Advertisement

Amylolytic Enzymes

  • Dominic W. S. Wong
Chapter

Abstract

Amylolytic enzymes are a group of starch-degrading enzymes that include the industrial important amylases, and a number of enzymes with potential applications, such as pullulanase, α-glucosidase, and cyclodextrin glycosyltransferase. Amylases have found major applications in the starch sweetener industry. α-Amylase is used in the liquefaction step producing soluble dextrins, while glucoamylase further hydrolyzes the dextrins to glucose in the saccharification step. β-Amylase is used in the production of high-maltose syrups. These enzymes also play an important role in the brewing industry, in distilleries and in the baking process, as described in Chapter 1.

Keywords

Aspergillus Niger Sweet Potato Starch Granule Aspergillus Oryzae Bacillus Amyloliquefaciens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleshin, A.; Golubev, A.; Firsov, L. M.; and Honzatko, R. B. 1992. Crystal structure of glucoamylase from Aspergillus awamori var. x 100 to 2.2-A resolution. J. Biol. Chem. 267, 19291–19298.Google Scholar
  2. Aleshin, A. E.; Hoffman, C.; Firsov, L. M.; and Honzatko, R. B. 1994. Refined crystal structures of glucoamylase from Aspergillus awamori var. x 100. J. Mol. Biol. 238, 575–591.CrossRefGoogle Scholar
  3. Allen, J. D. 1980. Subsite mapping of enzymes: Application to polysaccharide depolymerases. Methods in Enzymology 64, 248–277.CrossRefGoogle Scholar
  4. Allen, J. D., and Thoma, J. A. 1976a. Subsite mapping of enzymes depolymerase computer modelling. Biochem. J. 159, 105–120.Google Scholar
  5. Allen, J. D., and Thoma, J. A. 1976b. Subsite mapping of enzymes. Application of the depolymerase computer model to two a-amylases. Biochem. J. 159, 121–132.Google Scholar
  6. Allen, J. D., and Thoma, J. A. 1978. Multimolecular substrate reactions catalyzed by carbohydrases. Aspergillus oryzae a-amylase degradation of maltooligosaccharides. Biochemistry 17, 2338–2344.CrossRefGoogle Scholar
  7. Amyes, T., and Jencks, W. P. 1989. Lifetimes of oxocarbonium ions in aqueous solution from common ion inhibition of the solvolysis of a-azido ethers by added azide ion. J. Am. Chem. Soc. 111, 7888–7900.CrossRefGoogle Scholar
  8. Ann, Y.-G.; Iizuxa, M.; Yamamoto, T.; and Minamiura, N. 1990. Active monomer of sweet potato 3-amylase: Stabilization and an improved preparation method using a-cyclodextrin. J. Ferment. Bioengineer. 70, 75–79.CrossRefGoogle Scholar
  9. Anon. 1984A. DIAZYME L200, fungal glucoamylase for starch hydrolysis. Miles Laboratories, Inc., Enzyme Products, Elkhart, IN.Google Scholar
  10. Anon. 1984B. KINASE-HT, thermal stable bacterial alpha-amylase for the brewing industry. Miles Laboratories, Inc., Biotech Division, Elkhart, IN.Google Scholar
  11. Ashikari, T.; Kiuchi-Goto, N.; Tanaka, Y.; Shibano, Y.; Amachi, T.; and Yoshizumi, H. 1989. High expression and efficient secretion of Rhizopus oryzae glucoamylase in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 30, 515–520.CrossRefGoogle Scholar
  12. Ashikari, T.; Nakamura, N.; Tanaka, Y.; Kiuchi, N.; Shibano, Y.; and Tanaka, T. 1986. Rhizopus raw-starch-degrading glucoamylase: Its cloning and expression in yeast. Agric. Biol. Chem. 50, 957–964.Google Scholar
  13. Banks, W., and Greenwood, C. T. 1977. Mathematical models for the action of alpha-amylase on amylose. Carbohydr. Res. 57, 301–315.CrossRefGoogle Scholar
  14. Baulcombe, D. C.; Huttly, A. K.; Martienssen, R. A.; Barker, R. F.; and Jarvis, M. C. 1987. A novel wheat a-amylase gene (a-Amy3). Mol. Gen. Genet. 209, 33–40.CrossRefGoogle Scholar
  15. Belshaw, N. J., and Williamson, G. 1990. Production and purification of a granularstarch-binding domain of glucoamylase 1 from Aspergillus niger. FEBS Lett. 269, 350–353.CrossRefGoogle Scholar
  16. Belshaw, N. J., and Williamson, G. 1993. Specificity of the binding domain of glucoamylase 1. Eur. J. Biochem. 211, 717–724.CrossRefGoogle Scholar
  17. Boel, E.; Brady, L.; Brzozowski, A. M.; Derewenda, Z.; Dodson, G. G.; Jensen, V. J., Petersen, S. B.; Swift, H.; Trim, L.; and Woldike, H. F. 1990. Calcium binding in a-amylases: An x-ray diffraction study at 2.1-A resolution of two enzymes from Aspergillus. Biochemistry 29, 6244–6249.CrossRefGoogle Scholar
  18. Boel, E.; Hjort, I.; Svensson, B.; Norris, F.; Norris, K. E.; and Fiil, N. P. 1984. Glucoamylases G1 and G2 from Aspergillus niger are synthesized from two different but closely related mRNAs. EMBO J. 3, 1097–1102.Google Scholar
  19. Brosnan, M. P.; Kelly, C. T.; and Fogarty, W. M. 1992. Investigation of the mechanisms of irreversible thermoinactivation of Bacillus stearothermophilus a-amylase. Eur. J. Biochem. 203, 225–231.CrossRefGoogle Scholar
  20. Buisson, G.; Dues, E.; Haser, R.; and Payan, F. 1987. Three dimensional structure of porcine pancreatic a-amylase at 2.9 A resolution. Role of calcium in structure and activity. EMBO J. 6, 3909–3916.Google Scholar
  21. Clarke, A. J., and Svensson, B. 1984. Identification of an essential tryptophanyl residue in the primary structure of glucoamylase G2 from Aspergillus niger. Carlsberg Res. Comm. 49, 559–566.CrossRefGoogle Scholar
  22. Cone, J. W., and Wolters, M. G. E. 1990. Some properties and degradability of isolated starch granules. Starch/Starke 42, 298–301.CrossRefGoogle Scholar
  23. Dawson, H. G., and Allen, W. G. 1984. The use of enzymes in food technology. Miles Laboratories, Inc., Biotech Products Division, Elkhart, IN.Google Scholar
  24. Doyen, C., and Lauriere, C. 1992. 3-Amylases in germinating maize grains: Purification, partial characterization and antigen relationships. Phytochemistry 31, 3697–3702.Google Scholar
  25. Dua, R. D., and Kociiiiar, S. 1985. Active site studies on Bacillus amyloliquefaciens a-amylase (I). Mol. Cell. Biochem. 66, 13–20.CrossRefGoogle Scholar
  26. Emi, M.; Horii, A.; Tomita, N.; Nishide, T.; Ogawa, M.; Mori, T.; and Matsubara, K. 1988. Overlapping two genes in human DNA: a salivary amylase gene overlaps with a gamma-actin pseudogene that carries an integrated human endogenous retroviral DNA. Gene 62, 229–235.CrossRefGoogle Scholar
  27. Evans, R.; Ford, C.; Steaks, M.; Nikolov, Z.; and Svensson, B. 1990. Activity and thermal stability of genetically truncated forms of Aspergillus glucoamylase. Gene 91, 131–134.Google Scholar
  28. Fagerstrom, R. 1991. Subsite mapping of Hormoconis resinae glucoamylases and their inhibition by gluconolactone. J. Gen. Microbiol. 137, 1001–1008.CrossRefGoogle Scholar
  29. Fogarty, W. M., and Griffin, P. J. 1975. Purification and properties of 3-amylase produced by Bacillus polymyxa. J. Appl. Chem. Biotechnol. 25, 229–238.CrossRefGoogle Scholar
  30. French, D.; Smith, E. E.; and Whelan, W. J. 1972. The structural analysis and enzymatic synthesis of a pentasaccharide alpha-limit dextrin formed from amylopectin by Bacillus subtilis alpha-amylase. Carbohydr. Res. 22, 123–134.CrossRefGoogle Scholar
  31. Gallant, D.; Mercier, C.; and Guilbot, A. 1972. Electron microscopy of starch granules modified by bacterial a-amylase. Cereal Chem. 49, 354–365.Google Scholar
  32. Goto, M.; Tanigawa, K.; Kanlayakrit, W.; and Hayashida, S. 1994. The mechanism of binding of glucoamylase I from Aspergillus awamori var. kawachi to cyclodextrins and raw starch. Biosci. Biotech. Biochem. 58, 49–54.CrossRefGoogle Scholar
  33. Graber, M., and Combes, D. 1990. Action pattern of alpha-amylase from Aspergillus oryzae in concentrated media. Biotechnol. Bioengineer. 36, 12–18.CrossRefGoogle Scholar
  34. Gray, G. L.; Mainzer, S. E.; Rey, M. W.; Lamsa, M. H.; Kindle, K. L.; Carmona, C.; and Requadt, C. 1986. Structural genes encoding the thermophilic a-amylases of Bacillus stearothermophilus and Bacillus licheniformis. J. Bacteriol. 166, 635–643.Google Scholar
  35. Gumucio, D. L.; Wiebauer, K.; Caldwell, R. M.; Samuelson, C.; and Meisler, M. H. 1988. Concerted evolution of human amylase genes. Mol. Cell. Biol. 8, 1197 1205.Google Scholar
  36. Gumucio, D. L.; Wiebauer, K.; Dranginis, A.; Samuelson, L. C.; Treisman, L. O.; Caldwell, R. M.; Antonucci, T. K.; and Meisler, M. H. 1985. Evolution of the amylase multigene family. J. Biol. Chem. 260, 13483–13489.Google Scholar
  37. Gunnarsson, A.; Svensson, B.; Nilsson, B.; and Svensson, S. 1984. Structural studies on the o-glycosidically linked carbohydrate chains of glucoamylase G1 from Aspergillus niger. Eur. J. Biochem. 145, 463–467.CrossRefGoogle Scholar
  38. Hall, R. S., and Manners, D. J. 1978. The action of malted-barley alpha-amylase on amylopectin. Carbohydr. Res. 66, 295–297.CrossRefGoogle Scholar
  39. Hanozet. G.; Pircher, H.-P.; Vanni, P.; Oesch, B.; and Semenza, G. 1981. An example of enzyme hysteresis. J. Biol. Chem. 256, 3703–3711.Google Scholar
  40. Harris, E. M. S.; Aleshin, A. E.; Firsov, L. M.; and Honzatko, R. B. 1993. Refined structure for the complex of 1-deoxynojirimycin with glucoamylase from Aspergillus awamori var. X100 to 2.4-A resolution. Biochemistry 32, 1618–1626.Google Scholar
  41. Hata, Y.; Kitamoto, K.; Gomi, K.; Kumagai, C.; Tamura, G.; and Hara, S. 1991. The glucoamylase cDNA from Aspergillus oryzae: Its cloning, nucleotide sequence, and expression in Saccharomyces cerevisae. Agric. Biol. Chem. 55, 941–949.CrossRefGoogle Scholar
  42. Hata, Y.; Tsuchiya, K.; Kitamoto, K.; Gomi, K.; Kumagai, C.; Tamura, G.; and Hara, S. 1991. Nucleotide sequence and expression of the glucoamylase-encoding gene (gla A) from Aspergillus oryzae. Gene 108, 145–150.Google Scholar
  43. Hayashida, S. 1975. Selective submerged productions of three types of glucoamylases by a black-koji mold. Agric. Biol. Chem. 39, 2093–2099.CrossRefGoogle Scholar
  44. Hayashida, S.; Kunisaki, S.; Nakao, M.; and Flor, P. Q. 1982. Evidence for raw starch-affinity site on Aspergillus awamori glucoamylase I. Agric. Biol. Chem. 46, 83–89.CrossRefGoogle Scholar
  45. Hayashida, S.; Nakahara, K.; Kuroda, K.; Miyata, T.; and Iwanaga, S. 1989. Structure of the raw-starch-affinity site on the Aspergillus awamori var. kawachi glucoamylase I molecule. Agric. Biol. Chem. 53, 135–141.CrossRefGoogle Scholar
  46. Hayashida, S.; Teramoto, Y.; and Kira, I. 1991. Promotive and inhibitory effects of raw starch adsorbable fragments from pancreatic a-amylase on enzymatic digestions of raw starch. Agric. Biol. Chem. 55, 1–6.CrossRefGoogle Scholar
  47. Hehre, E. J.; Brewer, C. F.; and Genghof, D. S. 1979. Scope and mechanism of carbohydrase action. Hydrolytic and nonhydrolytic actions of a-amylase on ß-maltosyl fluoride. J. Biol. Chem. 254, 5942–5950.Google Scholar
  48. Hehre, E. J.; Kitahata, S.; and Brewer, C. F. 1986. Catalytic flexibility of glycosylases. The hydration of maltai by fl-amylase to form 2-deoxymaltose. J. Biol. Chem. 261, 2147–2153.Google Scholar
  49. Hehre, E. J.; Okada, G.; and Genghof, D. S. 1969. Configurational specificity: Unappreciated key to understanding enzyme reversions and de Novo glycosidic bond synthesis. 1. Reversal of hydrolysis by a-, 3- and glucoamylases with donors of correct anomeric form. Arch. Biochem. Biophys. 135, 75–89.CrossRefGoogle Scholar
  50. Hiromi, K. 1970. Interpretation of dependency of rare parameters on the degree of polymerization of substrate in enzyme-catalyzed reactions. Evaluation of sub-site affinities of exo-enzyme. Biochem. Biophys. Res. Comm. 40, 1–6.CrossRefGoogle Scholar
  51. Hiromi, K. 1979. Amylase in food processing: the subsite theory and its application. Proceedings of Fifth International Congress of Food Science and Technology, ed. H. Chiba, Hodansha Ltd., and Elsevier Scientific Publ. Co., 1979.Google Scholar
  52. Hiromi, K.; Nitta, Y.; Numata, C.; and Ono, S. 1973. Subsite affinities of glucoamylase: Examination of the validity of the subsite theory. Biochim. Biophys. Acta 302, 362–375.CrossRefGoogle Scholar
  53. Hiromi, K.; Ohnishi, M.; and Tanaka, A. 1983. Subsite structure and ligand binding mechanism of glucoamylase. Mol. Cell. Biochem. 51, 79–95.CrossRefGoogle Scholar
  54. Hoschke, A.; Laszlo, E.; and Hollo, J. 1980a. A study of the role of histidine side-chains at the active centre of amylolytic enzymes. Carbohydr. Res. 81, 145–156.CrossRefGoogle Scholar
  55. Hoschke, A.; Laszlo, E.; and Hollo, J. 1980b. A study of the role of tyrosine groups at the active centre of amylolytic enzymes. Carbohydr. Res. 81, 157–166.CrossRefGoogle Scholar
  56. Hoshiko, S.; Makabe, O.; Nojiri, C.; Katsumata, K.; Satoh, E.; and Nagaoka, K. 1987. Molecular cloning and characterization of the Streptomyces hygroscopicus a-amylase gene. J. Bacteriol. 169, 1029–1036.Google Scholar
  57. Ihara, H.; Sasaki, T.; Tsuboi, A.; Yamagata, H.; Tsukagoshi, N.; and Udaka, S. 1985. Complete nucleotide sequence of a thermophilic a-amylase gene: Homology between prokaryotic and eukaryotic a-amylases at the active sites. J. Biochem. 98, 95–103.Google Scholar
  58. Imam, S. H.; Burgess-Cassler, A.; Cote, G. L.; Gordon, S. H.; and Baker, F. L. 1991. A study of cornstarch granule digestion by an unusually high molecular weight a-amylase secreted by Lactobacillus amylovorus. Current Microbiology 22, 365–370.CrossRefGoogle Scholar
  59. Inokuchi, N.; Iwama, M.; Takahashi, T.; and Trie, M. 1982A. Modification of a glucoamylase from Aspergillus saitoi with 1-cyclohexyl-3-(2-morpholinyl-(4)ethyl-carbodiimide. J. Biochem. 91, 125–133.Google Scholar
  60. Inokuchi, N.; Takahashi, T.; Yoshimoto, A.; and Irie, M. 1982B. N-Bromosuccinimide oxidation of a glucoamylase. J. Biochem. 91, 1661–1668.Google Scholar
  61. Ishikawa, K.; Matsui, I.; Honda, K.; and Nakatani, H. 1992. Multi-functional roles of a histidine residue in human pancreatic a-amylase. Biochem. Biophys. Res. Comm. 183, 286–291.CrossRefGoogle Scholar
  62. Ishikawa, K.; Matsui, I.; Kobayashi, S.; Nakatani, H.; and Honda, K. 1993. Substrate recognition at the binding site in mammalian pancreatic a-amylases. Biochemistry 32, 6259–6265.CrossRefGoogle Scholar
  63. Isoda, Y., and Nitta, Y. 1986. Affinity labeling of soybean 0-amylase with 2’,3’epoxypropyl a-D-glucopyranoside. J. Biochem. 99, 1631–1637.Google Scholar
  64. Itoh, T.; Ohtsuki, I.; Yamashita, I.; and Fukut, S. 1987a. Nucleotide sequence of the glucoamylase gene GLU1 in the yeast Saccharomycopsis fibuligera. J. Bacteriol. 169, 4171–4176.Google Scholar
  65. Itoh, T.; Yamashita, I.; and Fuxin, S. 1987b. Nucleotide sequence of the a-amylase gene (ALP1) in the yeast Saccharomycopsis fibuligera. FEBS Lett. 219, 339–342.CrossRefGoogle Scholar
  66. Iwasa, S.; Aoshima, H.; Hiromi, K.; and Hatano, H. 1974. Subsite affinities of bacterial liquefying a-amylase evaluated from the rate parameters of linear substrates. J. Biochem. 75, 969–978.Google Scholar
  67. Ji, E.-S.; Mikami, B.; Kim, J.-P.; and Morita, Y. 1990. Positions of substituted amino acids in soybean a-amylase isozymes. Agric. Biol. Chem. 54, 3065–3067.CrossRefGoogle Scholar
  68. Kadziola, A.; Abe, J.-I.; Svensson, B.; and Haser, R. 1994. Crystal and molecular structure of barley a-amylase. J. Mol. Biol. 239, 104–121.CrossRefGoogle Scholar
  69. Kato, M.; Hiromi, K.; and Morita, Y. 1974. Purification and kinetic studies of wheat bran 0-amylase. Evaluation of subsite affinities. J. Biochem. 75, 563–576.Google Scholar
  70. Kawazu, T.; Nakanishi, Y.; Uozumi, N.; Sasaki, T.; Yamagata, H.; Tsukagoshi, N.; and Udaka, S. 1987. Cloning and nucleotide sequence of the gene coding for enzymatically active fragments of the Bacillus polymyxa 0-amylase. J. Bacteriol. 169, 1564–1570.Google Scholar
  71. Kimura, T., and Horikoshi, K. 1990. The nucleotide sequence of an a-amylase gene from an alkalopsychrotrophic Micrococcus sp. FEMS Microbiol. Lett. 71, 3542.Google Scholar
  72. Kita, Y.; Sakaquchi, S.; Nitta, Y.; and Watanabe, T. 1982. Kinetic study on chemical modification of Taka-amylase A. II. Ethoxycarbonylation of histidine residues. J. Biochem. 92, 1499–1504.Google Scholar
  73. Kitahata, S.; Brewer, C. F.; Genghof, D. S.; Sawai, T.; and Hehre, E. J. 1981. Scope and mechanism of carbohydrase action. Stereocomplementary hydrolytic and glucosyl-transferring actions of glucoamylase and glucodextranase with a-and O-D-glucosyl fluoride. J. Biol. Chem. 256, 6017–6026.Google Scholar
  74. Kitahata, S.; Chiba, S.; Brewer, C. F.; and Hehre, E. J. 1991. Mechanism of maltal hydration catalyzed by 0-amylase: Role of protein structure in controlling the steric outcome of reactions catalyzed by a-glycosylase. Biochemistry 30, 6769–6775.CrossRefGoogle Scholar
  75. Kitamoto, N.; Yamagata, H.; Kato, T.; Tsukagoshi, N.; and Udaka, S. 1988. Cloning and sequencing of the gene encoding thermophilic 0-amylase of Clostridium thermosulfurogenes. J. Bacteriol. 170, 5848–5854.Google Scholar
  76. Klux, I. 1981. Amino acid sequence of hog pancreatic a-amylase isoenzyme I. FEBS Lett. 136, 231–234.CrossRefGoogle Scholar
  77. Kochhar, S., and Dua, R. D. 1985a. Chemical modification of liquefying a-amylase: Role of tyrosine residues at its active center. Arch. Biochem. Biophys. 240, 757–767.CrossRefGoogle Scholar
  78. Kochhar, S., and Dua, R. D. 1985b. An active center tryptophan residue in liquefying a-amylase from Bacillus amyloliquefaciens. Biochim. Biophys. Res. Comm. 126, 966–973.CrossRefGoogle Scholar
  79. Kohno, A.; Shinke, R.; and Nanmori, T. 1990. Features of the (3-amylase isoform system in dry and germinating seeds of alfalfa (Medicago sativa L.). Biochem. Biophys. Acta 1035, 325–330.CrossRefGoogle Scholar
  80. Kondo, H.; Nakatani, H.; Matsuno, R.; and Hiromi, K. 1980. Product distribution in amylase-catalyzed hydrolysis of amylose. Comparison of experimental results with theoretical predictions. J. Biochem. 87, 1053–1070.Google Scholar
  81. Koshland, D. E., Jr. 1959. Mechanisms of transfer enzymes. The Enzymes 1, 305–346.Google Scholar
  82. Kreis, M.; Williamson, M.; Buxton, B.; Pywell, J.; Heijgaard, J.; and Svendsen, I. 1987. Primary structure and differential expression of 13-amylase in normal and mutant barleys. Eur. J. Biochem. 169, 517–525.CrossRefGoogle Scholar
  83. Kunikata, T.; Yamano, H.; Nagamura, T.; and Nitta, Y. 1992. Study on the interaction between soybean 13-amylase and substrate by the stopped-flow method. J. Biochem. 112, 421–425.Google Scholar
  84. Lai, H.-L.; Butler, L. G.; and Axelrod, B. 1974. Evidence for a covalent intermediate between a-glucosidase and glucose. Biochem. Biophys. Res. Comm. 60, 635–640.CrossRefGoogle Scholar
  85. Lambrechts, M. G.; Pretorius, I. S.; Sollitti, P.; and Marmur, J. 1991. Primary structure and regulation of a glucoamylase-encoding gene (STA 2) in Saccharomyces diastaticus. Gene 100, 95–103.Google Scholar
  86. Lauriere, C.; Doyen, C.; Thevenot, C.; and Daussant, J. 1992. fl-Amylases in cereals. A study of the maize 13-amylase system. Plant Physiol. 100, 887–893.Google Scholar
  87. Loyter, A., and Schramm, M. 1966. Multimolecular complexes of a-amylase with glycogen limit dextrin. J. Biol. Chem. 241, 2611–2617.Google Scholar
  88. Macgregor, E. A. 1988. a-Amylase structure and activity. J. Protein Chem. 7, 399–415.Google Scholar
  89. Macgregor, E. A., and Macgregor, A. W. 1985. A model for the action of cereal alpha-amylases on amylose. Carbohydr. Res. 142, 223–236.CrossRefGoogle Scholar
  90. Macgregor, A. W., and Morgan, J. E. 1992. The action of germinated barley alpha-amylases on linear maltodextrins. Carbohydr. Res. 227, 301–313.CrossRefGoogle Scholar
  91. Matsui, H.; Blanchard, J. S.; Brewer, C. F.; and Hehre, E. J. 1989. a-Secondary tritium kinetic isotope effects for the hydrolysis of a-D-glucopyranosyl fluoride by exo-a-glucanases. J. Biol. Chem. 264, 8714–8716.Google Scholar
  92. Matsui, I.; Ishikawa, K.; Matsui, E.; Miyairi, S.; Fukui, S.; and Honda, K. 1991. An increase in the transglycosylation activity of Saccharomycopsis a-amylase altered by site-directed mutagenesis. Biochim. Biophys. Acta 1077, 416–419.CrossRefGoogle Scholar
  93. Matsui, I.; Yoneda, S.; Ishikawa, K.; Miyairi, S.; Fukui, S.; Umeyama, H.; and Honda, K. 1994. Roles of the aromatic residues conserved in the active center of Saccharomycopsis a-amylase for transglycosylation and hydrolysis activity. Biochemistry 33, 451–458.CrossRefGoogle Scholar
  94. Matsuno, R.; Suganuma, T.; Fujimorl, H.; Nakanishi, K.; Hiromi, K.; and Kamikubo, T. 1978. Rate equation for amylase-catalyzed hydrolysis, transglycosylation and condensation of linear oligosaccharides and amylose. J. Biochem. 83, 385–394.Google Scholar
  95. Matsuura, Y.; Kusunoki, M.; Harada, W.; and Kakudo, M. 1984. Structure and possible catalytic residues of Taka-amylase A. J. Biochem. 95, 697–702.Google Scholar
  96. Matsuura, Y.; Kusunoki, M.; Date, W.; HARADA, S.; Bando, S.; Tanaka, N.; and Kakudo, M. 1979. Low resolution crystal structures of Taka-amylase A and its complexes with inhibitors. J. Biochem. 86, 1773–1783.Google Scholar
  97. Matsuura, Y.; Kusunoki, M.; Harada, W.; Tanaka, N.; Iga, Y.; Yasuoka, N.; Toda, H.; Narita, K.; and Kakudo, M. 1980. Molecular structure of Takaamylase A. J. Biochem. 87, 1555–1558.Google Scholar
  98. Mazur, A. K. 1984. Mathematical models of depolymerization of amylose by a-amylases. Biopolymers 23, 1735–1756.CrossRefGoogle Scholar
  99. Meagher, M. M.; Nikolov, Z. L.; and Reilly, P. J. 1989. Subsite mapping of Aspergillus niger glucoamylases I and II with malto-and isomaltooligosaccharides. Biotechnol. Bioengineer. 34, 681–688.CrossRefGoogle Scholar
  100. Meagher, M. M., and Reilly, P. J. 1989. Kinetics of the hydrolysis of di-and trisaccharides with Aspergillus niger glucoamylases I and II. Biotechnol. Bioengineer. 34, 689–693.CrossRefGoogle Scholar
  101. Mikami, B.; Aibra, S.; and Morita, Y. 1980. Chemical modification of sulfhydryl groups in soybean 13-amylase. J. Biochem. 88, 103–111.Google Scholar
  102. Mikami, B.; Hebre, E. J.; Sato, M.; Katsube, Y.; Hirose, M.; Morita, Y.; and Sacchettini, J. C. 1993. The 2.0-A resolution structure of soybean 3-amylase complexed with a-cyclodextrin. Biochemistry 32, 6836–6845.CrossRefGoogle Scholar
  103. Mikami, B.; Morita, Y.; and Fukazawa, C. 1988. Primary structure and function of 3-amylase. Seikagaku (Japanese) 60, 211–216.Google Scholar
  104. Mikami, B.; Nomura, K.; and Morita, Y. 1983. Interaction of native and SH-modified 3-amylase of soybean with cyclohexadextrin and maltose. J. Biochem. 94, 107–113.Google Scholar
  105. Mikami, B.; Nomura, K.; and Morita, Y. 1994. Two sulfhydryl groups near the active site of soybean 3-amylase. Biosci. Biotech. Biochem. 58, 126–132.CrossRefGoogle Scholar
  106. Mikami, B.; Nomura, K.; Mamma, K.; and Morita, Y. 1989. Structure of soybean 3-amylase and the reactivity of its sulfhydryl groups. Denpun Kagaku (Japan) 36, 67–72.Google Scholar
  107. Mikami, B.; Sato, M.; Shibata, T.; Hirose, M.; Aibara, S.; Katsube, Y.; and Morita, Y. 1992. Three-dimensional structure of soybean 3-amylase determined at 3.0 A resolution: Preliminary chain tracing of the complex with a-cyclodextrin. J. Biochem. 112, 541–546.Google Scholar
  108. Mikami, B.; Shibata, T.; Hirose, M.; Aibara, S.; Sato, M.; Katsube, Y.; and Morita, Y. 1991. X-ray crystal structure analysis of soybean 13-amylase. Denpun Kagaku (Japan), 38, 147–151.Google Scholar
  109. Monroe, J. D.; Salminen, M. D.; and Preiss, J. 1991. Nucleotide sequence of a cDNA clone encoding a 13-amylase from Arabidopsis thaliana. Plant Physiol. 97, 1599–1601.CrossRefGoogle Scholar
  110. Nakajimi, R.; Imanaka, T.; and Aiba, S. 1986. Comparison of amino acid sequences of eleven different a-amylases. Appl. Microbiol. Biotechnol. 23, 355–360.Google Scholar
  111. Neustroev, K. N.; Goluber, A. M.; Firsov, L. M.; Ibatullin, F. M.; Protasevich, I. I.; and Makarov, A. A. 1993. Effect of modification of carbohydrate component on properties of glucoamylase. FEBS Lett. 316, 157–160.CrossRefGoogle Scholar
  112. Nikolov, Z. L.; Meagher, M. M.; and Reilly, P. J. 1989. Kinetics, equilibria, and modelling of the formation of oligosaccharides from D-glucose with Aspergillus niger glucoamylases I and II. Biotechnol. Bioengin. 34, 694–704.CrossRefGoogle Scholar
  113. Nishida, T.; Emi, M.; Nakamura, Y.; and Matsubara, K. 1986. Corrected sequences of cDNAs for human salivary and pancreatic a-amylases. Gene 50, 371–372.CrossRefGoogle Scholar
  114. Nitta, Y.; Isoda, Y.; Toda, H.; and Sakiyama, F. 1989. Identification of glutamic acid 186 affinity-labeled by 2,3-epoxypropyl a-D-glucopyranoside in soybean 0-amylase. J. Biochem. 105, 573–576.Google Scholar
  115. Nitta, Y.; Kunikata, T.; and Watanabe, T. 1979. Kinetic study of soybean (3-amylase. The effect of pH. J. Biochem. 85, 41–45.Google Scholar
  116. Nitta, Y.; Mizushima, M.; Hiromi, K.; and Ono, S. 1971. Influence of molecular structures of substrates and analogues on Taka-amylase A catalyzed hydrolyses. I. Effect of chain length of linear substrates. J. Biochem. 69, 567–576.Google Scholar
  117. Nomura, K.; Mikami, B.; Nagao, Y.; and Morita, Y. 1987. Effect of modification of sulfhydryl groups in soybean 13-amylase on the interaction with substrate and inhibitions. J. Biochem. 102, 333–340.Google Scholar
  118. Nunberg, J. H.; Meade, J. H.; Cole, G.; Lawyer, F. C.; Mccabe, P.; Schweichart, V.; TAL, R.; Wittman, V. P.; Flatgaard, J. E.; and Innis, M. A. 1984. Molecular cloning and characterization of the glucoamylase gene of Aspergillus awamori. Mol. Cell. Biol. 4, 2306–2315.Google Scholar
  119. Ohnishi, M. 1990. Subsite structure of Rhizopus niveus glucoamylase, estimated with the binding parameters for maltooligosaccharides. Starch/Starke 42, 311–313.CrossRefGoogle Scholar
  120. Ohnishi, M.; Nakamura, Y.; Murata-Nakai, M.; and Hiromi, K. 1990. A pH-induced change in state around active-site tryptophan residues of Rhizopus niveus glucoamylase, detected by stopped-flow studies of chemical modification with N-bromosuccinimide. Carbohydr. Res. 197, 237–244.CrossRefGoogle Scholar
  121. Ohnishi, M.; Taniguchi, M.; and Hiromi, K. 1983. Kinetic discrimination of tryptophan residues of glucoamylase from Rhizopus niveus by fast chemical modification with N-bromosuccinimide. Biochim. Biophys. Acta 744, 64–70.CrossRefGoogle Scholar
  122. Olsen, K.; Svensson, B.; and Christensen, U. 1992. Stopped-flow fluorescence and steady-state kinetic studies of ligand-binding reactions of glucoamylase from Aspergillus niger. Eur. J. Biochem. 209, 777–784.CrossRefGoogle Scholar
  123. Pasero, L.; Mazzei-Pierron, Y.; Abadie, B.; Chicheportiche, Y.; and Marchis-Mouren, G. 1986. Complete amino acid sequence and location of the five disulfide bridges in porcine pancreatic a-amylase. Biochim. Biophys. Acta 869, 147–157.CrossRefGoogle Scholar
  124. Payan, F.; Raser, R.; Pierrot, M.; Frey, M.; and Astier, J. P. 1980. The three-dimensional structure of a-amylase from porcine pancreas at 5 A resolution-The active-site location. Acta Cryst. B36, 416–421.Google Scholar
  125. Pazur, J. H., and Marchetti, N. T. 1992. Action patterns of amylolytic enzymes as determined by the [1–14C]malto-oligosaccharide mapping method. Carbohydr. Res. 227, 215–225.CrossRefGoogle Scholar
  126. Pazur, J. H.; Knull, H. R.; and Simpson, D. L. 1970. Glycoenzymes: A note on the role for the carbohydrate moieties. Biochem. Biophys. Res. Comm. 40, 110–116.CrossRefGoogle Scholar
  127. Pazur, J. H.; Liu, B.; Pyice, S.; and Baumrucker, C. R. 1987. The distribution of carbohydrate side chains along the polypeptide chain of glucoamylase. J. Protein Chem. 6, 517–527.CrossRefGoogle Scholar
  128. Prodanov, E.; Seigner, C.; and Marchis-Mouren, G. 1984. Subsite profile of the active center of porcine pancreatic a-amylase. Kinetic studies using maltooligosaccharides as substrates. Biochem. Biophys. Res. Comm. 122, 75–81.CrossRefGoogle Scholar
  129. Qian, M.; Haser, R.; and Payan, F. 1993. Structure and molecular model refinement of pig pancreatic a-amylase at 2.1A resolution. J. Mol. Biol. 231, 785–799.CrossRefGoogle Scholar
  130. Qian, M.; Haser, R.; Buisson, G.; Duee, E.; and Payan, F. 1994. The active center of a mammalian a-amylase. Structure of the complex of a pancreatic a-amylase with a carbohydrate inhibitor refined to 2.2-A resolution. Biochemistry 33, 6284–6294.CrossRefGoogle Scholar
  131. Rhodes, C.; Strasser, J.; and Friedberg, F. 1987. Sequence of an active fragment of B. polymyxa beta amylase. Nucl. Acid Res. 15, 39–34.CrossRefGoogle Scholar
  132. Robyt, J. F. 1984. Enzymes in the hydrolysis and synthesis of starch. In: Starch: Chemistry and Technology, R. L. Whistler, J. N. Bemiller, and E. F. Paschall, eds., Academic Press, New York.Google Scholar
  133. Robyt, J. F., and French, D. 1970a. The action pattern of porcine pancreatic a-amylase in relationship to the substrate binding site of the enzyme. J. Biol. Chem. 245, 3917–3927.Google Scholar
  134. Robyt, J. F., and French, D. 1970b. Multiple attack and polarity of action of porcine pancreatic a-amy-lase. Arch. Biochem. Biophys. 138, 662–670.CrossRefGoogle Scholar
  135. Rogers, J. C. 1985a. Conserved amino acid sequence domans in alpha-amylases from plants, mammals and bacteria. Biochem. Biophys. Res. Comm. 128, 470–476.CrossRefGoogle Scholar
  136. Rogers, J. C. 1985b. Two barley a-amylase gene families are regulated differently in al- eurone cells. J. Biol. Chem. 260, 3731–3738.Google Scholar
  137. Rogers, J. C., and Williams, C. 1983. Isolation and sequence analysis of a barley a-amylase cDNA clone. J. Biol. Chem. 258, 8169–8173.Google Scholar
  138. Rorat, T.; Sadowski, J.; Grellet, F.; Daussant, J.; and Delseny, M. 1991. Characterization of cDNA clones for rye endosperm 13-amylase and analysis of 13- amylase deficiency in rye mutant lines. Theor. Appl. Genet. 83, 257–263.CrossRefGoogle Scholar
  139. Seigner, C.; Prodanov, E.; and Marchis-Mouren, G. 1987. The determination of subsite binding energies of porcine pancreatic a-amylase by comparing hydrolytic activity towards substrates. Biochim. Biophys. Acta 913, 200–209.CrossRefGoogle Scholar
  140. Sierks, M. R.; Ford, C.; Reilly, P. J.; and Svensson, B. 1989. Site-directed muta-genesis at the active site Trp 120 of Aspergillus awamori glucoamylase. Protein Engineering 2, 621–625.CrossRefGoogle Scholar
  141. Sierks, M. R.; Ford, C.; Reilly, P. J.; and Svensson, B. 1993. Functional roles and subsite locations of Leu177, Trp178 and Asnl82 of Aspergillus awamori glucoamylase determined by site-directed mutagenesis. Protein Engineering 6,75–79.Google Scholar
  142. Spradlin, J., and Thoma, J. A. 1970. 0-Amylase thiol groups. J. Biol. Chem. 245, 117–127.Google Scholar
  143. Suganuma, T.; Matsuno, R.; Ohnishi, M.; and Hiromi, K. 1978. A study of the mechanism of action of Taka-amylase A on linear oligosaccharides by product analysis and computer simulation. J. Biochem. 84, 293–316.Google Scholar
  144. Suganuma, T.; Ohnishi, M.; Hirdmi, K.; and Morita, Y. 1980. Evaluation of subsite affinities of soybean 3-amylase by product analysis. Agric. Biol. Chem. 44, 1111–1117.CrossRefGoogle Scholar
  145. Svensson, B.; Clarke, A. J.; Svendsen, In.; and Moller, H. 1990. Identification of carboxylic acid residues in glucoamylase G2 from Aspergillus niger that participate in catalysis and substrate binding. Eur. J. Biochem. 188, 29–39.CrossRefGoogle Scholar
  146. Svensson, B.; Jespersen, H.; Sierks, M. R.; and Macgregor, E. A. 1989. Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem. J. 264, 309–311.Google Scholar
  147. Svensson B.; Larsen, K.; and Gunnarsson, A. 1986. Characterization of a glucoamylase G2 from Aspergillus niger. J. Biochem. 154, 497–502.Google Scholar
  148. Svensson, B.; Larsen, K.; Svendsen I.; and Boel, E. 1983. The complete amino acid sequence of the glycoprotein, glucoamylase G1 from Aspergillus niger. Carlsberg. Res. Comm. 48, 529–544.CrossRefGoogle Scholar
  149. Takahashi, T.; Idegami, Y.; Irie, M.; and Nakao, E. 1990. Different behavior towards raw starch of two glucoamylases from Aspergillus saitoi. Chem. Pharm. Bull. 38, 2780–2783.CrossRefGoogle Scholar
  150. Takahashi, T.; Kato, K.; Ikegami, Y.; and Irie, M. 1985. Different behavior towards raw starch of three forms of glucoamylase from a Rhizopus sp. J. Biochem. 98, 663–671.Google Scholar
  151. Takahashi, T.; Tsuchida, Y.; and Irle, M. 1982. Isolation of two inactive fragments of a Rhizopus sp. glucoamylase: Relationship among three forms of the enzyme and the isolated fragments. J. Biochem. 92, 1623–1633.Google Scholar
  152. Takasaki, Y. 1989. Novel maltose-producing amylase from Bacillus megaterium G-2. Agric. Biol. Chem. 53, 341–347.CrossRefGoogle Scholar
  153. Takeda, Y., and Hizukuri, S. 1981. Re-examination of the action of sweet-potato beta-amylase on phosphorylated (1–4)-a-D-glucan. Carbohydr. Res. 89, 174–178.CrossRefGoogle Scholar
  154. Takegawa, K.; Inami, M.; Yamamoto, K.; Kumagai, H.; Tochikura, T.; Mikami, B.; and Morita, Y. 1988. Elucidation of the role of sugar chains in glucoamylase using endo-ß-N-acetylglucoaminidase from Flavobacterium sp. Biochim. Biophys. Acta 955, 187–193.CrossRefGoogle Scholar
  155. Takkinen, K., Pettersson, R. F.; Kalkkinen, N.; Palva, I.; Soderlund, H.; and Kaariainen, L. 1983 Amino acid sequence of a-amylase from Bacillus amyloliquefaciens deduced from the nucelotide sequence of the cloned gene. J. Biol. Chem. 258, 1007–1013.Google Scholar
  156. Tanaka, A.; Fukuchi, Y.; Ol-Inlshi, M.; Hlgoml, K.; Aibara, S.; and Morita, Y. 1983B. Fractionation of isozymes and determination of the subsite structure of glucoamylase from Rhizopus niveus. Agric. Biol. Chem. 47,573–580.Google Scholar
  157. Tanaka, A.; Yamashita, T.; Ohnishi, M.; and Hiromi, K. 1983A. Steady-state and transient kinetic studies on the binding of maltooligosaccharides to glucoamylase. J. Biochem. 93, 1037–1043.Google Scholar
  158. Tanaka, Y.; Ashikari, T.; Nakamura, N.; Kiuchi, N.; Shibano, Y.; Amachi, T.; and Yoshizumi, H. 1986. Comparison of amino acid sequences of three glucoamylases and their structure-function relationships. Agric. Biol. Chem. 50, 965–969.CrossRefGoogle Scholar
  159. Tao, B. Y.; Reilly, P. J.; and Robyt, J. F. 1989. Detection of a covalent intermediate in the mechanism of action of porcine pancreatic a-amylase by using 13C nuclear magnetic resonance. Biochim. Biophys. Acta 995, 214–220.CrossRefGoogle Scholar
  160. Thoma, J. A. 1968. A possible mechanism for amylase catalysis. J. Theoret. Biol. 19, 297–310.CrossRefGoogle Scholar
  161. Thoma, J. A. 1976. Models for depolymerizing enzymes. Application to a-amylases. Biopolymers 15, 729–746.CrossRefGoogle Scholar
  162. Thoma, J. A., and Koshland, D. E., Jr. 1960a. Competitive inhibition by substrate during enzyme action. Evidence for the induce-fit theory. J. Am. Chem. Soc. 82, 3329–3333.CrossRefGoogle Scholar
  163. Thoma, J. A., and Koshland, D. E., Jr. 1960b. Three amino acids at the active site of beta amylase. J. Mol. Biol. 2, 169–170.CrossRefGoogle Scholar
  164. Thoma, J. A.; Spradlin, J. E.; and Dygert, S. 1971. Plant and animal amylases. The Enzymes 5, 115–189.CrossRefGoogle Scholar
  165. Toda, H.; Kondo, K.; and Narita, K. 1982. The complete amino acid sequence of Taka-amylase A. Proc. Japan Acad. 58, Ser. B, 208–212.Google Scholar
  166. Toda, H.; Nitta, Y.; Asanami, S.; Kim, J. P.; and Sakiyama, F. 1993. Sweet potato 13-amylase. Primary structure and identification of the active-site glutamyl residue. Eur. J. Biochem. 216, 25–38.CrossRefGoogle Scholar
  167. Torgerson, E. M.; Brewer, L. C.; and Thoma, J. A. 1979. Subsite mapping of enzymes. Use of subsite map to simulate complete time course of hydrolysis of a polymeric substrate. Arch. Biochem. Biophys. 196, 13–22.CrossRefGoogle Scholar
  168. Totsuka, A.; Hong, V. H.; Kadokawa, H.; Kim, C.-S.; Itoh, Y.; and Fukazawa, C. 1994. Residues essential for catalytic activity of soybean ß-amylase. Eur. J. Biochem. 221, 649–654.CrossRefGoogle Scholar
  169. Ueda, S. 1981. Fungal glucoamylases and raw starch digestion. TIBS 6, 89–90.Google Scholar
  170. Uozuml, N.; Matsuda, T.; Tsukagoshi, N.; and Udaka, S. 1991. Structural and functional roles of cysteine residues of Bacillus polymyxa 13-amylase. Biochemistry 30,4594–4599.Google Scholar
  171. Uozumi, N.; Sakurai, K.; Sasaki, T.; Takekawa, S.; Yamagata, H.; Tsukagoshi, N.; and Udaka, S. 1989. A single gene directs synthesis of a precursor protein with ß-and a-amylase activities in Bacillus polymyxa. J. Bacteriol. 171, 375–382.Google Scholar
  172. Vihinen, M., and Mantsala, P. 1990. Conserved residues of liquefying a-amylases are concentrated in the vicinity of active site. Biochem. Biophys. Res. Comm. 166, 61–65.CrossRefGoogle Scholar
  173. Vihinen, M.; Ollikka, P.; Niskanen, J.; Meyer, P.; Suominen, I.; Karp, M.; Holm, L.; Knowles, J.; and Mantsala, P. 1990. Site-directed mutagenesis of a thermostable a-amylase from Bacillus stearothermophilus. Putative role of three conserved residues. J. Biochem. 107, 267–272.Google Scholar
  174. Wakim, J.; Robinson, M.; and Thoma, J. A. 1969. The active site of porcine-pancreatic alpha-amylase: Factors contributing to catalysis. Carbohydr. Res. 10, 487–503.CrossRefGoogle Scholar
  175. Westlake, R. J., and Hill, R. D. 1983 Inhibition of alpha-amylase-catalyzed starch granule hydrolysis by cycloheptaamylase. Cereal Chem. 60, 98–101.Google Scholar
  176. Williamson, G.; Belshaw, N. J.; Noel, T. R.; Ring, S. G.; and Williamson, M. P. 1992a. 0-Glycosylation and stability. Unfolding of glucoamylase induced by heat and guanidine hydrochloride. Eur. J. Biochem. 207, 661–670.Google Scholar
  177. Williamson, G.; Belshaw, N. J.; Self, D. J.; Noel, T. R.; Ring, S. G.; Cairns, P.; Morris, V. J.; Clark, S. A.; and Parker, M. L. 1992b. Hydrolysis of A- and B-type crystalline polymorphs of starch by a-amylase, 0-amylase and glucoamylase 1. Carbohydr. Polymers 18, 179–187.CrossRefGoogle Scholar
  178. Williamson, G.; Belshaw, N. J.; and Williamson, M. P. 1992c. 0-Glycosylation in Aspergillus glucoamylase. Biochem. J. 282, 423–428.Google Scholar
  179. Wirsel, S.; Lachmund, A.; Wildhardt, G.; and Ruttknowski, E. 1989. Three a-amylase genes of Aspergillus oryzae exhibit identical intron-exon organization. Mol. Microbiol. 3, 3–14.CrossRefGoogle Scholar
  180. Yamashita, I.; Hatano, T.; and Fukui, S. 1984. Subunit structure of glucoamylase of Saccharomyces diastaticus. Agric. Biol. Chem. 48, 1611–1616.CrossRefGoogle Scholar
  181. Yamashita, I.; Nakamura, M.; and Fukui, S. 1987. Gene fusion in a possible mech- anism underlying the evolution of STA1. J. Bacteriol. 169, 2142–2149.Google Scholar
  182. Yamashita, I.; Suzuki, K.; and Fuxa’, S. 1985. Nucleotide sequence of the extra-cellular glucoamylase gene STA1 in the yeast Saccharomyces diastaticus. J. Bacteriol. 161, 567–573.Google Scholar
  183. Yamazaki, H.; Ohmura, K.; Nakayama, A.; Takeichi, Y.; Otozai, K.; Yamasaki, M.; Tamura, G.; and Yamane, K. 1983. a-Amylase genes (amyR2 and amyE+) from an a-amylase-hyperproducing Bacillus subtilis strain: Molecular cloning and nucleotide sequences. J. Bacteriol. 156, 327–337.Google Scholar
  184. Yang, M.; Galizzi, A.; and Henner, D. 1983. Nucleotide sequence of the amylase gene from Bacillus subtilis. Nucl. Acid Res. 11, 237–249.CrossRefGoogle Scholar
  185. Yasuda, M.; Kuwae, M.; and Matsushita, H. 1989. Purification and properties of two forms of glucoamylase from Monascus sp. No. 3403. Agric. Biol. Chem. 53, 247–249.CrossRefGoogle Scholar
  186. Yoshida, N.; Hayashi, K.; and Nakamura, K. 1992. A nuclear gene encoding f3-amylase of sweet potato. Gene 120, 255–259.CrossRefGoogle Scholar
  187. Yoshida, N., and Nakamkura, K. 1991. Molecular cloning and expression in Escherichia coli of cDNA encoding the subunit of sweet potato I3-amylase. J. Biochem. 110, 196–201.Google Scholar
  188. Yoshigi, N.; Okada, Y.; Sahara, H.; and Koswno, S. 1994. PCR cloning and se- quencing of the [3-amylase cDNA from barley. J. Biochem. 115, 47–51.Google Scholar
  189. Yuuki, T.; Nomura, T.; Tezuka, H.; Tsuboi, A.; Yamagata, H.; Tsukagoshi, N.; and Udaka, S. 1985. Complete nucleotide sequence of a gene coding for heat-and pH-stable a-amylase of Bacillus licheniformis: Comparison of the amino acid sequences of three bacterial liquefying a-amylases deduced from the DNA sequences. J. Biochem. 98, 1147–1156.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Dominic W. S. Wong

There are no affiliations available

Personalised recommendations