoogle Scholar
  130. Schechter, I., and Berger, A. 1967. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Comm. 27, 157–162.CrossRefGoogle Scholar
  131. Schechter, I., and Berger, A. 1968. On the active site of proteases. III. Mapping the active site of papain. Biochem. Biophys. Res. Comm. 32, 898–902.CrossRefGoogle Scholar
  132. Schroder, E.; Phillips, C.; Garman, E.; Harlos, K.; and Crawford, C. 1993. X-Ray crystallographic structure of a papain-leupeptin complex. FEBS Lett. 315, 38–42.CrossRefGoogle Scholar
  133. Schuster, M.; Kasche, V.; and Jakubke, H.-D. 1992. Contributions to the S’-subsite specificity of papain. Biochim. Biophys. Acta 1121, 207–212.CrossRefGoogle Scholar
  134. Sluyterman, L. A., and Wijdenes, J. 1976. Proton eqilibria in the binding of Zn2 and of methymercuric iodide to papain. Eur. J. Biochem. 71, 383–391.CrossRefGoogle Scholar
  135. Skorey, K. I., and Brown, R. S. 1985. Biomimetic models for cysteine proteases. 2. Nucleophilic thiolate-containing zwitterions produced from imidazole-thiol pairs. A model for the acylation step in papain-mediated hydrolysis. J. Am. Chem. Soc. 107, 4070–4072.CrossRefGoogle Scholar
  136. Storer, A. C., and Carey, P. R. 1985. Comparison of the kinetics and mechanism of the papain-catalyzed hydrolysis of esters and thiono esters. Biochemistry 24, 6808–6818.CrossRefGoogle Scholar
  137. Stubbs, M. T.; Laber, B.; Bode, W.; Huber, R.; Jerala, R.; Lenarcic, B.; and Turk, V. 1990. The refined 2.4 A x-ray crystal structure of recombinant human stefin B in complex with the cysteine proteainase papain: A novel type of proteinase inhibitor interaction. EMBO J. 9 1939-1947.Google Scholar
  138. Szawelski, R. J., and Wharton, C. W. 1981. Kinetic solvent isotope effects on the deacylation of specific acyl-papains. Biochem. J. 199, 681–692.Google Scholar
  139. Varughese, K. I.; Ahmed, F. R.; Carey, P. R.; Hasnain, S.; Huber, C. P.; and Storer, A. C. 1989. Crystal structure of a papain-E-64 complex. Biochemistry 28, 1330–1332.CrossRefGoogle Scholar
  140. Westerik, J. O., and Wolfenden, R. 1972. Aldehydes as inhibitors of papain. J. Biol. Chem. 247, 8195–8197.Google Scholar
  141. Williams, A.; Lucas, E.; Rimmer, A. R.; and Hawkins, H. C. 1972. Proteolytic enzymes. Nature of binding forces between papain and its substrates and inhibitors. J. Chem. Soc. Perkin Trans II, 627–633.Google Scholar
  142. Yamamoto, O.; Ohishi, H.; Ishida, T.; Indue, M.; Sumiya, S., and Kitamura, K. 1990. Molecular dynamics simulation of papain-E-64 (N-[N-(L-3-trans-carboxyoxirane-2-carbonyl)-L-leucyl]agmatine) complex. Chem. Pharm. Bull. 38, 2339–2343.CrossRefGoogle Scholar
  143. Aikawa, J.; Yamashita, T.; Nishiyama, M.; Horinouchi, S.; and Beppu, T. 1990. Effects of glycosylation on the secretion and enzyme activity of Mucor rennin, an aspartic proteinase of Mucor pusillus, produced by recombinant yeast. J. Biol. Chem. 265, 13955–13959.Google Scholar
  144. Andreeva, N. S., and Gustchina, A. E. 1979. On the supersecondary structure of acid proteases. Biochem. Biophys. Res. Comm. 87, 32–42.CrossRefGoogle Scholar
  145. Andreeva, N.; Dill, J.; and Gilliland, G. L. 1992. Can enzymes adopt a self-inhibited form? Results of x-ray crystallographic studies of chymosin. Biochem. Biophys. Res. Comm. 184, 1074–1081.CrossRefGoogle Scholar
  146. Andreeva, N. S.; Zdanov, A. S.; Gustchina, A. E.; and Fedorov, A. A. 1984. Structure of ethanol-inhibited porcine pepsin at 2-A resolution and binding of the methyl ester of phenylalanyl-diiodotyrosine to the enzyme. J. Biol. Chem. 259, 11353–11365.Google Scholar
  147. Beppu, T. 1988. Site-directed mutagenesis on chymosin and Mucor pusillus rennin The 18th Linderstrom-Lang conference, Elsinore, Denmark, 4–8 July 1988.Google Scholar
  148. Blundell, T. L.; Cooper, J.; and Foundling, S. I. 1987. On the rational design of renin inhibitors: X-ray studies of aspartic proteinases complexed with transition-state analogues. Biochemistry 26, 5585–5590.CrossRefGoogle Scholar
  149. Blundell, T. L.; Jenkins, J. A.; Sewell, B. T.; Pearl, L. H.; Cooper, J. B.; Tickle, I. J.; Veerapandian, B.; and Wool, S. P. 1990. X-ray analysis of aspartic proteinases. The three-dimensional structure at 2.1 A resolution of endothiapepsin. J. Mol. Biol. 211, 919–941.CrossRefGoogle Scholar
  150. Boel, E.; Bech, A.-M.; Randrup, K.; Draeger, B.; Fiil, N. P.; and Foltmann, B. 1986. Primary structure of a precursor to the aspartic proteinase from Rhizomucor miehei shows that the enzyme is synthesized as a zymogen. Proteins: Structure, Function, and Genetics 1, 363–369.CrossRefGoogle Scholar
  151. Bott, R.; Subramanian, E.; and Davies, D. R. 1982. Three-dimensional structure of the complex of the Rhizopus chinensis carboxyl proteinase and pepstatin at 2.5-A resolution. Biochemistry 21, 6956–6962.Google Scholar
  152. Carles, C., and Martin, P. 1985. Kinetic study of the action of bovine chymosin and pepsin A on bovine x-casein. Arch. Biochem. Biophys. 242, 411–416.CrossRefGoogle Scholar
  153. Creamer, L. K.; Richardson, T.; and Parry, D. A. D. 1981. Secondary structure of bovine a,1- and 3-casein in solution. Arch. Biochem. Biophys. 211, 689–696.CrossRefGoogle Scholar
  154. Dunn, B. M., and Fink, A. L. 1984. Cryoenzymology of porcine pepsin. Biochemistry 23, 5241–5247.CrossRefGoogle Scholar
  155. Dunn, B. M.; Valler, M. J.; Rolph, C. E.; Foundling, S. I.; Jimenez, M.; and Kay, J. 1987. The pH dependence of the hydrolysis of chromogenic substrates of the type, Lys-Pro-Xaa-Yaa-Phe-(NO2)Phe-Arg-Leu, by selected aspartic proteinases: Evidence for specific interactions in subsites S3 and S2. Biochim. Biophys. Acta 913, 122–130.CrossRefGoogle Scholar
  156. Emtage, J. S.; Angel, S.; Doel, M. T.; Harris, T. J. R.; Jenkins, B.; Lilley, G.; and Lowe, P. A. 1983. Synthesis of calf prochymosin (prorennin) in Escherichia coli. Proc. Natl. Acad. Sci. USA 80, 3671–3675.CrossRefGoogle Scholar
  157. Flamm, E. L. 1991. How FDA approved chymosin: A case history. Bio/Technology 9, 349–351.CrossRefGoogle Scholar
  158. Foltmann, B. 1988. Aspartic proteinases: Alignment of amino acid sequence. The 18th Linderstrom-Lang Conference, Elsinore, Denmark, 4–8 July 1988.Google Scholar
  159. Foltmann, B.; Pedersen, V. B.; Jacobsen, H.; Kauffman, D.; and Wybrandt, G. 1977. The complete amino acid sequence of prochymosin. Proc. Natl. Acad. Sci. USA 74, 2321–2324.CrossRefGoogle Scholar
  160. Foltmann, B.; Pedersen, V. B.; Kauffman, D.; and Wybrandt, G. 1979. The primary structure of calf chymosin. J. Biol. Chem. 254, 8447–8456.Google Scholar
  161. Gilliland, G. L.; Winborne, E. L.; Nachman, J.; and Wlodawer, A. 1988. The three-dimensional structure of recombinant bovine chymosin at 2.3 A resolution. The 18th Linderstrom-Lang Conference, Elsinore, Denmark, 4–8 July 1988.Google Scholar
  162. Gilliland, G. L.; Winborne, E. L.; Nachman, J.; and Wlodawer, A. 1990. The three-dimensional structure of recombinant bovine chymosin at 2.3 A resolution. Proteins: Structure, Function, and Genetics 8, 82–101.CrossRefGoogle Scholar
  163. Goff, C. G.; Moir, D. T.; Kohno, T.; Gravius, T. C.; Smith, R. A.; Yamasaki, E.; and Taunton-Rigby, A. 1984. Expression of calf prochymosin in Saccharomyces cerevisiae. Gene 27, 35–46.Google Scholar
  164. Harris, T. J. R.; Lowe, P. A.; Lyons, A.; Thomas, P. G.; Eaton, M. A. W.; Millican, T. A.; Patel, T. P.; Bose, C. C.; Carey, N. H.; and Doel, M. T. 1982. Molecular cloning and nucleotide sequence of cDNA for calf preprochymosin. Nucl. Acid Res. 10, 2177–2187.CrossRefGoogle Scholar
  165. Hayenga, K. J.; Crabb, D.; Carlomagno, L.; Arnold, R.; Heinsohn, H.; and Lawlis, B. 1988. Protein chemistry and recovery of calf chymosin from Aspergillus nidulans and Aspergillus awamori. The 18th Linderstrom-Lang Conference, Elsinore, Denmark, 4–8 July 1988.Google Scholar
  166. Hiramatsu, R.; Aikawa, J.-i., Horinouchi, S.; and Beppu, T. 1989. Secretion by yeast of the zymogen form of Mucor rennin, an aspartic proteinase of Mucor pusillus, and its conversion to the mature form. J. Biol. Chem. 264, 16862–16866.Google Scholar
  167. Hofmann, T.; Dunn, B. M.; and Fink, A. L. 1984. Cryoenzymology of penicillopepsin. Appendix: Mechanism of action of aspartyl proteinases. Biochemistry 23, 5247–5256.CrossRefGoogle Scholar
  168. Hofmann, T., and Hodges, R. S. 1982. A new chromophoric substrate for penicil- lopepsin and other fungal aspartic proteinases. Biochem. J. 203, 603–610.Google Scholar
  169. Iwasaki, S.; Tamura, G.; and Arima, K. 1967. Milk clotting enzyme from micro-organisms. Part II. The enzyme production and the properties of crude enzyme. Agric. Biol. Chem. 31, 546–551.CrossRefGoogle Scholar
  170. James, M. N. G., and Sielecki, A. R. 1985. Stereochemical analysis of peptide bond hydrolysis catalyzed by the aspartic proteinase penicillopepsin. Biochemistry 24, 3701–3713.CrossRefGoogle Scholar
  171. Lin, X.-L.; Wong, R. N. S.; and Tang, J. 1989. Synthesis, purification, and active site mutagenesis of recombinant porcine pepsinogen. J. Biol. Chem. 264, 4482–4489.Google Scholar
  172. Mantafounis, D., and Pitts, J. 1990. Protein engineering of chymosin; Modification of the optimum pH of enzyme catalysis. Protein Engineering 3, 605–609.CrossRefGoogle Scholar
  173. Mccaman, M. T., and Cummings, D. B. 1986. A mutated bovine prochymosin zymogen can be activated without proteolytic processing at low pH. J. Biol. Chem. 261, 15345–15348.Google Scholar
  174. Newman, M.; Safro, M.; Frazao, C.; Khan, G.; Zdanov, A.; Tickle, I J; Blundell, T. L.; and Andreeva, N. 1991. X-ray analyses of aspartic proteinases IV. Structure and refinement at 2.2 A resolution of bovine chymosin. J. Mol. Biol. 221, 1295–1309.Google Scholar
  175. Nishimori, K.; Kawaguchi, Y.; Hidaka, M.; Uozumi, T.; and Beppu, T. 1982A. Expression of cloned calf prochymosin gene sequence in Escherichia coli. Gene 19,337–344.Google Scholar
  176. Nishimori, K.; Kawaguchi, Y.; Hidaka, M.; Uozumi, T.; and Beppu, T. 1982B. Nucleotide sequence of calf prorennin cDNA cloned in Escherichia coli. J. Biochem. 91,1085–1088.Google Scholar
  177. Pearl, L., and Blundell, T. 1984. The active site of aspartic proteinases. FEBS Lett. 174, 96–101.CrossRefGoogle Scholar
  178. Pedersen, V. B.; Christensen, K. A.; and Foltmann, B. 1979. Investigations on the activation of bovine prochymosin. Eur. J. Biochem. 94, 573–580.CrossRefGoogle Scholar
  179. Pedersen, V. B., and Foltmann, B. 1975 Amino-acid sequence of the peptide segment liberated during activation of prochymosin (prorennin) Eur. J. Biochem. 55, 95–103.CrossRefGoogle Scholar
  180. Raap, J.; Kerling, K. E. T.; Vreeman, H. J.; and Visser, S. 1983. Peptide substrate for chymosin (rennin): Conformational studies of x-casein and some x-caseinrelated oligopeptides by circular dichromism and secondary structure prediction. Arch. Biochem. Biophys. 221, 117–124.CrossRefGoogle Scholar
  181. Safro, M. G., and Andreeva, N. S. 1990. On the role of peripheral interactions in specificity of chymosin. Biochemistry International 30, 555–561.Google Scholar
  182. Shimada, K., and Cheftel, J. C. 1989. Sulfhydryl group/disulfide bond interchange reaction during heat-induced gelation of whey protein isolate. J. Agric. Food Chem. 37, 161–168.CrossRefGoogle Scholar
  183. Sielecki, A. R.; Fedorov, A. A.; Boodhoo, A.; Andreeva, N. S.; and James, M. N. G. 1990. Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8 A resolution. J. Mol. Biol. 214, 143–170.CrossRefGoogle Scholar
  184. Sielecki, A. R.; Fujinaga, M.; Read, R. J.; and James, M. N. G. 1991. Refined structure of porcine pepsinogen at 1.8A resolution. J. Mol. Biol. 219, 671–692.CrossRefGoogle Scholar
  185. Strop, P.; Sedlacek, J.; Kaderabkova, Z.; Blaka, I.; Pavlickova, L.; Pohl, J.; Fabry, M.; Kostka, V.; Newman, M.; Frazao, C.; Shearer, A.; Tickle, I. J.; and Blundell, T. L. 1990. Engineering enzyme subsite specificity: Preparation, kinetic characterization, and x-ray analysis at 2.0-A resolution of Vall 11 Phe site-mutated calf chymosin. Biochemistry 29, 9863–9871.CrossRefGoogle Scholar
  186. Suguna, K.; Padlan, E. A.; Smith, C. W.; Carlson, W. D.; and Davies, D. R. 1987. Binding of a reduced peptide inhibitor to the aspartic proteinase from Rhizopus chinensis: Implications for a mechanism of action. Proc. Natl. Acad. Sci. USA 84, 7009–7013.CrossRefGoogle Scholar
  187. Suzuki, J.; Sasaki, K.; Sasao, Y.; Hamu, A.; Kawasaki, H.; Nishiyama, M.; Horinouchi, S.; and Beppu, T. 1989. Alteration of catalytic properties of chymosin by site-directed mutagenesis. Protein Engineering 2, 563–569.CrossRefGoogle Scholar
  188. Tonouchi, N.; Shoun, H.; Uozumi, T.; and Beppu, T. 1986. Cloning and sequencing of a gene for Mucor rennin, an aspartate protease from Mucor pusillus. Nucl. Acids Res. 14, 7557–7568.CrossRefGoogle Scholar
  189. Visser, S.; van Rooijen, P. J.; Schattenkerk, C.; and Kerling, K. E. T. 1976. Peptide substrates for chymosin (rennin) Kinetic studies with peptides of different chain length including parts of the sequence 101–112 of bovine x-casein. Biochim. Biophys. Acta 438, 265–272.CrossRefGoogle Scholar
  190. Visser, S.; van Rooijen, P. J.; Schattenkerk, C.; and Kerling, K. E. T. 1977. Peptide substrates for chymosin (rennin). Kinetic studies with bovine x-casein-(103–108)-hexapeptide analogues. Biochim. Biophys. Acta 381, 171–176.Google Scholar
  191. Visser, S.; van Rooijen, P. J.; and Slangen, C. J. 1980. Peptide substrates for chymosin (rennin) Isolation and substrate behavior of two tryptic fragments of bovine x-casein. Eur. J. Biochem. 108, 415–421.CrossRefGoogle Scholar
  192. Visser, S.; Slangen, C. J.; and van Rooijen, P. J. 1987. Peptide substrates for chymosin (rennin). Interaction sites in x-casein-related sequences located outside the (103–108)-hexapeptide region that fits into the enzyme’s active-site cleft. Biochem. J. 244, 553–558.Google Scholar
  193. Voynick, I. M., and Fruton, J. S. 1971. The comparative specificity of acid proteinases. Proc. Natl. Acad. Sci. USA 68, 257–259.CrossRefGoogle Scholar
  194. Watson, F.; Wood, S. P.; Tickle, I. J.; Shearer, A.; Sibanda, B. L.; Newman, M., Khan, G.; Foundling, S. I.; Looper, J.; Veerapandian, P.; and Blundell, T. L. 1988. The evolution of three dimensional structure and specificity of aspartic proteinases: X-ray studies of endothiapepsin, mucorpepsin and chymosin. The 18th Linderstrom-Lang Conference, Elsinore, Denmark, 4–8 July 1988.Google Scholar
  195. Yamashita, T.; Tonouchi, N.; Uozymi, T.; and Beppu, T. 1987. Secretion of Mucor rennin, a fungal aspartic protease of Mucor pusillus, by recombinant yeast cells. Mol. Gen. Genet. 210, 462–467.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Dominic W. S. Wong

There are no affiliations available

Personalised recommendations