Tailoring Enzyme Structures and Functions

  • Dominic W. S. Wong


The advantages of utilizing enzymes in producing food ingredients and in improving their functional properties have been recognized for many years. However, the application of enzymes in the food industry in general lags behind existing technology, in spite of the high expectations resulting from recent advances in the science of enzymology. Only a few enzymes are currently used in food processing; among these are glucose isomerase, amylases, chymosin, and papain. Catalase, pectolytic enzymes, and lactase are also used to a lesser extent. One of the major reasons for the slow growth in the use of enzymes in food processing is the cost. Enzymes are highly efficient and catalyze specific reactions often with high yield and minimum side effects, but they also need to function under rather stringent conditions, requiring a set range of pH, temperature, ionic strength, and in many cases, the addition of cofactors and coenzymes. Recovery and regeneration of enzymes in processing further add to the overall cost. Unlike developing pharmaceutical products, a slight addition to the manufacturing cost will have a significant impact on the market sales of a food product.


Disulfide Bond Native Enzyme Protein Engineering Amino Acid Side Chain Hydrophobic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahmsen, L.; Tom, J.; Burnier, J.; Butcher, K. A.; Kossiakoff, A.; and Wells, J. A. 1991. Engineering subtilisin and its subtrates for efficient ligation of peptide bonds in aqueous solution. Biochemistry 30, 4151–4159.CrossRefGoogle Scholar
  2. Alber, T.; Dao-Pin, S.; Wilson, K.; Wozniak, J. A.; Cook, S. P.; and Matthews, B. W. 1987. Contributions of hydrogen bonds of Thr157 to the thermodynamic stability of phage T4 lysozyme. Nature 330, 41–46.CrossRefGoogle Scholar
  3. Aldel Malak, C. A. 1992. Calf chymosin as a catalyst of peptide synthesis. Biochem. J. 288, 941–943.Google Scholar
  4. Bartlett, P. A., and Marlowe, C. K. 1987. Evaluation of intrinsic binding energy from a hydrogen bonding group in an enzyme inhibitor. Science 235, 569–571.CrossRefGoogle Scholar
  5. Bone, R.; Silen, J. L.; and Agard, D. A. 1989. Structural plasticity broadens the specificity of an engineered protease. Nature 339, 191–195.CrossRefGoogle Scholar
  6. Braxton, S., and Wells, J. A. 1991. The importance of a distal hydrogen bonding group in stabilizing the transition state in subtilisin BPN’. J. Biol. Chem. 266, 11797–11800.Google Scholar
  7. Braxton, S., and Wells, J. A. 1992. Incorporation of a stabilizing Ca2+-binding loop into subtilisin BPN’. Biochemistry 31, 7796–7801.CrossRefGoogle Scholar
  8. Cambou, B., and Klibanov, A. M. 1984. Preparative production of optically active esters and alcohols using esterase-catalyzed stereospecific transesterification in organic media. J. Am. Chem. Soc. 106, 2687–2692.CrossRefGoogle Scholar
  9. Cordella-Miele, E; Miele, L.; and Mukherjee, A. B. 1990. A novel transglutaminase-mediated post-translational modification of phospholipase AZ dramatically increases its catalytic activity. J. Biol. Chem. 265, 17180–17188.Google Scholar
  10. Cordella-Miele, E.; Miele, L., Beninati, S.; and Mukherjee, A. B. 1993. Transglutaminase-catalyzed incorporation of polyamines into phospholipase A2. J. Biochem. 113, 164–173.Google Scholar
  11. Corey, D. R., and Schultz, P. G. 1989. Introduction of a metal-dependent regulatory switch into an enzyme. J. Biol. Chem. 264, 3666–3669.Google Scholar
  12. Eriksson, A. E.; Baase, W. A.; Zhang, X.-J.; Heinz, D. W.; Blaber, M.; Baldwin, E. P.; and Matthews, B. W. 1992. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255, 178–183.CrossRefGoogle Scholar
  13. Tell, D. A.; Graycar, T. P.; and Wells, J. A. 1985. Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J. Biol. Chem. 260, 6518–6521.Google Scholar
  14. Feeney, R. E. 1987. Chemical modification of proteins: Comments and perspectives. Int. J. Peptide Protein Res. 29, 145–161.CrossRefGoogle Scholar
  15. Feeney, R. E., and Whitaker, J. R. 1982. Modification of Proteins: Food, Nutritional, and Pharmaceutical Aspects. Adv. Chem. Ser. 198, American Chemical Society, Washington, D.C.CrossRefGoogle Scholar
  16. Feeney, R. E., and Whitaker, J. R. 1985. Chemical and enzymatic modification of plant proteins. In: Seed Storage Proteins, A. M. Altschul and H. L. Wilcke, eds., New Protein Foods, vol. 5, Academic Press, New York, pp. 181–219.Google Scholar
  17. Feeney, R. E., and Whitaker, J. R. 1986. Protein Tailoring for Food and Medical Uses. Marcel Dekker, New York.Google Scholar
  18. Feeney, R. E.; Whitaker, J. R.; Wong, D. W. S.; Osuga, D. T.; and Gershwin, M. E. 1985. Chemical reactions of proteins. In: Chemical Changes in Food During Processing, T. Richardson, and J. W. Finley, eds., AVI Publ. Co., Westport, CT, pp. 255–287.CrossRefGoogle Scholar
  19. Fersht, A. R. 1987. The hydrogen bond in molecular recognition. TIBS 12, 301–304.Google Scholar
  20. Fersht, A. R.; Shi, J.-P.; Knill-Jones, J.; Lowe, D. M.; Wilkinson, A. J.; Blow, D. M.; Brick, P.; Carter, P.; Waye, M. M. Y.; and Winter, G. 1985. Hydrogen bonding and biological specificity analyzed by protein engineering. Nature 314, 235–238.CrossRefGoogle Scholar
  21. Graf, L.; Jancso, A.; Szilagyi, L.; Hegyi, G.; Pinter, K.; Naray-Szabo, G.; Hepp, J.; Medzihradszky, K.; and Rutter, W. 1988. Electrostatic complementarity within the substrate-binding pocket of trypsin. Proc. Natl. Acad. Sci. 85, 4961–4965.CrossRefGoogle Scholar
  22. He, J. J., and Qulocxo, F. A. 1991. A nonconservative serine to cysteine mutation in the sulfate-binding protein, a transport receptor. Science 251, 1479–1481.CrossRefGoogle Scholar
  23. Higaki, J. N.; Evnin, L. B.; and Craik, C. S. 1989. Introduction of a cysteine protease active site into trypsin. Biochemistry 28, 9256–9263.CrossRefGoogle Scholar
  24. Inada, Y.; Takahashi, K.; Yoshimoto, T.; Ajima, A.; Matsushima, A.; and Saito, Y. 1986. Application of polyethylene glycol-modified enzymes in biotechnology ical processes: Organic solvent-soluble enzymes. TIBTECH 4, 190–194.CrossRefGoogle Scholar
  25. Inada, Y.; Takahsahi, K.; Yoshimoto, T.; Kodera, Y.; Matsushima, A.; and Saito, Y. 1988. Application of PEG-enzyme and magnetite-PEG-enzyme conjugates for biotechnological process. TIBTECH 6, 131–134.CrossRefGoogle Scholar
  26. Nkins, J.; Janin, J.; Rey, F.; Chiadmi, M.; Van Tilbeurgh, H.; Lasters, I.; De Maeyer, M.; Van Belle, D.; Wodak, S. J.; Lauwereys, M.; Stanssens, P.; Mrabet, N. T.; Snauwaert, J.; Matthyssens, G.; and Lambeir, A.-M. 1992. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 1. Crystallography and site-directed mutagenesis of metal binding site. Biochemistry 31,5449–5458.Google Scholar
  27. Jensen, V. J., and Rugh, S. 1987. Industrial-scale production and application of immobilized glucose isomerase. Methods in Enzymology 136, 356–370.CrossRefGoogle Scholar
  28. Kaiser, E. T.; Lawrence, D. S.; and Rokita, S. E. 1985. The chemical modification of enzymatic specificity. Ann. Rev. Biochem. 54, 565–595.CrossRefGoogle Scholar
  29. Karpusas, M.; Baase, W. A.; Matsumura, M.; and Matthews, B. W. 1989. Hydrophobic packing in T4 lysozyme probed by cavity-filling mutants. Proc. Natl. Acad. Sci. USA 86, 8237–8241.CrossRefGoogle Scholar
  30. Katz, B. A., and Kossiakoff, A. 1986. The crystallographically determined structures of atypical strained disulfides engineered into subtilisin. J. Biol. Chem. 261, 15480–15485.Google Scholar
  31. Kawase, M.; Sonomoto, K.; and Tanaka, A. 1990. Improvement of heat stability of yeast lipase by chemical modification with a heterobifunctional photogenerated reagent. J. Ferment. Bioengineer. 70, 155–157.CrossRefGoogle Scholar
  32. Kazandjian, R. Z., and Klibanov, A. M. 1985. Regioselective oxidation of phenols catalyzed by polyphenol oxidase in chloroform. J. Am. Chem. Soc. 107, 5448–5450.CrossRefGoogle Scholar
  33. Kellis, J. T. JR.; Nyberg, K.; and Fersht, A. R. 1989. Energetics of complementary side-chain packing in a protein hydrophobic core. Biochemistry 28, 4914–4922.CrossRefGoogle Scholar
  34. Kirchner, G.; Scollar, M. P.; and Klibanov, A. M. 1985. Resolution of racemic mixtures via lipase catalysis in organic solvents. J. Am. Chem. Soc. 107, 7072–7076.CrossRefGoogle Scholar
  35. Kitaguchi, H., and Klibanov, A. M. 1989. Enzymatic peptide synthesis via segment condensation in the presence of water mimics. J. Am. Chem. Soc. 111, 9272–9273.CrossRefGoogle Scholar
  36. Ibanov, A. M. 1989. Enzymatic catalysis in anhydrous organic solvents. TIBS 14, 141–144.Google Scholar
  37. Kobayashi, M.; Miura, M.; and Ichishima, E. 1992. Modification of subsite Lys residue induced a large increase in maltosidase activity of Taka-amylase A. Biochem. Biophys. Res. Comm. 183, 321–326.CrossRefGoogle Scholar
  38. Kuipers, O. P.; Thunnissen, M. M. G. M.; De Geus, P.; Dijkstra, B. W.; Drenth, J.; Verheij, H. M.; and De Haas, G. H. 1989. Enhanced activity and altered specificity of phospholipase A2 by deletion of a surface loop. Science 244, 82–85.CrossRefGoogle Scholar
  39. Kumagai, I.; Sunada, F.; Takeda, S.; and Miura, K.-I. 1992. Redesign of the substrate-binding site of hen egg white lysozyme based on the molecular evolution of C-type lysozyme. J. Biol. Chem. 267, 4608–4612.Google Scholar
  40. Laroute, V., and Willemot, R.-M. 1989. Glucose condensation by glucoamylase in organic solvents. Biotechnology Letters 11, 249–254.CrossRefGoogle Scholar
  41. Mantafounis, D., and Pitts, J. 1990. Protein engineering of chymosin; modification of the optimum pH of enzyme catalysis. Protein Engineering 3, 605–609.CrossRefGoogle Scholar
  42. Margolin, A. L., and Klibanov, A. M. 1987. Peptide synthesis catalyzed by lipases in anhydrous organic solvents. J. Am. Chem. Soc. 109, 3802–3804.CrossRefGoogle Scholar
  43. Matheis, G., and Whitaker, J. R. 1987. A review: Enzymatic cross-linking of proteins applicable to foods. J. Food Biochem. 11, 309–329.CrossRefGoogle Scholar
  44. Matsui, I.; Ishikawa, K.; Miyairi, S.; Fuxul, S.; and Honda, K. 1991. An increase in the transglycosylation activity of Saccharomycopsis a-amylase altered by site-directed mutagenesis. Biochim. Biophys. Acta 1077, 416–419.CrossRefGoogle Scholar
  45. Matsui, I.; Ishikawa, K.; Miyairi, S.; Fuxul, S.; and Honda, K. 1992A. A mutant a-amylase with enhanced activity specific for short substrates. FEBS Lett. 310, 216–218.Google Scholar
  46. Matsui, I.; Ishikawa, K.; Miyairi, S.; Fuxul, S.; and Honda, K. 1992B. Alteration of bond-cleavage pattern in the hydrolysis catalyzed by Saccharomycopsis a-amylase altered by site-directed mutagenesis. Biochemistry 31, 5232–5236.Google Scholar
  47. Matsumura, M.; Becktel, W. J.; Levitt, M.; and Matthews, B. W. 1989A. Stabilization of phage T4 lysozyme by engineered disulfide bonds. Proc. Natl. Acad. Sci. USA 86, 6562–6566.Google Scholar
  48. Matsumura, M.; Becktel, W. J.; and Matthews, B. W. 1988. Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile3. Nature 334, 406–410.CrossRefGoogle Scholar
  49. Matsumura, M., and Matthews, B. W. 1989. Control of enzyme activity by an engineered disulfide bond. Science 243, 792–794.CrossRefGoogle Scholar
  50. Matsumura, M.; Signor, G.; and Matthews, B. W. 1989b. Substantial increase of protein stability by multiple disulfide bonds. Nature 342, 291–293.CrossRefGoogle Scholar
  51. Mcgrath, M. E.; Wilke, M. E.; Higaki, J. N.; Craik, C. S.; and Fletterick, R. J. 1989. Crystal structures of two engineered thiol trypsins. Biochemistry 28, 9264–9270.CrossRefGoogle Scholar
  52. Meng, M.; Lee, C.; Bagdasarian, M.; and Zeikus, J. G. 1991. Switching substrate preference of thermophilic xylose isomerase from D-xylose to D-glucose by redesigning the substrate binding pocket. Proc. Natl. Acad. Sci. USA 88, 4015–4019.CrossRefGoogle Scholar
  53. Mitchinson, C., and Wells, J. A. 1989. Protein engineering of disulfide bonds in subtilisin BPN’. Biochemistry 28, 4807–4815.CrossRefGoogle Scholar
  54. Morihara, K. 1987. Using proteases in peptide synthesis. TIBTECH 5, 164–170.CrossRefGoogle Scholar
  55. Mrabet, N. T.; Van Den Broeck, A.; Van Den Brande, I.; Stanssens, P.; Laroche, Y.; Lambeir, A.-M.; Matthijssens, G.; Jenkins, J.; Chiadmi, M.; Van Tilbeurgh, H.; Rey, F.; Janin, J.; Quax, W. J.; Lasters, I.; De Maeyer, M.; and Wodak, S. J. 1992. Arginine residues as stabilizing elements in proteins. Biochemistry 31, 2239–2253.CrossRefGoogle Scholar
  56. Nakatsuka, T.; Sasaki, T.; and Kaiser, E. T. 1987. Peptide segment coupling catalyzed by the semisynthetic enzyme thiolsubtilisin. J. Am. Chem. Soc. 109, 3808–3810.CrossRefGoogle Scholar
  57. Neet, K. E., and Koshland, D. E., jr. 1966. The conversion of serine at the active site of subtilisin to cysteine: A “chemical mutation.” Proc. Natl. Acad. Sci. USA 56, 1606–1611.CrossRefGoogle Scholar
  58. Neet, K. E.; Nanci, A.; and Koshland, D. E., Jr. 1968. Properties of thiol-subtilisin. J. Biol. Chem. 243, 6392–6401.Google Scholar
  59. Nicholson, H.; Becktel, W. J.; and Matthews, B. W. 1988. Enhanced protein thermostability from designed mutations that interact with a-helix dipoles. Nature 336, 651–656.CrossRefGoogle Scholar
  60. Noel, J. P.; Bingman, C. A.; Deng, T.; Dupureur, C. M.; Hamilton, K. J.; Jiang, R.-T.; Kwak, J.-G.; Sekharudu, C.; Sundaralingam, M.; and Tsai, M.-D. 1991. Phospholipase Az engineering. X-ray structural and functional evidence for the interaction of lysine-56 with substrates. Biochemistry 30, 11801–11811.CrossRefGoogle Scholar
  61. Pace, C. N. 1992. Contribution of the hydrophobic effect to globular protein stability. J. Mol. Biol. 226, 29–35.CrossRefGoogle Scholar
  62. Pantoliano, M. W.; Ladner, R. C.; Bryan, P. N.; Rollence, M. L.; Wood, J. F.; and Poutos, T. L. 1987. Protein engineering of subtilisin BPN’: Enhanced stabilization through the introduction of two cysteines to form a disulfide bond. Biochemistry 26, 2077–2082.CrossRefGoogle Scholar
  63. Perry, L. J., and Wetzel, R. 1984. Disulfide bond engineered into T4 lysozyme: Stabilization of the protein toward thermal inactivation. Science 226, 555–557.CrossRefGoogle Scholar
  64. Philipp, M., and Bender, M. L. 1983. Kinetics of subtilisin and thiolsubtilisin. Mol. Cell. Biochem. 51, 5–32.CrossRefGoogle Scholar
  65. Pickersgill, R. W.; Summer, I. G.; Collins, M. E.; Warwicker, J.; Perry, B.; Bhat, K. M.; and Goodenough, P. W. 1991. Modification of the stability of phospholipase Az by charge engineering. FEBS Lett. 281, 219–222.CrossRefGoogle Scholar
  66. Quax, W. J.; Mrabet, N. T.; Luiten, R. G. M.; Schunrhuizen, P. W.; Stanssens, P.; and Lasters, I. 1991. Enhancing the thermostability of glucose isomerase by protein engineering. Bio/Technology 9, 738–742.CrossRefGoogle Scholar
  67. Riva, S.; Chopineau, J.; Kieboom, A. P. G.; and Klibanov, A. M. 1988. Protease-catalyzed regioselective esterification of sugars and related compounds in anhydrous dimethyl formamide. J. Am. Chem. Soc. 110, 584–589.CrossRefGoogle Scholar
  68. Russell, A. J., and Fersht, A. R. 1987. Rational modification of enzyme catalysis by engineering surface charge. Nature 328, 496–500.CrossRefGoogle Scholar
  69. Russell, A. J.; Thomas, P. G.; and Fersht, A. R. 1987. Electrostatic effects on modification of charged groups in the active site cleft of subtilisin by protein engineering. J. Mol. Biol. 193, 803–813.CrossRefGoogle Scholar
  70. Sakurai, T.; Margolin, A. L.; Russell, A. J.; and Klibanov, A. M. 1988. Control of enzyme enantioselectivity by the reaction medium. J. Am. Chem. Soc. 110, 7236–7237.CrossRefGoogle Scholar
  71. Sali, D.; Bycroft, M.; and Fersht, A. R. 1988. Stabilization of protein structure by interaction of a-helix dipole with a charged side chain. Nature 335, 740–743.CrossRefGoogle Scholar
  72. Sandberg, W. S., and Terwilliger, T. C. 1988. Influence of interior packing and hydrophobicity on the stability of a protein. Science 245, 54–57.Google Scholar
  73. Sandberg, W. S., and Terwilliger, T. C. 1991. Energetics of repacking a protein interior. Proc. Natl. Acad. Sci. USA 88, 1706–1710.CrossRefGoogle Scholar
  74. Schneider, L. V. 1991. A three-dimensional solubility parameter approach to nonaqueous enzymology. Biotechnol. Bioengineer. 37, 627–638.CrossRefGoogle Scholar
  75. Sharp, K. A.; Nicholls, A.; Friedman, R.; and Honig, B. 1991. Extracting hydrophobic free energies from experimental data: Relationship to protein folding and theoretical models. Biochemistry 30, 9686–9697.CrossRefGoogle Scholar
  76. Shirley, B. A.; Stanssens, P.; Hahn, U.; and Pace, C. N. 1992. Construction of hydrogen bonding to the conformational stability of ribonuclease Ti. Biochemistry 31, 725–732.CrossRefGoogle Scholar
  77. Smith, J. L.; Billings, G. E.; and Yada, R. Y. 1991. Chemical modification of amino groups in Mucor miehei aspartyl proteinase, porcine pepsin, and chymosin. I. Structure and function. Agric. Biol. Chem. 55, 2009–2016.CrossRefGoogle Scholar
  78. Stehle, P.; Bahsitta, H.-P.; Monter, B.; and Furst, P. 1990. Papain-catalyzed synthesis of dipeptides: A novel approach using free amino acids as nucleophiles. Enzyme Microb. Technol. 12, 56–60.CrossRefGoogle Scholar
  79. Suzuki, J.; Sasaki, K.; Sasao, Y.; Hamu, A.; Kawasaki, H.; Nishiyama, M.; Horinouchi, S.; and Beppu, T. 1989. Alteration of catalytic properties of chymosin by site-directed mutagenesis. Protein Engineering 2, 563–569.CrossRefGoogle Scholar
  80. Takahashi, K.; Saito, Y.; and Inada, Y. 1988. Lipase made active in hydrophobic media. JAOCS 65, 911–916.CrossRefGoogle Scholar
  81. Takahashi, K.; Tamaura, Y.; Kodera, Y.; Mihama, T.; Saito, Y.; and Inada, Y. 1987. Magnetic lipase active in organic solvents. Biochem. Biophys. Res. Comm. 142, 291–296.CrossRefGoogle Scholar
  82. Thunnissen, M. M. G. M.; Kalk, K. H.; Drenth, J.; and Dijkstra, B. W. 1990. Structure of an engineered porcine phospholipase A2 with enhanced activity at 2.1 A resolution. Comparison with the wild-type porcine and Crotalus atrox phospholipase A2. J. Mol. Biol. 216, 425–439.CrossRefGoogle Scholar
  83. Toma, S.; Campagnoli, S.; Margarit, I.; Gianna, R.; Grandi, G.; Bolognesi, M.; DE Filippis, V.; and Fontana, A. 1991. Grafting of a calcium-binding loop of thermolysin to Bacillus subtilis neutral protease. Biochemistry 30, 97–106.CrossRefGoogle Scholar
  84. Van Tilbeurgh, H.; Jenkins, J.; Chiadmi, M.; Janin, J.; Wodak, S. J.; Mrabet, N. T.; and Lambeir, A.-M. 1992. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 3. Changing metal specificity and the pH profile by site-directed mutagenesis. Biochemistry 31,5467–5471.Google Scholar
  85. Warshel, A.; Naray-Szabo, G.; Sussman, F.; and Hwang, J.-K. 1989. How do serine proteases really work? Biochemistry 28, 3629–3637.CrossRefGoogle Scholar
  86. Wells, J. A.; Cunningham, B. C.; Graycar, T. P.; and Estell, D. A. 1987. Recruitment of substrate-specificity properties from one enzyme into a related one by protein engineering. Proc. Natl. Acad. Sci. USA 84, 5167–5171.CrossRefGoogle Scholar
  87. Wells, J. A., and Powers, D. B. 1986. In vivo formation and stability of engineered disulfide bonds in subtilisin. J. Biol. Chem. 261, 6564–6570.Google Scholar
  88. Wetzel, R.; Perry, L. J.; Baase, W. A.; and Becktel, W. J. 1988. Disulfide bonds and thermal stability in T4 lysozyme. Proc. Natl. Acad. Sci. USA 85, 401–405.CrossRefGoogle Scholar
  89. Whitaker, J. R., and Puigserver, A. J. 1982. Fundamentals and applications of enzymatic modifications of proteins: An overview. In: Modification of Proteins: Food, Nutritional, and Pharmaceutical Aspects. Adv. Chem. Ser. 198, American Chemical Society, Washington, D.C.Google Scholar
  90. Wilks, H. M.; Halsall, D. J.; Atkinson, T.; Chia, W. N.; Clarke, A. R.; and Holbrook, J. J. 1990. Designs for a broad substrate specificity keto acid dehydrogenase. Biochemistry 29, 8587–8591.CrossRefGoogle Scholar
  91. Wilks, H. N.; Hart, K. W.; Feeney, R.; Dunn, C. R.; Muirhead, H.; Chia, W. N.; Barstow, D. A.; Atkinson, T.; Clarke, A. R.; and Holbrook, J. J. 1988. A specific, highly active malate dehydrogenase by redesign of a lactate dehydrogenase framework. Science 242, 1541–1544.CrossRefGoogle Scholar
  92. Wong, C.-H.; Chen, S.-T.; Hennen, W. J.; Bibbs, J. A.; Wang, Y.-F.; Liu, J. L.-C.; Pantoliano, M. W.; Whitlow, M.; and Bryan, P. N. 1990. Enzymes in organic synthesis: Use of subtilisin and highly stable mutant derived from multiple site-specific mutations. J. Am. Chem. Soc. 112, 945–953.CrossRefGoogle Scholar
  93. Wong, C.-H.; Shen, G.-J.; Pederson, R. L.; Wang, Y.-F.; and Hennen, W. J. 1991. Enzymatic catalysis in organic synthesis. Meth. Enzymol. 202, 591–620.CrossRefGoogle Scholar
  94. Wu, Z.-P., and Hilvert, D. 1989. Conversion of a protease into an acyl transferase: selenolsubtilisin. J. Am. Chem. Soc. 111, 4513–4514.CrossRefGoogle Scholar
  95. Zaks, A., and Klisanov, A. M. 1986. Substrate specificity of enzymes in organic solvents vs. water is reversed. J. Am. Chem. Soc. 108, 2767–2768.CrossRefGoogle Scholar
  96. Zhong, Z.; Liu, J. L.-C.; Dinterman, L. M.; Finkelman, M. A. J.; Mueller, W. T.; Rollence, M. L.; Whitlow, M.; and Wong, C.-H. 1991. Engineering subtilisin for reaction in dimethylformamide. J. Am. Chem. Soc. 113, 683–684.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Dominic W. S. Wong

There are no affiliations available

Personalised recommendations