Food Enzymes pp 358-383 | Cite as

Xylose Isomerase

  • Dominic W. S. Wong


Xylose isomerase (D-xylose ketol-isomerase, EC, also known as glucose isomerase, catalyzes the reversible isomerization of D-xylose and D-glucose to their respective ketoses, D-xylulose and D-fructose, in the presence of divalent metal ions (Fig. 13.1). The enzyme is essentially a “xylose” isomerase; isomerization of glucose is not the primary function in physiological systems.


Xylose Isomerase Glucose Isomerase Lactobacillus Brevis Bacillus Coagulans Arthrobacter Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akins, J.; Brick, P.; Jones, H. B.; Hirayama, N.; Shaw, P.-C.; and Blow, D. M. 1986. The crystallization of glucose isomerase from Arthrobacter B3728. Biochim. Biophys. Acta 874, 375–377.CrossRefGoogle Scholar
  2. Alagona, G.; Ghio, C.; and Kollman, P. A. 1986. Simple model for the effect of Glu165 Asp165 mutation on the rate of catalysis in triose phosphate isomerase. J. Mol. Biol. 191, 23–27.CrossRefGoogle Scholar
  3. Alexander, N. J. 1986. Genetic manipulation of yeasts for ethanol production from xylose. Food Technol. 40, 99–103.Google Scholar
  4. Allen, K. N.; Lavie, A.; Farber, G. K.; Glasfeld, A.; Petsko, G. A.; and Ringe, D. 1994A. Isotope exchange plus substrate and inhibition kinetics of D-xylose isomerase do not support a proton-transfer mechanism. Biochemistry 33, 1481–1487.Google Scholar
  5. Allen, K. N.; Lavie, A.; Glasfeld, A.; Tanada, T. N.; Gerrity, D. P.; Carlson, S. C.; Farber, G. K.; Petsko, G. A.; and Ringe, D. 1994B. Role of the divalent metal ion in sugar binding, ring opening, and isomerization by D-xylose isomerase: Replacement of a catalytic metal by an amino acid. Biochemistry 33, 1488–1494.Google Scholar
  6. Amore, R., and Hollenberg, C. P. 1989. Xylose isomerase from Actinoplanes missouriensis: Primary structure of the gene and the protein. Nucl. Acids Res. 17, 7515.CrossRefGoogle Scholar
  7. Anon. 1983. Taka-Sweet, immobilized glucose isomerase for high fructose syrup production. Miles Laboratories, Inc., Biotech Products Division, Elkhart, IN 46516.Google Scholar
  8. Antrim, R. L., and Auterinen, A.-L. 1986. A new regenerable immobilized glucose isomerase. Starch/Starke 38, 137–142.CrossRefGoogle Scholar
  9. Batt, C. A.; Jamieson, A. C.; and Vandeyar, M. A. 1990. Identification of essential histidine residues in the active site of Escherichia coli xylose (glucose) isomerase. Proc. Natl. Acad. Sci. USA 87, 618–622.CrossRefGoogle Scholar
  10. Beall, D. S.; Ohta, K.; and Ingram, L. O. 1991. Parametric studies of ethanol production from xylose and other sugars by recombinant Escherichia coli. Biotechnol. Bioengineer. 38, 296–303.CrossRefGoogle Scholar
  11. Blundell, T. L.; Jenkins, J. A.; Sewell, B. T.; Pearl, L. H.; Cooper, J. B.; Tickle, I. J.; Veerapandian, B.; and Wood, S. P. 1990. X-ray analysis of aspartic proteinases. The three-dimensional structure at 2.1 A resolution of endothiapepsin. J. Mol. Biol. 211, 919–941.CrossRefGoogle Scholar
  12. Bock, K.; Meldal, M.; Meyer, B.; and Wiebe, L. 1983. Isomerization of D-glucose with glucose-isomerase. A mechanistic study. Acta Chem. Scand. B37, 101–108.Google Scholar
  13. Bor, Y.-C.; Moraes, C.; Lee, S.-P.; Crosby, W. L.; Sinskey, A. J.; and Batt, C. A. 1992. Cloning and sequencing the Lactobacillus brevis gene encoding xylose isomerase. Gene 114, 127–131CrossRefGoogle Scholar
  14. Callens, M.; Kersters-Hilderson, H.; Van Osptal, O.; and De Bruyne, C. K. 1986. Catalytic properties of D-xylose isomerase from Streptomyces violaceoruber. Enzyme Microbiol. Technol. 8, 696–700.CrossRefGoogle Scholar
  15. Callens, M.; Tomme, P.; Kersters-Hilderson, H.; Cornelis, R.; Vangrysperre, W.; and Debruyne, K. 1988. Metal ion binding to D-xylose isomerase from Streptomyces vilaceoruber. Biochem. J. 250, 285–290.Google Scholar
  16. Carrell, H. L.; Glusker, J. P.; Burger, V.; Manfre, F.; Tritsch, D.; and Bellmann, J.-F. 1989. X-ray analysis of D-xylose isomerase at 1.9 A: Native enzyme in complex with substrate and with a mechanism-designed inactivator. Proc. Natl. Acad. Sci. USA 86, 4440–4444.CrossRefGoogle Scholar
  17. Carrell, H. L.; Rubin, B. H.; Hurley, T. J.; and Glusker, J. P. 1984. X-ray crystal structure of D-xylose isomerase at 4-A resolution. J. BioL Chem. 259, 3230–3236 (1984).Google Scholar
  18. Cha, J.; Cho, Y.; Whitaker, R. D.; Carrell, H. L.; Glusker, J. P.; Karplus, P. A.; and Batt, C. A. 1994. Perturbing the metal site in D-xylose isomerase. J. Biol. Chem. 269, 2687–2694.Google Scholar
  19. Chan, E.-C.; Ueng, P. P.; and Chen, L. F. 1989. Metabolism of D-xylose in Schizosaccharomyces pombe cloned with a xylose isomerase gene. Appl. Microbiol. Biotechnol. 31, 524–528.CrossRefGoogle Scholar
  20. Collyer, C. A., and Blow, D. M. 1990. Observations of reaction intermediates and the mechanism of aldose-ketose interconversion by D-xylose isomerase. Proc. Natl. Acad. Sci. USA 87, 1362–1366.CrossRefGoogle Scholar
  21. Collyer, C. A.; Goldberg, J. D.; Viehmann, H.; Blow, D. M.; Ramsden, N. G.; Fleet, G. W. J.; Montgomery, F. J.; and Grice, P. 1992. Anomeric specificity of D-xylose isomerase. Biochemistry 31, 12211–12218.CrossRefGoogle Scholar
  22. Collyer, C. A.; Henrick, K.; and Blow, D. M. 1990. Mechanism for aldose-ketose interconversion by D-xylose isomerase involving ring opening followed by a 1,2-hydride shift. J. Mol. Biot 212, 211–235.CrossRefGoogle Scholar
  23. Danno, G.-I. 1970. Studies on D-glucose-isomerizing enzyme from Bacillus coagulans, strain HN-68. Agric. Biol. Chem. 34, 1805–1814.CrossRefGoogle Scholar
  24. Dekker, K.; Yamagata, H.; Sakaguchi, K.; and Udaka, S. 1991a. Xylose (Glucose) isomerase gene from the thermophile Clostridium thermohydrosulfuricum; Cloning, sequencing, and expression in Escherichia coli. Agric. Biol. Chem. 55, 221–227.CrossRefGoogle Scholar
  25. Dekker, K.; Yamagata, H.; Sakaguchi, K.; and Udaka, S. 1991b. Xylose (Glucose) isomerase gene from the thermophile Thermus thermophilus: Cloning, sequencing and comparison with other thermostable xylose isomerase. J. Bacteriol. 173, 3078–3083.Google Scholar
  26. Drocourt, D.; Bejar, S.; Calmels, T.; Reynes, J. P.; and Tiraby, G. 1988. Nucleotide sequence of the xylose isomerase gene from Streptomyces violaceoniger. Nucl. Acids Res. 16, 9337.CrossRefGoogle Scholar
  27. Farber, G. K.; Glasfeld, A.; Tiraby, G.; Ringe, D.; and Petsko, G. A. 1989. Crystallographic studies of the mechanism of xylose isomerase. Biochemistry 28, 7289–7297.CrossRefGoogle Scholar
  28. Farber, G. K.; Machin, P.; Almo, S. C.; Petsko, G. A.; and Hajdu, J. 1988. X-ray Laue diffraction from crystals of xylose isomerase. Proc. Natl. Acad. Sci. 85, 112–115.CrossRefGoogle Scholar
  29. Feather, M. S.; Deshpande, V.; and Lybyer, M. J. 1970. Anomeric specificity during some isomerase reactions. Biochem. Biophys. Res. Comm. 38, 859–863.CrossRefGoogle Scholar
  30. Gaikward, S. M.; Pawar, H. S.; Vartak, H. G.; and Deshpande, V. V. 1989. Streptomyces glucose/xylose isomerase has a single active site for glucose and xylose. Biochem. Biophys. Res. Comm. 159, 457–463.CrossRefGoogle Scholar
  31. Glasfeld, A.; Farber, G. K.; Ringe, D.; Marcel, T.; Drocourt, D.; Tiraby, G.; and Petsko, G. A. 1988. Characterization of crystals of xylose isomerase from Streptomyces violaceoniger. J. Biol. Chem. 263, 14612–14613.Google Scholar
  32. Hanson, K. R., and Rose, I. A. 1975. Interpretations of enzyme reaction stereospecificity. Acc. Chem. Res. 8, 1–10.CrossRefGoogle Scholar
  33. Harris, D. W., and Feather, M. S. 1975. Studies on the mechanism of the interconversion of D-glucose, D-mannose, and D-fructose in acid solution. J. Am. Chem. Soc. 97, 178–181.CrossRefGoogle Scholar
  34. Henrick, K.; Collyer, C. A.; and Blow, D. M. 1989. Structure of D-xylose isomerase from Arthrobacter strain B3728 containing the inhibitors xylitol and D-sorbitol at 2.5A and 2.3A resolution, respectively. J. Mol. Biol. 208, 129–157.CrossRefGoogle Scholar
  35. Hogue-Angeletti, R. A. 1975. Subunit structure and amino acid composition of xylose isomerase from Streptomyces albus. J. Biol. Chem. 250, 7814–7818.Google Scholar
  36. Jenkins, J.; Janin, J.; Rey, F.; Chiadmi, M.; Van Tilbeurgh, H.; Lasters, I.; De Maeyer, M.; Van Belle, D.; Stanssens, P.; Mrabet, N. T.; Snauwaert, J.; Matthyssens, G.; and Lambeir, A.-M. 1992. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 1. Crystallography and site-directed mutagenesis of metal binding sites. Biochemistry 31,5449–5458.Google Scholar
  37. Kasumi, T.; Hayashi, K.; Tsumura, N.; and Takagi, T. 1981. Physiochemical characterization of glucose isomerase from Streptomyces griseofuscus S-41. Agric. Biol. Chem. 45, 1087–1095.CrossRefGoogle Scholar
  38. Kasumi, T.; Hayashi, K.; and Tsumura, N. 1982a. Roles of magnesium and cobalt in the reaction of glucose isomerase from Streptomyces griseofuscus S-41. Agric. Biol. Chem. 46, 21–30.CrossRefGoogle Scholar
  39. Kasumi, T.; Hayashi, K.; and Tsumura, N. 1982b. Role of cobalt in stabilizing the molecular structure of glucose isomerase from Streptomyces griseofuscus S-41. Agric. Biol. Chem. 46, 31–39.CrossRefGoogle Scholar
  40. Lambeir, A.-M.; Lauwereys, M.; Stanssens, P.; Mrabet, N. T.; Snauwaert, J.; Van Tilbeurgh, H.; Matthyssens, G.; Lasters, I.; De Maeyer, M.; Wodak, S. J.; Jenkins, J.; Chiadmi, M.; and Janin, J. 1992. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 2. Site-directed mutagenesis of the xylose binding site. Biochemistry 31,5459–5466.Google Scholar
  41. Lavie, A.; Allen, K. N.; Petsko, G. A.; and Ringe, D. 1994. X-Ray crystallographic structures of D-xylose isomerase-substrate complexes position the substrate and provide evidence for metal movement during catalysis. Biochemistry 33, 54695480.Google Scholar
  42. Lawlis, V. B.; Dennis, M. S.; Chen, E. Y.; Smith, D. H.; and Henner, D. J. 1984. Cloning and sequencing of the xylose isomerase and xylulose kinase gene of Escherichia coli. Appl. Environ. Microbiol. 47, 15–21.Google Scholar
  43. Lee, C.; Bagdasarian, M.; Meng, M.; and Zeikus, J. G. 1990. Catalytic mechanism of xylose (glucose) isomerase from Clostridium thermosulfurogenes. J. Biol. Chem. 265, 19082–19090.Google Scholar
  44. Lehmacher, A., and Bisswanger, H. 1990a. Isolation and characterization of an extremely thermostable D-xylose isomerase from Thermus aquaticus HB8. J. Gen. Microbiol. 136, 679–686.CrossRefGoogle Scholar
  45. Lehmacher, A., and Bisswanger, H. 1990b. Comparative kinetics of D-xylose and D-glucose isomerase activities of the D-xylose isomerase from Thermus aquaticus HB8. Biol. Chem. HoppeSeyler 371, 527–536.Google Scholar
  46. Loviny-Anderton, T.; Shaw, P.-C.; Shin, M.-K.; and Hartley, B. S. 1991. D-Xylose (D-glucose) isomerase from Arthrobacter strain N.R.R.L. B3728. Gene cloning, sequence and expression. Biochem. J. 277, 263–271.Google Scholar
  47. Makkee, M.; Kieboom, P. G.; and Van Bekkum, H. 1984. Glucose isomerase-catalyzed D-glucose-D-fructose interconversion: Mechanism and reaction species. Recl. Tray. Chim. Pays-Bas 103, 361–364.CrossRefGoogle Scholar
  48. Makkee, M.; Kieboom, P. G.; and Van Bekkum, H. 1985. Glucose isomerase and its behavior under hydrogenation conditions. Starch/Starke 37, 232–241.CrossRefGoogle Scholar
  49. Marg, G. A., and Clark, D. S. 1990. Activation of glucose isomerase by divalent cations: Evidence for two distinct metal-binding sites. Enzyme Microb. Technol. 12, 367–373.CrossRefGoogle Scholar
  50. Meng, M.; Lee, C.; Bagdasarian, M.; and Zeikus, G. 1991. Switching substrate preference of thermophilic xylose isomerase from D-xylose to D-glucose by redesigning the substrate binding pocket. Proc. Natl. Acad. Sci. USA 88, 40154019.Google Scholar
  51. Mrabet, N. T.; Van Den Broeck, A.; Van De Brande, I.; Stanssens, P.; Laroche, Y.; Lambeir, A.-M.; Matthyssens, G.; Jenkins, J.; Chiadmi, M.; Van Tilbeurgh, H.; Rey, F.; Janin, J.; Quax, W. J.; Lasters, I.; De Maeyer, M.; and Wodak, S. J. 1992. Arginine residues as stabilizing elements in proteins. Biochemistry 31, 2239–2253.CrossRefGoogle Scholar
  52. Rangarajan, M.; Asboth, B.; and Hartley, B. S. 1992. Stability of Arthrobacter Xxylose isomerase to denaturants and heat. Biochem. J. 285, 889–898.Google Scholar
  53. Samu, G. C.; Kumar, A. A.; Kawasaki, G. H.; Insley, M. Y.; and O’hara, P. J. 1987. Sequence of the Ampullariella sp. strain 3876 gene coding for xylose isomerase. J. Bacteriol. 169, 612–618.Google Scholar
  54. Schellenberg, G. D.; Sarthy, A.; Larson, A. E.; Backer, M. P.; Crabb, J. W.; Lidstrom, M.; Hall, B. D.; and Furlong, C. E. 1984. Xylose isomerase from Escherichia coli characterization of the protein and the structural gene. J. Biol. Chem. 259, 6826–6832.Google Scholar
  55. Schray, K. J., and Rose, I. A. 1971. Anomeric specificity and mechanism of two pentose isomerase. Biochemistry 10, 1058–1062.CrossRefGoogle Scholar
  56. Smith, C. A.; Rangarajan, M.; and Hartley, B. S. 1991. D-xylose (D-glucose) isomerase from Arthrobacter strain N.R.R.L. B3728. Purification and properties. Biochem. J. 277, 255–261.Google Scholar
  57. Straus, D.; Raines, R.; Kawashima, E.; Knowles, J. R.; and Gilbert, W. 1985. Active site of triosephosphate isomerase: In vitro mutagenesis and characterization of an altered enzyme. Proc. Natl. Acad. Sci. USA. 82, 2272–2276.CrossRefGoogle Scholar
  58. Sudfeldt, C.; Schaffer, A.; Kagi, J. H. R.; Bogumil, R.; Schulz, H.-P.; Wulff, S.; and Witzel, H. 1990. Spectroscopic studies on the metal-ion-binding sites of Co ++-substituted D-xylose isomerase from Streptomyces rubiginosus. Eur. J. Biochem. 193, 863–871.CrossRefGoogle Scholar
  59. Suekane, M.; Tamura, M.; and Tomimura, C. 1978. Physico-chemical and enzymatic properties of purified glucose isomerases from Streptomyces olivochromogenes and Bacilus stearothermophilus. Agric. Biol. Chem. 42, 909–917.CrossRefGoogle Scholar
  60. Takasaki, Y.; Kosugi, Y.; and Kanbayashi, A. 1969. Studies on sugar-isomerizing enzyme. Purification, crystallization and some properties of glucose isomerase from Streptomyces sp. Agric. Biol. Chem. 33, 1527–1534.CrossRefGoogle Scholar
  61. Topper, Y. J. 1957. On the mechanism of action of phosphoglucose isomerase and phosphomannose isomerase. J. Biol. Chem. 225, 419–425.Google Scholar
  62. Tucker, M. Y.; Tucker, M. P.; Himmel, M. E.; Grohmann, K.; and Lastick, S. M. 1988. Properties of genetically overproduced E. coli xylose isomerase. Biotechnol. Lett. 10, 79–84.CrossRefGoogle Scholar
  63. Van Bastelaere, P.; Vangrysperre, W.; and Kersters-Hilderson, H. 1991. Kinetic studies of Mg2+-, Co2+- and Mn2+- activated D-xylose isomerases. Biochem. J. 278, 285–292.Google Scholar
  64. Van Bastelaere, P. B. M.; Callens, M.; Vangrysperre, W. A. E.; and Kerstershilderson, H. L. M. 1992. Binding characteristics of Mn2+, Co2+, and Mgt+ ions with several D-xylose isomerases. Biochem. J. 286, 729–735.Google Scholar
  65. Vangrysperre, W.; Callens, M.; Kersters-Hilderson, H.; and Debruyne, K. 1988. Evidence for an essential histidine residue in D-xylose isomerases. Biochem. J. 250, 153–160.Google Scholar
  66. Vangrysperre, W.; Ampe, C.; Kersters-Hilderson, H.; and Tempst, P. 1989a. Single active-site histidine in D-xylose isomerase from Streptomyces violaceoruber. Biochem. J. 263, 195–199.Google Scholar
  67. Vangrysperre, W.; Kersters-Hilderson, H.; Callens, M.; and Debruyne, C. K. 1989b. Reaction of Woodward’s reagent K with D-xylose isomerase. Biochem. J. 260, 163–169.Google Scholar
  68. Vangrysperre, W.; Van Damme, J.; Vandekerckhove, J.; de Bruyne, C. K.; Cornelis, R.; and Kersters-Hilderson, H. 1990. Localization of the essential histidine and carboxylate group in D-xylose isomerase. Biochem. J. 265, 699–705.Google Scholar
  69. van Tilbeurgh, H.; Jenkins, J.; Chiadmi, M.; Janin, J.; Wodak, S. J.; Mrabet, N. T.; and Lambeir, A.-M. 1992. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 3. Changing metal specificity and the pH profile by site-directed mutagenesis. Biochemistry 31,5467–5471.Google Scholar
  70. Whitlow, M.; Howard, A. J.; Finzel, B. C.; Poulos, T. L.; Winborne, E.; and Gilliland, G. L. 1991. A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 A Streptomyces rubiginosus structures with xylitol and D-xylose. Proteins: Structure, Function, and Genetics 9, 153–173.CrossRefGoogle Scholar
  71. Wilhelm, M., and Hollenberg, C. P. 1985. Nucleotide sequence of the Bacillus subtilis xylose isomerase gene: extensive homology between the Bacillus and Escherichia coli enzyme. Nucl. Acids. Res. 13, 5717–5721.CrossRefGoogle Scholar
  72. Yamanaka, K., and Takahara, N. 1977. Purification and properties of D-xylose isomerase from Lactobacillus xylosus. Agric. Biol. Chem. 41, 1909–1915.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Dominic W. S. Wong

There are no affiliations available

Personalised recommendations