Food Enzymes pp 321-345 | Cite as

Horseradish Peroxidase

  • Dominic W. S. Wong


Horseradish peroxidase (donor:hydrogen-peroxide oxidoreductase, EC (HRP) belongs to a family of proteins with ferriprotoporphyrin IX as a prosthetic group. These heme enzymes function to either activate dioxygen for incorporation into the substrate (oxygenase activity) or use peroxides for oxidation of the substrate (peroxidase activity). Peroxidase is found widely distributed in higher plants (horseradish, turnip, fig sap, tobacco, potato) and microorganisms (yeast cytochrome c). The present discussion focuses on the well-studied horseradish peroxidase.


Horseradish Peroxidase Heme Iron Plant Peroxidase Proximal Histidine Bridge Helix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adediran, S. A., and Dunford, H. B. 1983. Structure of horseradish peroxidase compound I. Kinetic evidence for the incorporation of one oxygen atom from the oxidizing substrate into the enzyme. Eur. J. Biochem. 132, 147–150.CrossRefGoogle Scholar
  2. Adediran, S. A., and Lambeir, A.-M. 1989. Kinetics of the reaction of compound II of horseradish peroxidase with hydrogen peroxide to form compound III. Eur. J. Biochem. 186,571–576.CrossRefGoogle Scholar
  3. Aeschbach, R.; Amado, R.; and Neukom, H. 1976. Formation of dityrosine cross-links in proteins by oxidation of tyrosine residues. Biochim. Biophys. Acta. 439, 292–301.CrossRefGoogle Scholar
  4. Aibara, S.; Kobaryashi, T.; and Morita, Y. 1981. Isolation and properties of basic isoenzymes of horseradish peroxidase. J. Biochem. 90, 489–496.Google Scholar
  5. Amado, R.; Aeschbach, R.; and Neukom, H. 1984. Dityrosine: In vitro production and characterization. Methods in Enzymology 107,377–388.CrossRefGoogle Scholar
  6. Arnao, M. B.; Acosta, M.; del Rio, J. A.; and Garcia-Canovas, F. 1990A. Inactivation of peroxidase by hydrogen peroxide and its protection by a reductant agent. Biochim. Biophys. Acta 1038, 85–89.CrossRefGoogle Scholar
  7. Arnao, M. B.; Acosta, M.; Delrio, J. A.; Varon, R.; and Garcia-Canovas, F. 1990B. A kinetic study on the suicide inactivation of peroxidase by hydrogen peroxide. Biochim. Biophys. Acta. 1041, 43–47.CrossRefGoogle Scholar
  8. Ator, M. A., and De Montellano, P. R. O. 1987. Protein control of prosthetic heure activity. Reaction of substrates with the heure edge of horseradish peroxidase. J. Biol. Chem. 262,1542–1551.Google Scholar
  9. Ator, M. A.; David, S. K.; and De Montellano, P. R. O. 1987. Structure and catalytic mechanism of horseradish peroxidase. J. Biol. Chem. 262,14954–14960.Google Scholar
  10. Behere, D. V.; Gonzalez-Vergara, E.; and Goff, H. M. 1985. Unique cyanide nitrogen-15 nuclear magnetic resonance chemical shift values for cyano-peroxidase complexes. Relevance to the heure active-site structure and mechanism of peroxide activation. Biochim. Biophys. Acta 832, 319–325.CrossRefGoogle Scholar
  11. Bhattachyaryya, D. K.; Bandyopadhyay, U.; and Banerjee, R. K. 1992. Chemical and kinetic evidence for an essential histidine in horseradish peroxidase for iodide oxidation. J. Biol. Chem. 267, 9800–9804.Google Scholar
  12. Bohne, C.; Macdonald, D. I.; and Dunford, H. B. 1987. Transient state kinetics of the reactions of isobutyraldehyde with compounds I and II of horseradish peroxidase. J. Biol. Chem. 262, 3572–3578.Google Scholar
  13. Chance, B.; Powers, L.; Ching, Y.; Poulos, T.; Schonbaum, G. R.; Ÿamazaki, I.; and PAUL, K. G. 1984. X-Ray absorption studies of intermediates in peroxidase activity. Arch. Biochem. Biophys. 235, 596–611.CrossRefGoogle Scholar
  14. Chance, M.; Powers, L.; Kumar, C.; and Chance, B. 1986A. X-Ray absorption studies of myoglobin peroxide reveal functional differences between globins and heme enzymes. Biochemistry 25, 1259–1265.CrossRefGoogle Scholar
  15. Chance, M.; Powers, L.; Poulos, T.; and Chance, B. 1986B. Cytochrome c peroxidase compound ES is identical with horseradish peroxidase compound I in iron-ligand distances. Biochemistry 25, 1266–1270.CrossRefGoogle Scholar
  16. Chang, C. S.; Ÿamazaki, I.; Sinclair, R.; Khalid, S.; and Powers, L. 1993. Ph dependence of the active site of horseradish peroxidase compound II. Biochemistry 32, 923–928.CrossRefGoogle Scholar
  17. Cotton, M. L., and Dunford, H. B. 1973. Studies on horseradish peroxidase. XI. On the nature of compounds I and II as determined from the kinetics of the oxidation of ferrocyanide. Can. J. Chem. 51, 582–587.CrossRefGoogle Scholar
  18. De Montellano, P. R. O.; Choe, Y. S.; Depillis, G.; and Catalano, C. E. 1987. Structure-mechanism relationships in hemoproteins. J. Biol. Chem. 262,11641–11646.Google Scholar
  19. De Ropy, J. S.; Thanabal, V.; La Mar, G. N. 1985. NMR evidence for a horseradish peroxidase state with a deprotonated proximal histidine. J. Am. Chem. Soc. 107,8268–8270.CrossRefGoogle Scholar
  20. Dolphin, D.; Forman, A.; Borg, F. D. C.; Fajer, B. J.; and Felton, R. H. 1971. Compounds I of catalase and horse radish peroxidase: 7r-cation radicals. Proc. Natl. Acad. Sci. USA 68,614–618.CrossRefGoogle Scholar
  21. Dordick, J.; Klibanov, A. M.; and Marletta, M. A. 1986. Horseradish peroxidase catalyzed hydroxylations: Mechanistic studies. Biochemistry 25,2946–2951.CrossRefGoogle Scholar
  22. Dunford, H. B., and Adeniran, A. J. 1986. Hammett p6 correction for reactions of horseradish peroxidase compound II with phenols. Arch. Biochem. Biophys. 251, 536–542.CrossRefGoogle Scholar
  23. Dunford, H. B., and Araiso, T. 1979. Horseradish peroxide. XXXVI. On the difference between peroxidase and metmyoglobin. Biochem. Biophys. Res. Comm. 89, 764–768.CrossRefGoogle Scholar
  24. Dunford, H. B.; Hewson, W. D.; and Steiner, H. 1978. Horseradish peroxidase. XXIX. Reactions in water and deuterium oxide: Cyanide binding, compound I formation, and reactions of compounds I and II with ferrocyanide. Can. J. Chem. 56, 2844–2852.CrossRefGoogle Scholar
  25. Evangelista-Kirkup, R.; Smulevich, G.; and Spiro, T. G. 1986. Alternative carbon monoxide binding modes for horseradish peroxidase studied by resonance raman spectroscopy. Biochemistry 25, 4420–4425.CrossRefGoogle Scholar
  26. Fidy, J.; Paul, K.-G.; and Vanderkooi, J. M. 1989. Differences in the binding of aromatic substrates to horseradish peroxidase revealed by fluorescence line narrowing. Biochemistry 28,7531–7541.CrossRefGoogle Scholar
  27. Finzel, B. C.; Pouibs, T. L.; and Kraut, J. 1984. Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution. J. Biol. Chem. 259,13027–13036.Google Scholar
  28. Fry, S. C. 1984. Isodityrosine, a diphenyl ether cross-link in plant cell wall glycoprotein: Identification, assay, and chemical synthesis. Methods in Enzymology 107,388–397.CrossRefGoogle Scholar
  29. Fujita, I.; Hanson, L. K.; Walkar, F. A.; and Fader, J. 1983. Models for compounds I of peroxidases: Axial ligand effects. J. Am. Chem. Soc. 105,3296–3300.CrossRefGoogle Scholar
  30. Fuiiyama, K.; Takemura, H.; Shibayama, S.; Kobayashi, K.; Choi, J.-K.; Shinmyo, A.; Takano, M.; Yamada, Y.; and Okada, H. 1988. Structure of the horseradish peroxidase isozyme C genes. Eur. J. Biochem. 173,681–687.CrossRefGoogle Scholar
  31. Fujiyama, K.; Takemura, H.; Shinmyo, A.; Okada, H.; and Takano, M. 1990. Genomic DNA structure of two new horseradish-peroxidase-encoding genes. Gene 89,163–169.CrossRefGoogle Scholar
  32. Griffin, B. W., and Ting, P. L. 1978. Mechanism of N-demethylation of aminopyrine by hydrogen peroxide catalyzed by horseradish peroxidase, metmyoglobin, and protohemin. Biochemistry 17,2206–2211.CrossRefGoogle Scholar
  33. Groves, J. T.; Haushalter, R. C.; Nakamura, M.; Nemo, T. E.; and Evans, B. J. 1981. High-valent iron-porphyrin complexes related to peroxidase and cytochrome P-450. J. Am. Chem. Soc. 103, 2884–2886.CrossRefGoogle Scholar
  34. Halliwell, B. 1977. Generation of hydrogen peroxide, superoxide and hydroxyl radicals during the oxidation of dihydroxyfumaric acid by peroxidase. Biochem. J. 163,441–448.Google Scholar
  35. Haschke, R. H., and Friedhoff, J. M. 1978. Calcium-related properties of horseradish peroxidase. Biochem. Biophys. Res. Comm. 80, 1039–1042.CrossRefGoogle Scholar
  36. Hashimoto, S.; Tatsuno, Y.; and Kitagawa, T. 1986. Resonance raman evidence for oxygen exchange between the Fe O heme and bulk water during enzymic catalysis of horseradish peroxidase and its relation with the heme-linked ionization. Proc. Natl. Acad. Sci. USA 83, 2417–2421.CrossRefGoogle Scholar
  37. Hoyle, M. C. 1977. High resolution of peroxidase-indoleacetic acid oxidase isoenzymes from horseradish by isoelectric focusing. Plant Physiol. 60, 787–793.CrossRefGoogle Scholar
  38. Huang, J., and Dunford, H. B. 1990. Oxidation of substituted anilines by horseradish peroxidase compound II. Can. J. Chem. 68, 2159–2163.CrossRefGoogle Scholar
  39. Huang, J., and Dunford, H. B. 1991. One-electron oxidative activation of 2-aminofluorene by horseradish peroxidase compounds I and II: Special and kinetic studies. Arch. Biochem. Biophys. 287, 257–262.CrossRefGoogle Scholar
  40. Kaput, J.; Goltz, S.; and Blobel, G. 1982. Nucleotide sequence of the yeast nuclear gene for cytochrome c peroxidase precursor. J. Biol. Chem. 257, 15054–15058.Google Scholar
  41. Kato, M.; Aibara, S.; Morita, Y.; Nakatani, H.; and Hiromi, K. 1984. Comparative studies on kinetic behavior of horseradish peroxidase isoenzymes. J. Biochem. 95, 861–870.Google Scholar
  42. Kedderis, G. L.; Rickert, D. E.; Pandey, R. N.; and Hollenberg, P. F. 1986. Ostudies of the peroxidase-catalyzed oxidation of N-methylcarbazole. J. Biol. Chem. 261, 15910–15914.Google Scholar
  43. Lagrimini, L. M.; Burkhart, W.; Moyer, M.; and Rothstein, S. 1987. Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression. Proc. Natl. Acad. Sci. USA 84, 7542–7546.CrossRefGoogle Scholar
  44. Kobayashi, S.; Sugioka, K.; Nakano, H.; Nakano, M.; and Tero-Kubota, S. 1984. Analysis of the stable end products and intermediates of oxidative decarboxylation of indole-3-acetic acid by horseradish peroxidase. Biochemistry 23,4589–4597.CrossRefGoogle Scholar
  45. La Mar, G. N., and De Ropp, J. S. 1979. Assignment of exchangeable proximal histidine resonances in high-spin ferric hemoproteins: Substrate binding in horseradish peroxidase. Biochem. Biophys. Res. Comm. 90, 36–41.CrossRefGoogle Scholar
  46. La Mar, G. N., and De Ropp, J. S. 1982. Proton NMR characterization of the state of protonation of the axial imidazole in reduced horseradish peroxidase. J. Am. Chem. Soc. 104,5203–5206.CrossRefGoogle Scholar
  47. La MAR, G. N.; De ROPP, J. S.; Chacko, V. P.; Satterlee, J. D.; and Erman, J. E. 1982. Axial histidyl imidazole non-exchangeable proton resonances as indicators of imidazole hydrogen bonding in ferric cyanide complexes of heme peroxidases. Biochim. Biophys. Acta. 708, 317–325.CrossRefGoogle Scholar
  48. La Mar, G. N.; De Ropp, J. S.; Latos-Grazynski, L.; Balch, A. L.; Johnson, R. B.; Smith, K. M.; Parish, D. W.; and Cheng, R. 1983. Proton NMR characterization of the ferryl group in model heme complexes and hemeproteins: Evidence for the Few-O group in ferryl myoglobin and compound II of horseradish peroxidase. J. Am. Chem. Soc. 105, 782–787.CrossRefGoogle Scholar
  49. Lanir, A., and Schejter, A. 1975. Nuclear magnetic resonance evidence for the absence of iron coordinated water in horseradish peroxidase. Biochem. Biophys. Res. Comm. 62, 199–203.CrossRefGoogle Scholar
  50. Lewis, S. D.; Johnson, F. A.; and Shafer, J. A. 1981. Effect of cysteine-25 on the ionization of histine-159 in papain as determined by proton nuclear magnetic resonance spectroscopy. Evidence for a His-159-Cys-25 ion pair and its possible role in catalysis. Biochemistry 20,48–51.CrossRefGoogle Scholar
  51. Matheis, G., and Whitaker, J. R. 1984. Peroxidase-catalyzed cross linking of proteins. J. Protein Chem. 3,35–48.CrossRefGoogle Scholar
  52. Mazza, G., and Welinder, K. G. 1980. Covalent structure of turnip peroxidase. Eur. J. Biochem. 108,481–489.CrossRefGoogle Scholar
  53. Metodiewa, D., and Dunford, H. B. 1989. The reactions of horseradish peroxidase, lactoperoxidase, and myeloperoxidase with enzymatically generated superoxide. Arch. Biochem. Biophys. 272, 245–253.CrossRefGoogle Scholar
  54. Miwa, G. T.; Walsh, J. S.; Kedderis, G. L.; and Hollenberg, P. F. 1983. The use of intramolecular isotope effects to distinguish between deprotonation and hydrogen atom abstraction mechanisms in cytochrome P-450- and peroxidasecatalyzed N-demethylation reactions. J. Biol. Chem. 258, 14445–14449.Google Scholar
  55. Modi, S.; Behere, D. V.; and Mitra, S. 1991. Horseradish peroxidase catalyzed oxidation of thiocyanate by hydrogen peroxide: comparison with lactoperoxidasecatalyzed oxidation and role of distal histidine. Biochim. Biophys. Acta 1080,45–50.CrossRefGoogle Scholar
  56. Modi, S.; Behere, D. V.; and Mitra, S. 1989. Interaction of thiocyanate with horseradish peroxidase. J. Biol. Chem. 264, 19677–19684.Google Scholar
  57. Modi, S.; Saxena, A. K.; Behere, D. V.; and Mitra, S. 1990. Binding of thiocyanate and cyanide to manganese (III)-reconstituted horseradish peroxidase: A 15N nuclear magnetic resonance study. Biochim. Biophys. Acta 1038,164–171.CrossRefGoogle Scholar
  58. Moore, K. L.; Moronne, M. M.; and Mehlhorn, R. J. 1992. Electron spin resonance study of peroxidase activity and kinetics. Arch. Biochem. Biophys. 299, 47–59.CrossRefGoogle Scholar
  59. Morehouse, K. M.; Sipe, H. J.; and Mason, R. P. 1989. The one-electron oxidation of porphyrins to porphyrin pi-cation radicals by peroxidases: An electron spin resonance investigation. Arch. Biochem. Biophys. 273, 158–164.CrossRefGoogle Scholar
  60. Morishima, I.; Kurono, M.; and Shiro, Y. 1986. Presence of endogenous calcium ion in horseradish peroxidase. J. Biol. Chem. 261,9391–9399.Google Scholar
  61. Morita, Y.; Funatsu, J.; and Mikami, B. 1993. X-Ray crystallographic analysis of horseradish peroxidase E5. In: Plant Peroxidases: Biochemistry and Physiology,K. G. Welinder, S. K. Rasmussen, C. Penel, H. Greppin, eds., University of Geneva, 1993, pp. 1–4.Google Scholar
  62. Morita, Y.; Mikami, B.; Yamashita, H.; Lee, J. Y.; Aibara, S.; Sato, M.; Katsube, Y.; and Tanaka, N. 1991. Primary and crystal structures of horseradish peroxidase isozyme E5. In: Biochemical, Molecular and Physiological Aspects of Plant Peroxidases, J. Lobarzewski, H. Greppin, C. Penel, and Th. Gasper, eds., University of Geneva, 1991, pp. 81–88.Google Scholar
  63. Moss, T. H.; Ehrenberg, A.; and Bearden, A. J. 1969. Mössbauer spectroscopic evidence for the electronic configuration of iron in horseradish peroxidase and its peroxidase derivatives. Biochemistry 8, 4160–4162.CrossRefGoogle Scholar
  64. Nakajima, R., and Yamazaki, I. 1987. The mechanism of oxyperoxidase formation from ferryl peroxidase and hydrogen peroxide. J. Biol. Chem. 262, 2576–2581.Google Scholar
  65. Ogura, T., and Kitagawa, T. 1987. Device for simultaneous measurements of transient raman and absorption spectra of enzymic reactions: application to compound I of horseradish peroxidase. J. Am. Chem. Soc. 109,2177–2179.CrossRefGoogle Scholar
  66. Oertling, W. A., and Babcock, G. T. 1985. Resonance raman scattering from horseradish peroxidase compound I. J. Am. Chem. Soc. 107,6406–6407.CrossRefGoogle Scholar
  67. Oertling, W. A., and Babcock, G. T. 1988. Time-resolved and static resonance raman spectroscopy of horseradish peroxidase intermediates. Biochemistry 27, 3331–3338.CrossRefGoogle Scholar
  68. Ogawa, S.; Shiro, Y.; and Morishima, I. 1979. Calcium binding by horseradish peroxidase C and the heme environmental structure. Biochem. Biophys. Res. Comm. 90, 674–678.CrossRefGoogle Scholar
  69. Paeng, K.-J., and Kincaid, J. R. 1988. The resonance raman spectrum of horseradish peroxidase compound I. J. Am. Chem. Soc. 110,7913–7915.CrossRefGoogle Scholar
  70. Palaniappan, V., and Terner, J. 1989. Resonance raman spectroscopy of horseradish peroxidase derivatives and intermediates with excitation in the near ultraviolet. J. Biol. Chem. 264,16046–16053.Google Scholar
  71. Penner-Hahn, J. E.; Eble, K. S.; Mcmurry, T. J.; Renner, M.; Balch, A. L.; Groves, J. T.; Dawson, J. H.; and Hodgson, K. O. 1986. Structural characterization of horseradish peroxidase using EXAFS spectroscopy. Evidence for Fe=O ligation in compounds I and II. J. Am. Chem. Soc. 108,7819–7825.CrossRefGoogle Scholar
  72. Penner-Hahn, J. E.; Mcmurry, T. J.; Renner, M.; Latos-Grazynsky, L.; Eble, K. S.; Davis, I. M.; Balch, A. L.; Groves, J. T.; Dawson, J. H.; and Hodgson, K. O. 1983. X-Ray absorption spectroscopic studies of high valent iron porphyrins. J. Biol. Chem. 258,12761–12764.Google Scholar
  73. Poulos, T. L., and Kraut, J. 1980. The stereochemistry of peroxidase catalysis. J. Biol. Chem. 255,8199–8205.Google Scholar
  74. Rutter, R.; Valentine, M.; Hendrich, M.; Hager, L.; and Debrunner, P. 1983. Chemical nature of the porphyrin it cation radical in horseradish peroxidase compound I. Biochemistry 22,4769–4774.CrossRefGoogle Scholar
  75. Sachs, D. H.; Schechter, A. N.; and Cohen, J. S. 1971. Nuclear magnetic resonance titration curves of histidine ring protons. J. Biol. Chem. 246, 6576–6580.Google Scholar
  76. Sakurada, J.; Sekiguchi, R.; Sato, K.; and Hosoya, T. 1990. Kinetic and molecular orbital studies on the rate of oxidation of monosubstituted phenols and anilines by horseradish peroxidase compound II. Biochemistry 29, 4093–4098.CrossRefGoogle Scholar
  77. Sakurada, J.; Takahashi, S.; and Hosoya, T. 1986. Nuclear magnetic resonance studies on the spatial relationship of aromatic donor molecules to the heure iron of horseradish peroxidase. J. Biol. Chem. 261,9657–9662.Google Scholar
  78. Salehi, A.; Oertling, W. A.; Babcock, G. T.; and Chang, C. K. 1986. One-electron oxidation of the porphyrin ring of cobaltous octaethylporphyrin (Co“OEP). Absorption and resonance raman spectral characteristics of the Co”OEP+ C1O0. n-cation radical. J. Am. Chem. Soc. 108, 5630–5631.CrossRefGoogle Scholar
  79. Saxena, A.; Modi, S.; Behere, D. V.; and Mitra, S. 1990. Interaction of aromatic donor molecules with manganese (III) reconstituted horseradish peroxidase: Proton nuclear magnetic resonance and optical difference spectroscopic studies. Biochim. Biophys. Acta 1041,83–93.CrossRefGoogle Scholar
  80. Schonbaum, G. R., and Chance, B. 1976. Catalase. The Enzymes 13,363–408.Google Scholar
  81. Schonbaum, G. R., and Lo, S. 1972. Interaction of peroxidases with aromatic per-acids and alkyl peroxides. J. Biol. Chem. 247,3353–3360.Google Scholar
  82. Schulz, C. E.; Devaney, P. W.; Winkler, H.; Debrunner, P. G.; Doan, N.; Chiang, R.; Rutter, R.; and Hager, L. P. 1979. Horseradish peroxidase compound I: Evidence for spin coupling between the heure iron and a “free” radical. FEBS Lett. 103, 102–105.CrossRefGoogle Scholar
  83. Shiro, Y.; Kurono, M.; and Morishima, I. 1986. Presence of endogenous calcium ion and its functional and structural regulation in horseradish peroxidase. J. Biol. Chem. 261, 9382–9390.Google Scholar
  84. Sitter, A. J.; Reczek, C. M.; and Terner, J. 1985. Heme-linked ionization of horseradish peroxidase compound II monitored by the resonance raman Fe(IV)=O stretching vibration. J. Biol. Chem. 260, 7515–7522.Google Scholar
  85. Smith, A. T.; Sanders, S. A.; Greschik, H.; Thorneley, R. N. F.; Burke, J. F.; and Bray, R. C. 1992. Probing the mechanism of horseradish peroxidase by site-directed mutagenesis. Biochem. Soc. Trans. 20, 340–345.Google Scholar
  86. Smith, A. T.; Santama, N.; Dacey, S.; Edwards, M.; Bray, R. C.; Thorneley, R. N. F.; and Burke, J. F. 1990. Expression of synthetic gene for horseradish peroxidase C in Escherichia coli and folding and activation of the recombinant enzyme with Ca++ and heure. J. Biol. Chem. 265, 13335–13343.Google Scholar
  87. Spiro, T. G.; Strong, J. D.; and Stein, P. 1979. Porphyrin core expansion and doming in heme proteins. New evidence from resonance raman spectra of six-coordinate high-spin iron (III) heure. J. Am. Chem. Soc. 101,2648–2655.CrossRefGoogle Scholar
  88. Tamura, M., and Yamazaki, I. 1972. Reactions of the oxyform of horseradish peroxidase. J. Biochem. 71,311–319.Google Scholar
  89. Tanokura, M.; Tasumi, M.; and Miyazawa, T. 1976. H Nuclear magnetic resonance studies of histidine-containing di-and tripeptides. Estimation of the effects of charged groups on the pKa value of the imidizole ring. Biopolymers 15, 393–401.Google Scholar
  90. Teraoka, J.; Job, D.; Morita, Y.; and Kitagawa, T. 1983. Resonance raman study of plant tissue peroxidase. Common characteristics in iron coordination environments. Biochim. Biophys. Acta 747, 10–15.CrossRefGoogle Scholar
  91. Teraoka, J., and Kitagawa, T. 1980. Resonance raman study of the heme-linked ionization in reduced horseradish peroxidase. Biochem. Biophys. Res. Comm. 93, 694–700.CrossRefGoogle Scholar
  92. Teraoka, J., and Kitagawa, T. 1981. Structural implication of the heme-linked ionization of horseradish peroxidase probed by the Fe-histidine stretching raman line. J. Biol. Chem. 256, 3969–3977.Google Scholar
  93. Terner, J., Sitter, A. J.; and Reczek, C M. 1985. Resonance raman spectroscopic characterizations of horseradish peroxidase. Observation of theFew=O stretching vibration of compound II. Biochim. Biophys. Acta 828,73–80.CrossRefGoogle Scholar
  94. Thanabal, V.; De Ropp, J. S.; and La Mar, G. N. 1987. Identification of the catalytically important amino acid residue resonances in ferric low-spin horseradish peroxidase with nuclear overhauser effect measurements. J. Am. Chem. Soc. 109, 7516–7525.CrossRefGoogle Scholar
  95. Thanabal, V.; La Mar, G. N.; and De Ropp, J. S. 1988. Nuclear overhauser effect study of the heure crevice in the resting state and compound I of horseradish peroxidase: Evidence for cation radical delocalization to the proximal histidine. Biochemistry 27, 5400–5407.CrossRefGoogle Scholar
  96. Valentine, J. S.; Sheridan, R. P.; Allen, L. C.; and Kahn, P. C. 1979. Coupling between oxidation state and hydrogen bond conformation in heme proteins. Proc. Natl. Acad. Sci. USA 76, 1009–1013.CrossRefGoogle Scholar
  97. van der Zee, J.; Duling, D. R.; Mason, R. P.; and Eling, T. E. 1989. The oxidation of N-substituted aromatic amines by horseradish peroxidase. J. Biol. Chem. 264, 19–828.Google Scholar
  98. Welinder, K. G. 1976. Covalent structure of the glycoprotein horseradish peroxidase (EC1.11.1.7). FEBS Lett. 72,19–23.CrossRefGoogle Scholar
  99. Welinder, K. G. 1979. Amino acid sequence studies of horseradish peroxidase Amino and carboxyl termini, cyanogen bromide and tryptic fragments, the complete sequence, and some structural characteristics of horseradish peroxidase C. Eur. J Biochem. 96, 483–502.CrossRefGoogle Scholar
  100. Welinder, K. G. 1985. Plant peroxidases. Their primary, secondary and tertiary structures, and relation to cytochrome c peroxidase. Eur. J. Biochem. 151, 497–504.CrossRefGoogle Scholar
  101. Wiseman, J. S.; Nichols, J. S.; and Kolpak, M. X. 1982. Mechanism of inhibition of horseradish peroxidase by cyclopropanone hydrate. J. Biol. Chem. 257,6328–6332.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Dominic W. S. Wong

There are no affiliations available

Personalised recommendations