Food Enzymes and Future Development

  • Dominic W. S. Wong


Enzymes have been utilized for food processing since ancient times. The use of calf rennet in cheese making has been in practice long before the development of enzymology as a science. Fermentation in wine making, likewise, is an age-old practice that utilizes enzymes occurring naturally in raw materials. Proteolytic enzymes in the form of malt extract, koji, and papaya extract have been used for centuries.


Cocoa Butter Xylose Isomerase Unnatural Amino Acid Glucose Isomerase Catalytic Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alder-Nissen, J. 1987. Newer uses of microbial enzymes in food processing. TIBTECH 5, 170–174.CrossRefGoogle Scholar
  2. Benkovic, S. J.; Napper, A. D.; and Lerner, R. A. 1988. Catalysis of a stereospecific bimolecular amide synthesis by an antibody. Proc. Natl. Acad. Sci. USA 85, 5355–5358.CrossRefGoogle Scholar
  3. Bentley, G. A.; Boulot, G.; Riottot, M. M.; and Poljak, R. J. 1990. Three-dimensional structure of an idiotope-anti-idiotope complex. Nature 348, 254–257.CrossRefGoogle Scholar
  4. Breslow, R.; Canary, J. W.; Varney, M.; Waddell, S. T.; and Yang, D. 1990. Artificial transaminases linking pyridoxamine to binding cavities: Controlling the geometry. J. Am. Chem. Soc. 112,5212–5219.CrossRefGoogle Scholar
  5. Breslow, R., and Czarnik, A. W. 1983. Transminations by pyridoxamine selectively attached at C-3 in [3-cyclodextrin. J. Am. Chem. Soc. 105,1390–1391.CrossRefGoogle Scholar
  6. Breslow, R.; Doherty, J. B.; Guillot, G.; and Lipsey, C. 1978. β-Cyclodextrinyl-bisimidazole, a model for ribonucleases. J. Am. Chem. Soc. 100,3229.CrossRefGoogle Scholar
  7. Breslow, R.; Hammond, M.; and Lauer, M. 1980. Selective transamination and optical induction by a β-cyclodextrin-pyridoxamine artificial enzyme. J. Am. Chem. Soc. 102, 421–422.CrossRefGoogle Scholar
  8. Breslow, R., and Zhang, B. 1992. Very fast ester hydrolysis by a cyclodextrin dimmer with a catalytic linking group. J. Am. Chem. Soc. 114, 5882–5883.CrossRefGoogle Scholar
  9. Clackson, T., and Wells, J. A. 1994. In vitro selection from protein and peptide libraries. TIBTECH 12, 173–184.Google Scholar
  10. Corey, M. J.; Hallukova, E.; Pugh, K.; and Stewart, J. M. 1994. Studies on chymotrypsin-like catalysis by synthetic peptides. Appl. Biochem. Biophys. 47, 199–212.Google Scholar
  11. Degrado, W. F.; Wasserman, Z. R.; and Lear, J. D. 1989. Protein design, a minimalist approach. Science 243, 622–628.CrossRefGoogle Scholar
  12. Dornenburg, H., and Lang-Hinrichs, C. 1994. Genetic engineering in food biotechnology. Chem. & Industry 13,506–510.Google Scholar
  13. D’Souza, V. T., and Bender, M. L. 1987. Miniature organic models of enzymes. Acc. Chem. Res. 20,146–152.CrossRefGoogle Scholar
  14. D’Souza, V. T.; Hanabusa, K.; O’leary, T.; Gadwood, R. C.; and Bender, M. L. 1985. Synthesis and evaluation of a miniature organic model of chymotrypsin. Biochem. Biophys. Res. Comm. 129, 727–732.CrossRefGoogle Scholar
  15. D’Souza, V. T.; Lu, X. L.; Ginger, R. D.; and Bender, M. L. 1987. Thermal and pH stability of “ 3-benzyme.” Proc. Natl. Acad. Sci. USA. 84,673–674.CrossRefGoogle Scholar
  16. Dziezak, J. D. 1986. Enzyme modification of dairy products. Food Technol. 40, 114–120.Google Scholar
  17. Dugas, H. 1989. Bioorganic Chemistry. A Chemical Approach to Enzyme Action. 2nd ed., Springer-Verlag, New York.Google Scholar
  18. Ellman, J.; Mendel, D.; Anthony-Cahill, S.; Noren, C. J.; and Schultz, P. G. 1991. Biosynthetic method for introducing unnatural amino acids site-specifically into proteins. Methods Enzymol. 202, 301–337.CrossRefGoogle Scholar
  19. Erickson, D. 1992. Hot potato. Scientific American 267(3), 160–161.CrossRefGoogle Scholar
  20. Evans, S. V.; Rose, D. R.; To, R.; Young, N. M.; and Bundle, D. R. 1994. Exploring the mimicry of polysaccharide antigens by anti-idiotypic antibodies. J. Mol. Biol. 241, 691–705.CrossRefGoogle Scholar
  21. Friboulet, A.; Izadyar, L.; Avalle, B.; Roseto, A.; and Thomas, D. 1994. Abzyme generation using an anti-idiotypic antibody as the internal image of an enzyme active site. Appl. Biochem. Biophys. 47, 229–239.Google Scholar
  22. Gallacher, G.; Searcey, M.; Jackson, C. S.; and Brocklehurst, K. 1992. Polyclonal antibody-catalyzed amide hydrolysis. Biochem. J. 284, 675–780.Google Scholar
  23. Grove, A.; Mutter, M.; Rivier, J. E.; and Montal, M. 1993. Template-assembled synthetic proteins designed to adopt a globular, four-helix bundles conformation from ionic channels in lipid bilayer. J. Am. Chem. Soc. 115, 5915–5924.CrossRefGoogle Scholar
  24. Guo, J.; Huang, W.; and Scanlan, T. S. 1994. Kinetic and mechanistic characterization of an efficient hydrolytic activity: Evidence for the formation of an acyl intermediate. J. Am. Chem. Soc. 116, 6062–6069.CrossRefGoogle Scholar
  25. Hahn, K. W.; Klis, W. A.; and Stewart, J. M. 1990. Design and synthesis of a peptide having chymotrypsin-like esterase activity. Science 248, 1544–1547.CrossRefGoogle Scholar
  26. Haynes, M. R.; Stura, E. A.; Hilvert, D.; and Wilson, I. A. 1994. Routes to catalysis: Structure of a catalytic antibody and comparison with its natural counterpart. Science 263, 646–652.CrossRefGoogle Scholar
  27. Hilvert, D.; Hill, K. W.; Nared, K. D.; and Auditor, M.-T. M. 1989. Antibody catalysis of a Diels-Alder reaction. J. Am. Chem. Soc. 111, 9261–9262.CrossRefGoogle Scholar
  28. Iverson, B. L., and Lerner, R. A. 1989. Sequence-specific peptide cleavage catalyzed by an antibody. Science 243, 1184–1188.CrossRefGoogle Scholar
  29. Jackson, D. Y.; Jacobs, J. W.; Sugasawara, R.; Reich, S. H.; Barlett, P. A.; and Schultz, P. G. 1988. An antibody-catalyzed Claisen rearrangement. J. Am. Chem. Soc. 110, 4841–4842.CrossRefGoogle Scholar
  30. Janda, K. D. 1994. Tagged versus untagged libraries: Methods for the generation and screening of combinatorial chemical libraries. Proc. Natl. Acad. Sci. USA 91, 10779–10785.CrossRefGoogle Scholar
  31. Janda, K. D.; Benkovic, S. J.; and Lerner, R. A. 1989. Catalytic antibodies with lipase activity and R or S substrate selectivity. Science 244, 437–440.CrossRefGoogle Scholar
  32. Janda, K. D.; Lo, C.-H. L.; Li, T.; Farbas, C. F. III; Virsching, P.; and Lerner, R. A. 1994. Direct selection for a catalytic mechanism from combinatorial antibody libraries. Proc. Natl. Acad. Sci. USA 91, 2532–2536.CrossRefGoogle Scholar
  33. Janda, K. D.; Schloeder, D.; Benkovic, J.; and Lerner, R. A. 1988. Induction of an antibody that catalyzes the hydrolysis of an amide bond. Science 241, 1188–1191.CrossRefGoogle Scholar
  34. Janda, K. D.; Shevlin, C. G.; and Lerner, R. A. 1993. Antibody catalysis of a disfavored chemical transformation. Science 259, 490–493.CrossRefGoogle Scholar
  35. Kuroda, Y.; Hiroshige, T.; and Ogoshi, H. 1990. Epoxidation reaction catalyzed by cyclodextrin sandwiched porphyrin in aqueous buffer solution. J. Chem. Soc. Chem. Comm. 1990, 1594–1595.CrossRefGoogle Scholar
  36. Lelen, K. 1992. Ag-biotechnology companies move forward on heels of the FDA statement on biofoods. Genetic Engineering News 12(11), 21–22.Google Scholar
  37. Mccafferty, J.; Griffiths, A. D.; Winter, G.; and Chiswell, D. J. 1990. Phage antibodies: Filamentous phage displaying antibody variable domains. Nature 348, 552–554.CrossRefGoogle Scholar
  38. Napper, A. D.; Benkovic, S. J.; Tramontano, A.; and Lerner, R. A. 1987. A stereospecific cyclization catalyzed by an antibody. Science 237, 1041–1043.CrossRefGoogle Scholar
  39. O’Neil, K. T.; Hoess, R. H.; and Degrado, W. F. 1990. Design of DNA-binding peptides based on the leucine zipper motif. Science 249, 774–778.CrossRefGoogle Scholar
  40. Pickersgill, R. W., and Goodenough, P. W. 1991. Enzyme Engineering. Trends in Food Sci. & Technol. 9, 122–126.CrossRefGoogle Scholar
  41. Pollack, S. J.; Jacobs, J. W.; and Schultz, P. G. 1986. Selective chemical analysis by an antibody. Science 234, 1570–1573.CrossRefGoogle Scholar
  42. Pollack, S. J.; Nakayama, G. R.; and Schultz, P. G. 1988. Introduction of nudeophiles and spectroscopic probes into antibody combining sites. Science 242, 1038–1040.CrossRefGoogle Scholar
  43. Pollack, S. J., and Schultz, P. G. 1989. A semisynthetic catalytic antibody. J. Am. Chem. Soc. 111,1929–1931.CrossRefGoogle Scholar
  44. Rao, K. R.; Srinivasan, T. N.; Bhanumathi, N.; and Sattur, P. B. 1990. Artificial enzymes: Synthesis of imidazole substituted at C(2) of β-cyclodextrin as an efficient enzyme model of chymotrypsin. J. Chem. Soc. Chem. Comm. 1990,1011.Google Scholar
  45. Robertson, D. E.; Farid, R. S.; Moser, C. C.; Urbauer, J. L.; Mulholland, S. E.; Pidikiti, R.; Lear, J. D.; Wand, A. J.; Degrado, W. F.; and Dutton, P. L. 1994. Design and synthesis of multi-haem proteins. Nature 368,425–432.CrossRefGoogle Scholar
  46. Sasaki, T., and Kaiser, E. T. 1989. Helichrome: Synthesis and enzymatic activity of a designed hemeproteins. J. Am. Chem. Soc. 111, 380–381.CrossRefGoogle Scholar
  47. Shokat, K. M.; Leumann, C. J.; Sugasawara, R.; and Schultz, P. G. 1989. A new strategy for the generation of catalytic antibodies. Nature 338, 269–271.CrossRefGoogle Scholar
  48. Skillicorn, A. 1994. Oilseeds get a genetic makeover. Food Processing 55(2), 48–52.Google Scholar
  49. Spradlin, J. E. 1989. Tailoring enzyme systems for food processing. In: Biocatalysis in Agricultural Biotechnology, J. R. Whitaker, and P. E. Sonnet, eds., American Chemical Society Sym. Ser. 389, Washington, DC.Google Scholar
  50. Tabushi, I., and Kuroda, Y. 1984. Bis(histamino)cyclodextrin-Zu-imidazolecomplex as an artificial carbonic anhydrase. J. Am. Chem. Soc. 106,4580–4584.CrossRefGoogle Scholar
  51. Taub, R., and Greene, M. I. 1992. Functional validation of ligand mimicry by anti-receptor antibodies: Structural and therapeutic implications. Biochemistry 31, 7432–7435.CrossRefGoogle Scholar
  52. Tramontano, A.; Janka, K. D.; and Lerner, R. A. 1986. Catalytic antibodies. Science 234, 1566–1570.CrossRefGoogle Scholar
  53. Winter, G., and Milstein, C. 1991. Man-made antibodies. Nature, 349,293–299.CrossRefGoogle Scholar
  54. Wirsching, P.; Ashley, J. A.; Benkovic, S. J.; Janda, K. D.; and Lerner, R. A. 1991. An unexpected efficient catalytic antibody operating by ping-pong and induced fit mechanisms. Science 252, 680–685.CrossRefGoogle Scholar
  55. Zaks, A.; Empie, M.; and Gross, A. 1988. Potentially commercial enzymatic processes for the fine and specialty chemical industries. TIBTECH 6, 272–275.CrossRefGoogle Scholar
  56. Zhou, G. W.; Guo, J.; Huang, W.; Fletterick, R. J.; and Scanlan, T. S. 1994. Crystal structure of a catalytic antibody with serine protease active site. Science 265, 1059–1064.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Dominic W. S. Wong

There are no affiliations available

Personalised recommendations