Advertisement

The Sclera pp 33-58 | Cite as

Immunological Considerations of the Sclera

  • C. Stephen Foster
  • Maite Sainz de la Maza

Abstract

Scleritis remains an enigmatic disease. Attempts to demonstrate a specific antigen associated with scleral vessel and tissue damage, or to reproduce suggested underlying pathogenic mechanisms in experimental animal models, have not yielded consistent abnormalities. The prevailing consensual view, however, based on the available evidence, is that disordered immune responses leading to vessel and tissue damage are central to the pathogenesis of scleritis. The histopathological and immunofluorescence detection of immune complex inflammatory microangiopathy in affected scleral biopsy specimens,1 the frequent association of scleritis with systemic autoimmune diseases associated with circulating immune complexes (rheumatoid arthritis, systemic lupus erythematosus, or polyarteritis nodosa),1–3 the favorable response of scleritis to immunosuppressive agents,2,3 and the absence of vascular perfusion in severe types of scleritis, as determined by anterior segment fluorescein angiography,4 all suggest that scleritis represents an autoimmune process mediated by a localized immune complex inflammatory microangiopathy or type III hypersensitivity reaction. The histopathological finding of a chronic granulomatous inflammation characterized predominantly by macrophages and T lymphocytes in scleritis biopsy specimens suggests that a cellular immunity dysfunction or type IV hypersensitivity reaction also may play a role.1

Keywords

Rheumatoid Arthritis Mast Cell Major Histocompatibility Complex Immune Complex Major Histocompatibility Complex Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fong LP, Sainz de la Maza M, Rice BA, Kupferman AE, Foster CS. Immunopathology of scleritis. Ophthalmology 98: 472, 1991.PubMedGoogle Scholar
  2. 2.
    Foster CS, Forstot SL, Wilson LA: Mortality rate in rheumatoid arthritis patients developing necrotizing scleritis or peripheral ulcerative keratitis. Ophthalmology 91: 1253, 1984.PubMedGoogle Scholar
  3. 3.
    Foster CS. Immunosuppressive therapy for external ocular inflammatory disease. Ophthalmology 87: 140, 1980.PubMedGoogle Scholar
  4. 4.
    Hakin KN, Watson PG: Systemic associations of scleritis. Int Ophthalmol Clin 31 (3): 111, 1991.PubMedGoogle Scholar
  5. 5.
    Foster CS: Basic ocular immunology. In Kaufman HE, Barron BA, McDonald MB, Waltman SR (Eds): The Cornea. Churchill Livingstone, New York, 1988, pp 85–122.Google Scholar
  6. 6.
    Roitt IM, Brostoff J, Male DK: Immunology, 2nd ed. Gower Medical Publishing, London, 1989, pp 2. 1–2. 18.Google Scholar
  7. 7.
    Parnes JR: Molecular biology and function of CD4 and CD8. Adv Immunol 44: 265, 1989.PubMedGoogle Scholar
  8. 8.
    Romagnani. S: Human TH1 and TH2 subsets: regulation of differentiation and role in protection of differentiation and role in protection and immunopathology. Int Arch Allergy Immunol 98: 279, 1992.PubMedGoogle Scholar
  9. 9.
    Hermans MJA, Hartsuiker H, Opstaelten D: An insight to study of B-lymphocytopoiesis in rat bone marrow. Topographical arrangement of terminal deoxynucleotidyl transferasepositive cells and pre-B cells. J Immunol 44: 67, 1989.Google Scholar
  10. 10.
    Osmond DG: Population dynamics of bone marrow. B lymphocytes Imm Rev 93: 103, 1986.Google Scholar
  11. 11.
    Hardy RR, Hayakawa K, Parks DR, Herzenberg LA: Murine B cell differentiation lineages. J Exp Med 1959: 1169, 1984.Google Scholar
  12. 12.
    Hardy RR, Hayakawa K, Schimizu M, Herzenberg LA: Rheumatoid factor secretion from human Leu-1 B cells. Science 236: 81, 1987.PubMedGoogle Scholar
  13. 13.
    Adams DO, Hamilton TA: The cell biology of macrophage activation. Annu Rev Immunol 2: 283, 1984.PubMedGoogle Scholar
  14. 14.
    Nathan CF, Cohn ZA: Cellular components of inflammation: monocytes and macrophages. In Kelley W, Harris E Jr, Ruddy S, Sledge CB (Eds): Textbook of Rheumatology. W.B. Saunders, Philadelphia, 1985, pp 144–169.Google Scholar
  15. 15.
    Adam DO, Hamilton TA: Phagocytic cells: cytotoxic activities of macrophages. In Gallin JI, Goldstein IM, Snyderman R (Eds): Inflam mation: Basic Principles and Clinical Corre lates. Raven, New York, 1988, pp 471–492.Google Scholar
  16. 16.
    Davis MM, Bjorkman PJ: T-cell receptor genes and T-cell recognition. Nature (London) cells 334: 395, 1988.Google Scholar
  17. 17.
    Terhorst C, Alarcon B, deVries J, Spits H: Tlymphocyte recognition and activation. In Hames BD, Glover DM (Eds): Molecular Immunology. IRC Press, Oxford, 1988, pp 145–188.Google Scholar
  18. 18.
    Weiss A, Imboden JB: Cell surface molecules and early events involved in human Tlym phocyte activation. Adv Immunol 41: 1, 1987.PubMedGoogle Scholar
  19. 19.
    Murphy GF: Cell membrane glycoproteins and Langerhans cells. Hum Pathol 16: 103, 1985.PubMedGoogle Scholar
  20. 20.
    Collins T, Korman AJ, Wake CT, Boss JM, Kappes DJ, Fiers W, Ault KA, Gimbrone MA, Strominger JL, Pober JS. Immune inter feron activates multiple class II major histocompatibility complex genes and the associated invariant chain gene in human endothelial cells and dermal fibroblasts. Proc Natl Acad Sci USA 81: 4917, 1984.PubMedGoogle Scholar
  21. 21.
    Maurer DH, Hanke JH, Michelson E, Rich Immunol presentation of HLA-DR, DQ, and DP restriction elements by interferon-gamma-treated dermal fibrob lasts. J Immunol 139: 715, 1987.PubMedGoogle Scholar
  22. 22.
    Bottazzo GF, Pujol-Borrell R, Hanafusa T: Role of aberrant HLA-DR expression and antigen presentation in induction of endocrine immunity. Lancet 2: 1115, 1983.PubMedGoogle Scholar
  23. 23.
    Baggiolini M: The neutrophil. In Weissman G (Ed): The Cell Biology of Inflammation. North Holland/Elsevier, New York, 1980, pp 163–187.Google Scholar
  24. 24.
    Henson PM, Henson JE, Fittschen C: Phagocytic cells: degranulation and secretion. In Gallin JI, Goldstein IM, Snyderman R (Eds): Inflammation: Basic Principles and Clinical Correlates. Raven, New York, 1988, pp 363–390.Google Scholar
  25. 25.
    Siraganian RP: Mast cells and basophils. In Siraganian RP: Mast cells and basophils. In Gallin JI, Goldstein IM, Snyderman R (Eds): Inflammation: Basic Principles and Clinical Correlates. Raven, New York, 1988, pp 513–542.Google Scholar
  26. 26.
    Pearce FL: Functional differences between mast cells from various locations. In Befus AD, Beinenstock J, Denburg JA (Eds): Mast Cell Differentiation and Heterogeneity. Raven, New York, 1986, pp 215–222.Google Scholar
  27. 27.
    Befus D, Goodacre R, Dyck N, Bienenstock J: Mast cell heterogeneity in man. I. Histologic studies of the intestine. Int Arch Allergy Appl Immunol 76: 232, 1985.PubMedGoogle Scholar
  28. 28.
    Irani AA, Schechter NM, Craig SS, DeBlois G, Schwartz LB: Two types of human mast that have distinct neutral protease compositions (tryptase/chymotryptic protease). Proc Natl Acad Sci USA 83: 44–64, 1986.Google Scholar
  29. 29.
    Weksler BB: Platelets. In Gallin JI, Goldstein IM, Snyderman R (Eds): Inflammation: Basic Principles and Clinical Correlates. Raven, New York, 1988, pp 543–557.Google Scholar
  30. 30.
    Whitehead AS, Colten HR, Chang CC, Demars R: Localization of MHC-linked complement genes between HLA-B and HLA-DR by using HLA mutant cell lines. J Immunol 134: 641, 1985.PubMedGoogle Scholar
  31. 31.
    Jerne N: Towards a network theory of the immune system. Ann Inst Pasteur Immunol 125: 373, 1974.Google Scholar
  32. 32.
    Herzenberg LA, Black SJ: Regulatory circuits and antibody responses. Eur J Immunol 10: 1, 1980.PubMedGoogle Scholar
  33. 33.
    Asherson GL, Collizi V, Zembala M: An overview of T-suppressor cell circuits. Annu Rev Rich Immunol 4: 37, 1986.Google Scholar
  34. 34.
    Lehner T: Antigen-presenting, contrasuppressor human T-cells. Immunol Today 7: 87, 1986.Google Scholar
  35. 35.
    Gell PGH, Coombs RA, Lackmann P: Clinical Aspects of Immunology, 3rd ed. Blackwell Scientific Publications, Oxford, 1974.Google Scholar
  36. 36.
    Germuth FG: A comparative histologic and immunologic study in rabbits of induced hypersensitivity of the serum sickness type. J Exp Med 97: 257, 1953.PubMedGoogle Scholar
  37. 37.
    Hawn C, Janeway C: Histological and serological sequences in experimental hypersensitivity. J Exp Med 85: 571, 1947.PubMedGoogle Scholar
  38. 38.
    Knutsen D, Van Es L, Kayser B, Glassock R: Soluble oligovalent antigen-antibody complexes. II. The effect of various selective forces upon relative stability of isolated complexes. Immunology 37: 495, 1979.Google Scholar
  39. 39.
    Barnett E, Knutsen D, Abrass C, Chia D, Young L, Liebling M: Circulating immune complexes: their immunochemistry, detection, and importance. Ann Intern Med 91: 430, 1979.Google Scholar
  40. 40.
    Giacomelli F, Wiener J: Regional variation in the permeability of rat thoracic aorta. Am J Pathol 75: 513, 1974.PubMedGoogle Scholar
  41. 41.
    Huttner I, More R, Rona G: Fine structural evidence of specific mechanism for increased endothelial permeability in experimental hypertension. Am J Pathol 61: 395, 1970.PubMedGoogle Scholar
  42. 42.
    Cochrane CG: Studies on the localization of circulating antigen—antibody complexes and other macromolecules in vessels. I. Structural studies. J Exp Med 118: 489, 1963.PubMedGoogle Scholar
  43. 43.
    Cochrane CG: Studies on the localization of circulating antigen—antibody complexes and other macromolecules in vessels. II. Pathogenic and pharmacodynamic studies. J Exp Med 118: 503, 1963.PubMedGoogle Scholar
  44. 44.
    Cochrane CG, Janoff A: The Arthus reaction: a model of neutrophil and complement mediated injury. In Zweifach B, Grant L, McCluskey R (Eds): The Inflammatory Process, Academic Press, New York, 1974, pp 85–162.Google Scholar
  45. 45.
    Meltzer MS, Nacy CA: Delayed-type hypersensitivity and the induction of activated, cytotoxic macrophages. In Paul WE (Ed): Fundamental Immunology, 2nd ed. Raven, New York, 1989, pp 765–780.Google Scholar
  46. 46.
    Poulter LW, Seymour GJ, Duke O, Janossy G, Panayi G: Immunohistological analysis of delayed-type hypersensitivity in man. Cell Immunol 74: 358, 1982.PubMedGoogle Scholar
  47. 47.
    Todd JA, Steinman L: Autoimmunity. Curr Op Ophthalmol 4: 699, 1992.Google Scholar
  48. 48.
    Lee M, Sarvetnick N: Transgenes in autoimmunity. Curr Op Ophthalmol 4: 723, 1992.Google Scholar
  49. 49.
    Bauman GP, Hurtubise P: Anti-idiotypes and autoimmune disease. Clin Lab Med 8: 399, 1988.PubMedGoogle Scholar
  50. 50.
    Postlethwaite AE, Snyderman R, Kang AH: The chemotactic attraction of human fibroblasts to a lymphocyte-derived factor. J Exp Med 144: 1188, 1976.PubMedGoogle Scholar
  51. 51.
    Postlethwaite AE, Kang AH: Characterization of guinea pig lymphocyte-derived chemotactic factor for fibroblasts. J Immunol 124: 1462, 1980.PubMedGoogle Scholar
  52. 52.
    Seppa H, Seppa S, Yamada KM: The cell binding fragment of fibronectin and platelet-derived growth factor are chemoattractants for fibroblasts. J Cell Biol 87: 323, 1980.Google Scholar
  53. 53.
    Mensing H, Czarnetozki BM: Leukotriene at induces in vitro fibroblast chemotaxis. J Invest Dermatol 82: 9, 1984.PubMedGoogle Scholar
  54. 54.
    Postlethwaite AE, Snyderman R, Kang AH: Generation of a fibroblast chemotactic factor in serum by activation of complement. J Clin Invest 64: 1379, 1979.PubMedGoogle Scholar
  55. 55.
    Postlethwaite AE, Seyer IM, Kang AH: Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. Proc Natl Acad Sci USA 75: 871, 1978.PubMedGoogle Scholar
  56. 56.
    Senior RM, Griffin GL, Mecham RP, Wrenn DS, Prasad KU, Urry DW: Val-Gly-Val-AlaPro-Gly, a repeating peptide in elastin, is chemotactic for fibroblasts and monocytes. J Cell Biol 99: 870, 1984.PubMedGoogle Scholar
  57. 57.
    Postlethwaite AE, Keski-Oja J, Kang AH: Induction of fibroblast chemotaxis by fibronectin. Localization of the chemotactic region to a 140,000 molecular weight. J Exp Med 153: 494, 1981.PubMedGoogle Scholar
  58. 58.
    Postlethwaite AE, Smith GN, Mainardi CL, Seyer IM, Kang AH: Lymphocyte modulation of fibroblast functions in vitro: stimulation and inhibition of collagen production by different effector molecules. J Immunol 132: 2470, 1984.PubMedGoogle Scholar
  59. 59.
    Postlethwaite AE, Raghow R, Stricklin GP, Poppleton H, Seyer JM, Kang AH: Modulation of fibroblast functions by human recombinant interleukin 1 • increased steady-state accumulation of type I procollagen messenger RNAs and stimulation of other functions but not chemotaxis by human recombinant interleukin 1 a and ß. J Cell Biol 106: 311, 1988.Google Scholar
  60. 60.
    Schmidt JA, Mizel SB, Cohen D, Green I: Interleukin 1, a potential regulator of fibroblast proliferation. J Immunol 128: 2177, 1982.PubMedGoogle Scholar
  61. 61.
    Duncan MR, Berman D: Gamma interferon is the lymphokine and beta interferon the monokine responsible for inhibition of fibroblast collagen production and late but not early fibroblast proliferation. J Exp Med 162: 516, 1985.PubMedGoogle Scholar
  62. 62.
    Jimenez SA, Freundlich B, Rosenbloom J: Selective inhibition of human diploid fibroblast collagen synthesis by interferons. J Clin Invest 74: 1112, 1984.PubMedGoogle Scholar
  63. 63.
    Postlethwaite AE, Lachman L, Mainardi CL, Kang AH: Stimulation of fibroblast collagenase production by human interleukin 1. J Exp Med 157: 801, 1983.PubMedGoogle Scholar
  64. 64.
    Al-Adnani MS, McGee JOD: Clq production and secretion by fibroblasts. Nature (London) 263: 145, 1976.Google Scholar
  65. 65.
    Reid KBM, Solomon E: Biosynthesis of the first component of complement by human fibroblasts. Biochem J 167: 647, 1977.PubMedGoogle Scholar
  66. 66.
    Rothman BL, Merrow M, Despins A, Kennedy T, Kreutzer DL: Effect of lipopolysaccharide on C3 and C5 production by human lung cells. J Immunol 143: 196, 1989.PubMedGoogle Scholar
  67. 67.
    Reid JBM, Porter RR: Subunit composition and structure of subcomponent Clq of the first component of human complement. Biochem J 155: 19, 1976.PubMedGoogle Scholar
  68. 68.
    Chu ML, DeWet W, Bernard M, Ding JF, Mosabito LM, Meyers J, Williams C, Ramirez F: Human pro-al(I) collagen gene structure reveals evolutionary conservation of a pattern of introns and exons. Nature (London) 310: 337, 1984.Google Scholar
  69. 69.
    Katz Y, Strunk RC: IL-1 and tumor necrosis factor: similarities and differences in stimulation of expression of alternate pathway of complement and IFN-ß2/IL-6 genes in human fibroblasts. J Immunol 142: 3862, 1989.PubMedGoogle Scholar
  70. 70.
    Katz Y, Strunk RC: Synthesis and regulation of Cl inhibitor in human skin fibroblasts. J Immunol 142: 2041, 1989.PubMedGoogle Scholar
  71. 71.
    Katz Y, Cole FS, Struck RC: Synergism between gamma-interferon and lipopolysaccharide for synthesis of Factor B, but not C2, in human fibroblasts. J Exp Med 167: 1, 1988.PubMedGoogle Scholar
  72. 72.
    Fujikawa LS, Colvin RB, Bhan AK, Fuller TC, Foster CS: Expression of HLA-A/B/C and -DR locus antigens on epithelial, stromal, and endothelial cells of the human cornea. Cornea 1: 213, 1982.Google Scholar
  73. 73.
    William KA, Ash JK, Coster DJ: Histocompatibility antigen and passenger cell content of normal and diseased human cornea. Transplantation 39: 265, 1985.Google Scholar
  74. 74.
    Whitsett CF, Stulting RD: The distribution of HLA antigens on human corneal tissue. Invest Ophthalmol Vis Sci 25: 519, 1984.PubMedGoogle Scholar
  75. 75.
    Young E, Stark WJ, Prendergast RA: Immunology of corneal allograft rejection: HLADR antigens on human corneal cells. Invest Ophthalmol Vis Sci 26: 571, 1985.PubMedGoogle Scholar
  76. 76.
    Dreizen NG, Whitsett CF, Stulting RD: Modulation of HLA antigen expression on corneal epithelial and stromal cells. Invest Ophthalmol Vis Sci 29: 933, 1988.PubMedGoogle Scholar
  77. 77.
    Harrison SA, Mondino BJ, Kagan JM: Modulation of HLA antigen expression on conjunctival fibroblasts by gamma-interferon. Invest Ophthalmol Vis Sci 31: 163, 1990.PubMedGoogle Scholar
  78. 78.
    Zucali JR, Dinarello JA, Oblon DJ, Gross MA, Anderson L, Weiner RS: Interleukin 1 stimulates fibroblasts to produce granulocyte—macrophage colony stimulating activity and prostaglandin E2. J Clin Invest 77: 1857, 1986.PubMedGoogle Scholar
  79. 79.
    Brawman-Mintzer O, Mondino BJ, Mayer FJ: The complement system in sclera. Invest Ophthalmol Vis Sci 29: 1756, 1988.PubMedGoogle Scholar
  80. 80.
    Brawman-Mintzer O, Mondino BJ, Mayer FJ: Distribution of complement in the sclera. Invest Ophthalmol Vis Sci 30: 2240, 1989.PubMedGoogle Scholar
  81. 81.
    Harrison SA, Mondino BJ, Mayer FJ: Scleral fibroblasts. Invest Ophthalmol Vis Sci 31: 2412, 1990.PubMedGoogle Scholar
  82. 82.
    Rao NA, Marak GE, Hidayat AA: Necrotizing scleritis: a clinicopathologic study of 41 cases. Ophthalmology 92: 1542, 1985.PubMedGoogle Scholar
  83. 83.
    Pitzalis C, Kingsley G, Lanchbury JS, Murphy J, Panayi G: Expression of HLA-DR, DQ and DP antigens and interleukin-2 receptor on synovial fluid T lymphocyte subsets in rheumatoid arthritis: evidence for “frustrated” activation. J Rheumatol 14: 662, 1987.PubMedGoogle Scholar
  84. 84.
    Zoschke D, Segall M: Dw subtypes of DR4 in rheumatoid arthritis: evidence for a preferential association with Dw4. Hum Immunol 15: 118, 1986.PubMedGoogle Scholar
  85. 85.
    Nepom GT, Byers P, Seyfried C, Healey LA, Wilske KR, Stage D, Nepom BS: HLA genes associated with rheumatoid arthritis: identification of susceptibility alleles using specific oligonucleotide probes. Arthritis Rheum 32: 15, 1989.PubMedGoogle Scholar
  86. 86.
    Robb JA: Virus—cell interactions: a classification of viruses causing human disease. Prog Med Virol 23: 51, 1977.PubMedGoogle Scholar
  87. 87.
    Wheelcock EE, Toy ST: Participation of lymphocytes in viral infections. Adv Immunol 16: 123, 1973.Google Scholar
  88. 88.
    Woodruff JF, Woodruff JJ: Lymphocyte interaction with viruses and virus-infected tissues. Prog Med Virol 19: 120, 1975.PubMedGoogle Scholar
  89. 89.
    Venables PJW: Infection and rheumatoid arthritis. Curr Opin Rheumatol 1: 15, 1989.PubMedGoogle Scholar
  90. 90.
    Phillips PE: Evidence implicating infectious agents in rheumatoid arthritis and juvenile rheumatoid arthritis. Clin Exp Rheumatol 6: 87, 1988.PubMedGoogle Scholar
  91. 91.
    Alspaugh MA, Henle G, Lennette ET, Henle W: Elevated levels of antibodies to Epstein—Barr virus antigens in sera and synovial fluids of patients with rheumatoid arthritis. J Clin Invest 67: 1134, 1981.PubMedGoogle Scholar
  92. 92.
    Slaughter L, Carson DA, Jensen FC, Holbrook TL, Vaughn JH: In vitro effects of Epstein—Barr virus on peripheral blood mononuclear cells from patients with rheumatoid arthritis and normal subjects. J Exp Med 148: 1429, 1978.PubMedGoogle Scholar
  93. 93.
    Yao QY, Rickinson AB, Gaston JS, Epstein cartilage proteoglycan. Arthritis Rheum MA: Disturbance of the Epstein—Barr virus—host balance in rheumatoid arthritis patients: a quantitative study. Clin Exp Immunol 64: 302, 1986.PubMedGoogle Scholar
  94. 94.
    Silverman SL, Schumacher HR: Antibodies AT, Zielinski CH, Menzel EJ, Smolen rheumatoid arthritis. Arthritis Rheum 24: 1465, 1981.Google Scholar
  95. 95.
    Roudier J, Petersen J, Rhodes GH, Luka J, Carson DA: Susceptibility to rheumatoid arthritis maps to a T-cell epitope shared by the HLA-Dw4 DR 13–1 chain and the Epstein— Barr virus glycoprotein gp110. Proc Natl Acad Sci USA 86: 5104, 1989.PubMedGoogle Scholar
  96. 96.
    Roudier J, Rhodes GH, Petersen J, Vaughan Mestecky J, Miller EJ: Presence of antiglycoprotein gp110, a molecular link between HLA-DR4, HLA-DR1, and rheumatoid arthritis. Scand J Immunol 27: 367, 1988.PubMedGoogle Scholar
  97. 97.
    Cohen BJ, Buckley MM, Clewley JP, Jones VE, Puttick AH, Jacoby RK: Human parvo virus infection in early rheumatoid and inflam matory arthritis. Ann Rheum Dis 45: 832, 1986.PubMedGoogle Scholar
  98. 98.
    Naides SJ, Field EH: Transient rheumatoid factor positivity in acute human parvovirus B19 infection. Arch Intern Med 148: 2587, 1988.PubMedGoogle Scholar
  99. 99.
    van Eden W, Thole JE, van der Zee R, Glant T, Hadhazy CS, Csernyanszky H: Cohen IR: Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature (London) 331: 171, 1988.Google Scholar
  100. 100.
    Tsoulfa G, Rook GA, van-Embden JDA, Mehlert A, Isenberg DA, Hay FC, Lydyard AP: Raised serum IgG and IgA anti bodies to mycobacterial antigens in rheumatoid arthritis. Ann Rheum Dis 48: 118, 1989.PubMedGoogle Scholar
  101. 101.
    Holoshitz J, Koning F, Coligan JE, DeBruyn J, Strober S: Isolation of CD4–CD8 mycobacteria-reactive T lymphocyte clones from rheumatoid arthritis synovial fluid. Nature (London) 339: 226, 1989.Google Scholar
  102. 102.
    Trentham DE, Townes AS, Kang AH, David JR: Humoral and cellular sensitivity to col lagen in type II collagen-induced arthritis in cartilage. J Biol Chem 262:3809Google Scholar
  103. 103.
    Eguro H, Goldner JL: Antigenic properties of chondromucoprotein and inducibility of experimental arthritis antichondromucoprotein immune globulin. J Bone Jt Surg 56A: 129, 1974.Google Scholar
  104. 104.
    Keiser H, Sandson JI: Immunodiffusion and formation in vitro. Biochim Biophys 17: 219, 1974.Google Scholar
  105. 105.
    Glant T, Hadas E, Nagy M: Cell-mediated and humoral immune responses to cartilage antigenic components. Scand J Immunol 9: 39, 1979.PubMedGoogle Scholar
  106. 106.
    Endler AT, Zielinski CH, Menzel EJ, Smolen JS, Schwägerl W, Endler M, Eberl R, Frank O, Steffen C: Leucocyte migration inhibition with collagen type I and collagen type III in rheumatoid arthritis and degenerative joint diseases. Z Rheumatol 37: 87, 1978.PubMedGoogle Scholar
  107. 107.
    Trentham DE, Dynesius RA, Rocklin RE, David JR: Cellular sensitivity to collagen in rheumatoid arthritis. N Engl J Med 299: 327, 1978.PubMedGoogle Scholar
  108. 108.
    Mestecky J, Miller EJ: Presence of antibodies specific to cartilage-type collagen in rheumatoid synovial tissue. Clin Exp Immunol 22: 453, 1975.PubMedGoogle Scholar
  109. 109.
    Glant T, Csongor, Szücs T. Immunopathologic role of proteoglycan antigens in rheumatoid joint disease. Scand J Immunol 11: 247, 1980.PubMedGoogle Scholar
  110. 110.
    van der Eerden JJJM, Broekhuyse RM: Ocular antigens. III. Localization of immunogenic determinants of structural glycoproteins from lens capsule, corneal stroma and sclera in connective tissues of the eye. Ophthal Res 5: 47, 1973.Google Scholar
  111. 111.
    Glant T, Hadhazy CS, Csernyanszky H: Species-common antigen of connective tissues. Acta Biol Acad Sci Hung 26: 197, 1975.PubMedGoogle Scholar
  112. 112.
    Perkins ES: The antigenic relationships of ocular and other tissues. Trans Ophthalmol Soc UK 83: 271, 1963.PubMedGoogle Scholar
  113. 113.
    van der Eerden JJJM, Brokhuyse RM: Ocular antigens. IV. A comparative study of the ocular structural glycoproteins in connective various organs. Ophthal Res 5: 65, 1973.Google Scholar
  114. 114.
    Coster L, Rosenberg LC, van der Rest M, Poole AR: The dermatan sulfate proteoglycans of bovine sclera and their relationship to those of articular cartilage. J Biol Chem 262: 3809, 1987.PubMedGoogle Scholar
  115. 115.
    Scott JE: Collagen—proteoglycan interactions rats. J Clin Invest Biochem J 187: 887, 1980.Google Scholar
  116. 116.
    Scott JE, Oxford CR: Dermatan sulphate-rich proteoglycan associates with rat tail-tendon collagen at the d band in the gap region. Biochem J 197: 213, 1981.PubMedGoogle Scholar
  117. 117.
    Birk DE, Lande MA: Corneal and scleral colgel-electrophoretic studies of human articular Acta 670: 362, 1981.Google Scholar
  118. 118.
    Vogel KG, Paulsson M, Heinegard D: Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J 223: 587, 1984.PubMedGoogle Scholar
  119. 119.
    Trentham DE, Townes AS, Kang AH: Auto-immunity to type II collagen: an experimental model of arthritis. J Exp Med 146: 857, 1977.PubMedGoogle Scholar
  120. 120.
    Trentham DE, Dynesius RA, David JR: Passive transfer by cells of type II collagen-induced arthritis in rats. J Clin Invest 62: 359, 1978.PubMedGoogle Scholar
  121. 121.
    Trentham DE, Dynesius RA, Rocklin RE, David JR: Cellular sensitivity to collagen in rheumatoid arthritis. New Engl J Med 299: 327, 1978.PubMedGoogle Scholar
  122. 122.
    Trentham DE, Townes AS, Kang AH, David JR: Humoral and cellular sensitivity to collagen in type II collagen-induced arthritis in rats. J Clin Invest 61: 89, 1978.PubMedGoogle Scholar
  123. 123.
    Trentham DE: Collagen arthritis as a relevant model for rheumatoid arthritis: Evidence pro and con. Arthritis Rheum 25: 911, 1982.PubMedGoogle Scholar
  124. 124.
    Möttönen T, Hannonen P, Oka M, Rautiainen J, Jokinen I, Arvilommi H, Palosuo T, Aho K: Antibodies against native type II collagen do not precede the clinical onset of rheumatoid arthritis. Arthritis Rheum 31: 776, 1988.PubMedGoogle Scholar
  125. 125.
    Jasin HE: Autoantibody specificities of immune complexes sequestered in articular cartilage of patients with rheumatoid arthritis and osteoarthritis. Arthritis Rheum 28: 241, 1985.PubMedGoogle Scholar
  126. 126.
    Hylkema HA, Kijlstra A: Ocular localization of preformed immune complexes. In O’Connor GR, Chandler JW (Eds): Advances in Immunology and Immunopathology of the Eye. Masson, New York, 1985.Google Scholar
  127. 127.
    Fauci A, Haynes B, Katz P: The spectrum of vasculitis: clinical, pathological, immunologic, and therapeutic considerations. Ann Intern Med 89: 660, 1978.PubMedGoogle Scholar
  128. 128.
    van Es LA, Dana MR, Valentijn RM, Kaufman RH: The pathogenic significance of circulating immune complexes. Neth J Med 27: 350, 1984.PubMedGoogle Scholar
  129. 129.
    Weiss A, Imboden J, Hardy K, Manger B, Terhorst C, Stobo J: The role of the T3/antigen receptor complex in T-cell activation. Annu Rev Immunol 4: 593, 1986.PubMedGoogle Scholar
  130. 130.
    Wooley DE: Mammalian collagenases. In Piez KA, Reddi AH (Eds): Extracellular Matrix Biochemistry. Elsevier, New York, 1984.Google Scholar
  131. 131.
    Gosline JM, Rosenbloom J: Elastin. In Piez KA, Reddi AH (Eds): Extracellular Matrix Biochemistry. Elsevier, New York, 1984.Google Scholar
  132. 132.
    Sandy JD, Brown HLG, Lowther DA: Degradation of proteoglycan in articular cartilage. Biochim Biophys Acta 543: 536, 1978.PubMedGoogle Scholar
  133. 133.
    Hakomori S, Fukuda M, Sekiguchi K, Carter WB: Fibronectin, laminin, and other extracellular glycoproteins. In Piez KA, Reddi AH (Eds): Extracellular Matrix Biochemistry. Elsevier, New York, 1984.Google Scholar
  134. 134.
    Herman JH, Wiltse DW, Dennis MV: Immunopathologic significance of cartilage antigenic components in rheumatoid arthritis. Arthritis Rheum 16: 287, 1973.PubMedGoogle Scholar
  135. 135.
    Inman RD, Hamilton NC, Redecha PB, Hochhauser DM: Electrophoretic transfer blotting analysis of immune complexes in rheumatoid arthritis. Clin Exp Immunol 63: 32, 1986.PubMedGoogle Scholar
  136. 136.
    Rapoport R, Kozin F, Mackel S, Jordon R: Cutaneous vascular immunofluorescence in rheumatoid arthritis. Am J Med 68: 325, 1980.PubMedGoogle Scholar
  137. 137.
    Jasin HE: Mechanism of trapping of immune complexes in joint collagenous tissues. Clin Exp Immunol 22: 473, 1975.PubMedGoogle Scholar
  138. 138.
    Theofilopoulos A: Evaluation and clinical significance of circulating immune complexes. Prog Clin Immunol 4: 63, 1980.PubMedGoogle Scholar
  139. 139.
    Gocke D, Hsu K, Morgan C, Bombarieri S, Lochshin M, Christain C: Association between polyarteritis and Australia antigen. Lancet 2: 1149, 1970.PubMedGoogle Scholar
  140. 140.
    Ronco P, Verrous T, Mignon F, Kourilsly D, Van Hille P, Meyrier A, Mery J, MorelMaroger L. Immunopathological studies of polyarteritis nodosa and Wegener’s granulomatosis. A report of 43 patients with renal biopsies. Q J Med 52: 121, 1983.Google Scholar
  141. 141.
    Howell S, Epstein W: Circulating immune complexes in Wegener’s granulomatosis. Am J Med 60: 259, 1976.PubMedGoogle Scholar
  142. 142.
    Horn R, Fauci A, Rosenthal A, Wolff S: Renal biopsy pathology in Wegener’s granulomatosis. Am J Pathol 74: 423, 1974.PubMedGoogle Scholar
  143. 143.
    Pinching A, Lokckwood C, Pussell BA, Rees A, Swaney P, Evans D, Bowley N, Peters D: Wegener’s granulomatosis: observations on 18 patients with severe renal disease. Q J Med 208: 435, 1983.Google Scholar
  144. 144.
    Shasby D, Schwarz M, Forstot J: Pulmonary immune complex deposition in Wegener’s granulomatosis. Chest 81: 338, 1982.PubMedGoogle Scholar
  145. 145.
    Pope RM, Teller DC, Mannik M: The molecular basis of self-association of antibodies to IgG (rheumatoid factor) in rheumatoid arthritis. Proc Natl Acad Sci USA 71: 517, 1974.PubMedGoogle Scholar
  146. 146.
    Pitzalis C, Kingsley G, Haskard D, Panayi G: The preferential accumulation of helper-inducer T lymphocytes in inflammatory lesions: evidence for regulation by selective endothelial and homotypic adhesion. Eur J Immunol 18: 1397, 1988.PubMedGoogle Scholar
  147. 147.
    van Boxel JA, Paget SA: Predominantly T-cell infiltrate in rheumatoid synovial membranes. N Engl J Med 293: 517, 1975.PubMedGoogle Scholar
  148. 148.
    Pitzalis C, Kingsley G, Lanchbury JS, Murphy J, Panayi G: Abnormal distribution of the helper-inducer and suppressor-induced T-lymphocyte subsets in the rheumatoid joint. Clin Immunol Immunopathol 45: 252, 1987.PubMedGoogle Scholar
  149. 149.
    Lasky HP, Bauer K, Pope RM: Increased helper inducer and decreased suppressor inducer phenotypes in the rheumatoid joint. Arthritis Rheum 31: 52, 1988.PubMedGoogle Scholar
  150. 150.
    Hembry RM, Playfair J, Watson PG, Dingle JT: Experimental model for scleritis. Arch Ophthalmol 97: 1337, 1979.PubMedGoogle Scholar
  151. 151.
    Christian C, Sargent J: Vasculitis syndromes: clinical and experimental models. Am J Med 61: 385, 1976.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • C. Stephen Foster
    • 1
  • Maite Sainz de la Maza
    • 2
  1. 1.Harvard Medical School, Immunology and Uveitis ServiceMassachusetts Eye and Ear InfirmaryBostonUSA
  2. 2.Central University of BarcelonaBarcelonaSpain

Personalised recommendations