Advertisement

Arithmetic of Quadratic Maps

  • Takashi Ono
Part of the The University Series in Mathematics book series (USMA)

Abstract

Let f: R nR m be a quadratic map. By definition there exist m quadratic forms f,... ,f m on R n such that
$$f(x) = ({f_1}(x),...,{f_m}(x)),x \in {R^n}$$
.

Keywords

Left Ideal Maximal Order Quaternion Algebra Quadratic Field Quadratic Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Artin, Abh. Math. Sem., 5, 261 (1928).CrossRefGoogle Scholar
  2. M. Deuring, Algebren, Ergeb. d. Math., 41, Springer, New York-Heidelberg-Berlin (1968).Google Scholar
  3. 3.
    L. E. Dickson, J. Math. Pures Appl, 2, 281 (1923).Google Scholar
  4. 4.
    M. Eichler, Quadratische Formen und orthogonale Gruppen, Die Grund, d. Math. Wiss., 63, Springer, New York-Berlin (1974).MATHCrossRefGoogle Scholar
  5. 5.
    K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Grad. Texts in Math., 84, Springer, New York-Heidelberg-Berlin (1990).MATHGoogle Scholar
  6. 6.
    L. J. Mordell, J. Math. Pures Appl, 17, 41 (1938).MATHGoogle Scholar
  7. 7.
    T. Ono, Sûgaku Exp., Amer. Math. Soc, 1, 95 (1988).MATHGoogle Scholar
  8. 8.
    I. Reiner, Maximal Orders, Academic Press, New York (1975).MATHGoogle Scholar
  9. 9.
    J.-P. Serre, Cours d’Arithmétique, Press. Univ. France (1970).MATHGoogle Scholar

Copyright information

© Takashi Ono 1994

Authors and Affiliations

  • Takashi Ono
    • 1
  1. 1.The Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations