Food Enzymes pp 346-357 | Cite as


  • Dominic W. S. Wong


Catalase (hydrogen peroxide:hydrogen-peroxide oxidoreductase, (EC occurs ubiquitously in aerobic organisms. The enzyme functions to protect cells from the toxic effects of hydrogen peroxide by catalyzing predominantly the reaction [2H2O2 → 2H2O + O2]. The enzyme exists as a tetramer; each subunit consisting of a single polypeptide associated with a prosthetic group of high-spin ferric protoporphyrin IX. Catalase is relatively stable between pH 3 and 10. Denaturation by dissociation occurs at extreme pHs in the presence of detergents.


Heme Iron Prosthetic Group Complete Amino Acid Sequence Lower Rate Constant Neighboring Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell, G. I.; Najarian, R. C.; Mullenback, G. T.; and Hallewell, R. A. 1986. cDNA sequence coding for human kidney catalase. Nucl. Acids Res. 14, 5561–5562.Google Scholar
  2. Bethards, L. A.; Skadsen, R. W.; and Scandalios, J. G. 1987. Isolation and characterization of a cDNA clone for the Cat2 gene in maize and its homology with other catalases. Proc. Natl. Acad. Sci. USA 84, 6830–6834.CrossRefGoogle Scholar
  3. Chance, B.; Powers, L.; Ching, Y.; Poulos, T.; Schonbaum, G. R.; Yamazaki, I.; and Paul, K. G. 1984. X-ray absorption studies of intermediates in peroxidase activity. Arch. Biochem. Biophys. 235, 596–611.CrossRefGoogle Scholar
  4. Chiu, J. T.; Loewen, P. C.; Switala, J.; Gennis, R. B.; and Timkovich, R. 1989. Proposed structure for the prosthetic group of the catalase HPII from Escherichia coli. J. Am. Chem. Soc. 111, 7046–7050.CrossRefGoogle Scholar
  5. Cuhuang, W.-J.; Heldt, J.; and van Wart, H. E. 1989. Resonance raman spectra of bovine liver catalase compound II. J. Biol. Chem. 264, 14209–14215.Google Scholar
  6. Corrall, R. J. M.; Rodman, H. M.; Margolis, J.; and Landau, B. R. 1974. Stereospecificity of the oxidation of ethanol by catalase. J. Biol. Chem. 249, 3181–3182.Google Scholar
  7. Dolphin, D.; Forman, A.; Borg, D. C.; Fajer, J.; and Felton, R. H. 1971. Compounds I of catalase and horseradish peroxidase: 7I-cation radicals. Proc. Natl. Acad. Sci. USA 68, 614–618.CrossRefGoogle Scholar
  8. Dounce, A. L. 1983. A proposed mechanism for the catalase action of catalase. J. Theor. Biol. 105, 553–567.CrossRefGoogle Scholar
  9. Fita, I., and Rossmann, M. G. 1985. The NADPH binding site on beef liver catalase. Proc. Natl. Acad. Sci. USA 82, 1604–1608.CrossRefGoogle Scholar
  10. Fita, I.; Silva, A. M.; Murthy, M. R. N.; and Rossmann, M. G. 1986. The refined structure of beef liver catalase at 2.5 A resolution. Acta Cryst. B42, 497–515.Google Scholar
  11. Furata, S.; Hayashi, H.; Hijikata, M.; Miyazawa, S.; Osumi, T.; and Hashimoto, T. 1986. Complete nucleotide sequence of cDNA and deduced amino acid sequence of rat liver catalase. Proc. Natl. Acad. Sci. USA 83, 313–317.CrossRefGoogle Scholar
  12. Hartig, A., and Ruis, H. 1986. Nucleotide sequence of the Saccharomyces cerevisiae CTTa gene and deduced amino-acid sequence of yeast catalase T. Eur. J. Biochem. 160, 487–490.CrossRefGoogle Scholar
  13. Hillar, A., and Nicholls, P. 1992. A mechanism for NADPH inhibition of catalase compound II formation. FEBS Lett. 314, 179–182.CrossRefGoogle Scholar
  14. Inamine, G. S., and Baker, J. E. 1990. The catalase genes of tomato: Molecular analysis and sequence. J. Cell Blochern. 14E, 349.Google Scholar
  15. Isin, S. H., and Allen, R. D. 1991. Isolation and characterization of a pea catalase cDNA. Plant Mol. Biology 17, 1263–1265.CrossRefGoogle Scholar
  16. Jones, P.; Suggett, A.; and Pain, R. H. 1968. Sub-unit structure of catalase compound II. Nature 217, 1050.CrossRefGoogle Scholar
  17. Jouve, H.-M.; Gouet, P.; Boudjada, N.; Buisson, G.; Kahn, R.; and Duee, R. 1991. Crystallization and crystal packing of Proteus mirabilis PR catalase. J. Mol. Biol. 221, 1075–1077.CrossRefGoogle Scholar
  18. Khangulov, S. V.; Barynin, V. V.; Voevodskaya, N. V.; and Grebenko, A. I. 1990. ESR spectroscopy of the binuclear cluster of manganese ions in the active center of Mn-catalase from Therm us thermophilus. Biochim. Biophys. Acta 1020, 305–310.CrossRefGoogle Scholar
  19. Kirkman, H. N., and Gaetani, G. F. 1984. Catalase: A tetrameric enzyme with four tightly bound molecules of NADPH. Proc. Natl. Acad. Sci. USA 81, 4343–4347.Google Scholar
  20. Loewen, P. C., and Switala, J. 1986. Purification and characterization of catalase HPII from Escherichia coli K12. Biochem. Cell Biol. 64, 638–648.CrossRefGoogle Scholar
  21. Melik-Adamyan, W. R.; Barynin, V. V.; Vagin, A. A.; Borisov, V. V.; Vainshtein, B. K.; Fita, I.; Murthy, R. N.; and Rossmann, M. G. 1986. Comparison of beef liver and Penicillium vitale catalases. J. Mol. Biol. 188, 63–72.CrossRefGoogle Scholar
  22. Mulvey, M. R.; Sorby, P. A.; Triggs-Raine, B. L.; and Loewen, P. C. 1988. Cloning and physical characterization of katE and katF required for catalase HPII expression in Escherichia coli. Gene 73, 337–345.Google Scholar
  23. Murshudov, G. N.; Melik-Adamyan, W. R.; Grebenko, A. I.; Barynin, V. V.; Vagin, A. A.; Vainshtein, B. K.; Dauter, Z.; and Wilson, K. S. 1992. Three-dimensional structure of catalase from Micrococcus lysodeikticus at 1.5 A resolution. FEBS Lett. 312, 127–131.CrossRefGoogle Scholar
  24. Murthy, M. R. N.; Reid, T. J. III; Sicignano, A.; Tanaka, N.; and Rossmann, M. G. 1981. Structure of beef liver catalase. J. Mol. Biol. 152, 465–499.CrossRefGoogle Scholar
  25. Ni, W.; Turley, R. B.; and Trelease, R. N. 1990. Characterization of a cDNA encoding cottonseed catalase. Biochim. Biophys. Acta 1049, 219–222.CrossRefGoogle Scholar
  26. Nicholls, P., and Schonbaum, G. R. 1963. Catalases. The Enzymes 8, 147–225.Google Scholar
  27. Oritz De Montellano, P. R., and Kerr, D. E. 1983. Inactivation of catalase by phenylhydrazine. J. Biol. Chem. 258, 10558–10563.Google Scholar
  28. Orr, E. C.; Bewley, G. C.; and Orr, W. C. 1990. cDNA and deduced amino acid sequence of Drosophila catalase. Nucl. Acids Res. 18, 3663.Google Scholar
  29. Pichorner, H.; Jessner, G.; and Ebermann, R. 1993. tBOOH acts as a suicide substrate for catalase. Arch. Biochem. Biophys. 300, 258–264.Google Scholar
  30. Quan, F.; Korneluk, R. G.; Tropak, M. B.; and Gravel, R. A. 1986. Isolation and characterization of the human catalase gene. Nucl. Acid Res. 14, 5321–5335.CrossRefGoogle Scholar
  31. Reid, T. J. III; Murphy, M. R. N.; Sicignano, A.; Tanaka, N.; Musick, W. D. L.; and Rossmann, M. G. 1981. Structure and heure environment of beef liver catalase at 2.5 A resolution. Proc. Natl. Acad. Sci. USA 78, 4767–4771.CrossRefGoogle Scholar
  32. Sakajo, S.; Nakamura, K.; and Asahi, T. 1987. Molecular cloning and nucleotide sequence of full-length cDNA for sweet-potato catalase mRNA. Eur. J. Biochem. 165, 437–442.CrossRefGoogle Scholar
  33. Schonbaum, G. R., and Chance, B. 1976. Catalase. The Enzymes 13, 363–408.CrossRefGoogle Scholar
  34. Schroeder, W. A.; Shelton, J. R.; Shelton, J. B.; Roberson, B.; Apell, G.; Fang, R. S.; and Ventura, J. B. 1982. The complete amino acid sequence of bovine liver catalase and the partial sequence of bovine erythrocyte catalase. Arch. Biochem. Biophys. 214, 397–421.CrossRefGoogle Scholar
  35. Shaffer, J. B.; Preston, K. E.; and Shepard, B. A. 1990. Nucleotide and deduced amino acid sequences of mouse catalase: Molecular analysis of a low activity mutant. Nucl. Acids Res. 18, 4941.CrossRefGoogle Scholar
  36. Sharma, K. D.; Anderson, L. A.; Loehr, T. M.; Terner, J.; and Goff, H. M. 1989. Comparative spectral analysis of mammalian, fungal, and bacterial catalases. J. Biol. Chem. 264, 12772–12779.Google Scholar
  37. Tormo, J.; Fita, I.; Switala, J.; and Loewen, P. C. 1990. Crystallization and preliminary x-ray diffraction analysis of catalase HPII from Escherichia coli. J. Mol. Biol. 213, 219–220.CrossRefGoogle Scholar
  38. Triggs-Raine, B. L.; Doble, B. W.; Mulvey, M. R.; Sorby, P. A.; and Loewen, P. C. 1988. Nucleotide sequence of katG, encoding catalase HP I of Escherichia coli. J. Bacteriol. 170, 4415–4419.Google Scholar
  39. Vanishtein, B. K.; Melik-Adamyan, W. R.; Barynin, V. V.; Vagin, A. A.; Grehenko, A. I.; Borisov, V. V.; Bartels, K. S.; Fita, I.; and Rossmann, M. G. 1986. Three-dimensional structure of catalase from Penicillium vitale at 2.0 A resolution. J. Mol. Biol. 188, 49–61.CrossRefGoogle Scholar
  40. Waldo, G. S.; Fronko, R. M.; and Penner-Hahn, J. E. 1991. Interaction and reactivation of manganese catalase: Oxidation-state assignments using x-ray absorption spectroscopy. Biochemistry 30, 10486–10490.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Dominic W. S. Wong

There are no affiliations available

Personalised recommendations