Advertisement

Role of Metabotropic Glutamate Receptors in Neuronal Degeneration

  • Jitendra Patel
  • William C. Zinkand
Chapter
Part of the The Receptors book series (REC)

Abstract

Glutamate is believed to be the key mediator in neurodegenerative processes associated with stroke, epilepsy, and a broad spectrum of neurodegenerative disorders, including, Huntington’ s disease and Alzheimer disease (Choi, 1988; Beal, 1993). The elucidation of the underlying mechanism involved in the pathophysiology of glutamate has been the topic of intensive research. Although the role of glutamate-induced neurotoxicity in chronic neurodegenerative disease remains unclear, compelling evidence suggests that ischemia-triggered neuronal damage is largely attributed to excessive and persistent activation of glutamate receptors (for recent reviews, see Whetsell and Shapira, 1993; Choi, 1988; Beal, 1933). Because glutamate can produce both excitation and toxicity in neurons, the term “excitotoxicity” was proposed by Olney and coworkers (Olney et al., 1978). It is now widely believed that excessive elevation of intracellular calcium is an early and critical step in excitotoxicity (see Fig 1; and Rothman, 1984; Choi, 1988; Garthwaite and Garthwaite, 1986; Frandsen and Schousboe, 1993). In vivo evidence supporting a central role of calcium in excitotoxicity is derived from the observation that calcium accumulates in nervous tissue in cerebral ischemia (Siesjo and Bengtsson, 1989; Simon et al., 1984) and in epilepsy (Meyer, 1989; Uematsu et al., 1990), and that ischemic cell damage can be attenuated by suppression of calcium influx (Pizzi et al., 1991; Valentino et al., 1993) and chelation of intracellular calcium (Tymianski et al., 1993).

Keywords

Excitatory Amino Acid Metabotropic Glutamate Receptor Cerebellar Granule Cell Metabotropic Receptor Excitatory Amino Acid Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aniksztejn, L., Otani, S., and Ben-Ari, Y. (1992) Quisqualate metabotropic receptors modulate NMDA currents and facilitate induction of long-term potentiation through protein kinase C. Eur. J. Neurosci. 4, 500–504.PubMedCrossRefGoogle Scholar
  2. Beal, M. F. (1933) Mechanisms of excitotoxicity in neurological diseases. FASEB J. 6, 3338–3344.Google Scholar
  3. Birrell, G. J., Gordon, M. P., Schwarz, R. D., and Marcoux, F. W. (1993) Metabotropic glutamate receptor mediated attenuation of NMDA-induced neuronal cell death in cerebrocortical cultures. Functional Neurobiol. 8, 10, 11.Google Scholar
  4. Bruno, V. M. G., Copani, A., Battaglia, G., Marinozzi, M., Natalini, B., Pellicciari, R.,. Kozikowski, A. P., Giffard, R., Choi, D. W., and Nicoletti, F. (1993) Effects of mGluR activation on different degenerative processes in cultured cells. Functional Neurobiol. 8, 10, 11.Google Scholar
  5. Chiamulera, C., Albertini, P., Valerio, E., and Reggiani, A. (1992) Activation of metabotropic receptors has a neuroprotective effect in a rodent model of focal ischaemia Eur. J. Pharmacol. 216, 335, 336.Google Scholar
  6. Choi, D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623–634.PubMedCrossRefGoogle Scholar
  7. Connor, J. A. and Tseng, H. Y. (1988) Measurement of intracellular Caz+ in cerebellar Purkinje neurons in cultures: resting distribution and response to glutamate. Brain Res. Bull. 21, 353–361.PubMedCrossRefGoogle Scholar
  8. Dubek, S. M., Bowen, W. D., and Bear, M. F. (1989) Postnatal changes in stimulated phosphoinositide turnover in rat neorcortical synaptoneurosomes. Dey. Brain Res. 47, 123–128.CrossRefGoogle Scholar
  9. Evans, M. C., Griffiths, T., and Meldrum, B. S. (1983) Early light changes in the rat 4hippocampus following seizures induced by bicuculline or L-allyglycine. Alight microscope study. Neuropathol. Appl. Neurobiol. 9, 39–52.PubMedCrossRefGoogle Scholar
  10. Fagni, L., Bossu, J. L., and Bockaert, J. (1991) Activation of a large conductance Cat+-dependent K+ channel by stimulation of glutamate phosphoinositide-coupled receptors in cultured cerebellar granule cells. Eur. J. Neurosci. 3, 778–789.PubMedCrossRefGoogle Scholar
  11. Favaron, M., Manev, R. M., Candeo, P., Arban, R., Gabellini, N., Kozikowski, A. P., and Manev, H. (1993) Trans-azetidine-2,4-dicarboxylic acid activates neuronal metabotropic receptors. NeuroReport 4, 967–970.Google Scholar
  12. Felipo, V., Minana, M.-D., and Grisolia, S. (1993) Inhibitors of protein kinase prevent the toxicity of glutamate in primary neuronal cultures. Brain Res. 604, 192–196.PubMedCrossRefGoogle Scholar
  13. Fix, A. S., Schoepp, D. D., Olney, J. W., Vestre, W. A., Griffey, K. I., Johnson, J. A., and Tizzano, J. P. (1993) Neonatal exposure to D,L-2-amino-3-phosphonpropionate (D,L-AP3) produces lesions in the eye and optic-nerve of adult-rats. Del). Brain Res. 75, 223–233.CrossRefGoogle Scholar
  14. Frandsen, A. and Schousboe, A. (1991) Dantrolene prevents glutamate neurotoxicity and Caz+ release from intracellular stores. J. Neurochem. 56, 1075–1078.PubMedCrossRefGoogle Scholar
  15. Frandsen A., and Schousboe, A. (1993) Excitatory amino acid-mediated cytotoxicity and calcium homeostasis in cultured neurons. J. Neurochem. 60, 1202–1211.PubMedCrossRefGoogle Scholar
  16. Garthwaite, G. and Garthwaite, J. (1986) Neurotoxicity of excitatory amino acid receptor agonists in rat cerebellar slices: dependence on calcium concentration. Neurosci. Lett. 66, 193–198.PubMedCrossRefGoogle Scholar
  17. Garthwaite, G. and Garthwaite, J. (1989a) Differential dependence on Cat+ of Nmethyl-D-aspartate and quisqualate neurotoxicity in young rat hippocampal slices. Neurosci. Lett. 97, 316–322.PubMedCrossRefGoogle Scholar
  18. Garthwaite, G. and Garthwaite, J. (1989b) Quisqulate neurotoxicity: a delayed, CNQX-sensitive process triggered by a CNQX-insensitive mechanism in young rat hippocampal slices. Neurosci. Lett. 99, 113–118.PubMedCrossRefGoogle Scholar
  19. Harvey, J., and Collingride, G. L (1993) Signal transduction pathways in the acute potentiation of NMDA responses by 1S,3R-ACPD in rat hippocampal slices. Br. J. Pharmacol. 109, 1085–1090.PubMedCrossRefGoogle Scholar
  20. Hoffmann, M., Hartley, M., and Heinemann, S. (1991) Calcium permeability of KAAMPA-gated glutamate receptor channels depends on subunit composition. Science 252, 851–853.CrossRefGoogle Scholar
  21. Irving, A. J., Collingride, G. L., and Schofield, J. G. (1992) Interactions between Cat+ mobilizing mechanisms in cultured rat cerebellar granule cells. J. Physiol. 456, 667–680.PubMedGoogle Scholar
  22. Judge, M. E., Sheardown, M. J., Jacobsen, P., and Honore, T. (1991) Protection against post-ischemic behavioral pathology by the alpha-amino-3-hydroxy-5-methyl-4isoxazolepropionic acid (AMPA) antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX) in the gerbil. Neurosci. Lett. 133, 291–294.PubMedCrossRefGoogle Scholar
  23. Kelso, S. R., Nelson, T. E., and Leonard, J. P. (1992) Protein kinase C-mediated enhancement of NMDA currents by metabotropic glutamate receptors in xenopus oocytes. J. Physiol. (Lond.) 449, 705–718.Google Scholar
  24. Koh, J.-K., Goldberg, M. P., Hartley, D. M., and Choi, D. W. (1990) Non-NMDA receptor-mediated neurotoxicity in cortical culture. J. Neurosci. 10, 693–705.PubMedGoogle Scholar
  25. Koh, J. Y., Palmer, E., and Cotman, C. W. (1991) Activation of the metabotropic glutamate receptor attenuates N-methyl-aspartate neurotoxicity in cortical cultures. Proc. Natl. Acad. Sci. USA 88, 9431–9435.PubMedCrossRefGoogle Scholar
  26. Lipartiti, M., Fadda, E., Savoini, G., Siliprandi, R., Sautter, J., Arban, R., and Manev, H. (1993) In rats, the metabotropic glutamate receptors-triggered hippocampal neuronal damage is strain-dependent. Life Sci. 52, PL85–90.Google Scholar
  27. Mayer, M. L. and Miller, R. J. (1991) Excitatory amino acid receptors, second messengers and regulation of intracellular calcium in mammalian neurons. Trends Pharm. Sci. 11, 36–42.Google Scholar
  28. McCaslin, P. P. and Smith, T. G. (1988) Quisqualate, high calcium concentration and zero-chloride prevent kainate-induced toxicity of cerebellar granule cells. Eur. J. Pharmacol. 152, 341–346.PubMedCrossRefGoogle Scholar
  29. McDonald, J. W. and Schoepp, D. D. (1992) The metabotropic excitatory amino acid receptor agonist 1S,3R-ACPD selectively potentiates N-methyl-o-aspartate-induced brain injury. Eur. J. Pharmacol. 215, 353, 354.Google Scholar
  30. McDonald, J. W., Fix, A. S., Tizzano, J. P., and Schoepp, D. D. (1993) Seizures and brain injury in neonatal rats induced by 1S,3R-ACPD, a metabotropic glutamate receptor agonist. J. Neurosci. 13, 4445–4455.PubMedGoogle Scholar
  31. Meldrum, B. S. and Garthwaite, J. (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease. Trend Pharm. Sci. 11, 379–387.CrossRefGoogle Scholar
  32. Meyer, F. B. (1989) Calcium, neuronal hyperexcitability and ischemic injury. Brain Res. Rev. 14, 227–243.PubMedCrossRefGoogle Scholar
  33. Mount, H. T. J., Dreyfus, C. F, and Black, I. B. (1993) Purkinje cell survival is differentially regulated by metabotropic and ionotropic excitatory amino acid receptors. J. Neurosci. 13, 3173–3179.PubMedGoogle Scholar
  34. Murphy, S. N. and Miller, R. J. (1988) A glutamate receptor regulates Ca’ mobilization in hippocampal neurons. Proc. Natl. Acad. Sci. USA 85, 8737–8741.PubMedCrossRefGoogle Scholar
  35. Nicholls, D. G. (1993) The glutamatergic nerve terminal. Eur. J. Biochem. 212, 613–631.PubMedCrossRefGoogle Scholar
  36. Nicoletti, F., Iadarola, M. J., Wroblewski, J. T, and Costa, E. (1986) Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: Developmental changes and intereaction with alpha-1 adrenoceptors. Proc. Natl. Acad. Sci. USA 83, 1931–1935.PubMedCrossRefGoogle Scholar
  37. Olney, J. W. (1978) Neurotoxicity of excitatory amino acids, in Kainic Acid as a Tool in Neurobiology, ( McGeer, E. G., Olney, J. W., and McGeer, P. L., eds.) Raven, New York, pp. 1–15.Google Scholar
  38. Olney, J. W., Price, M. T., Izumi, Y., and Romano, C. (1993) Neurotoxicity associated with either supression or excessive stimulation of mGluR function. Lab. Invest. 68, 38, 39.Google Scholar
  39. Opitz, T., Hartmann, P., Richter, P., and Reymann, K. (1993) Metabotropic glutamate receptors are involved in hypoxic and ischemic injury of hippocampal CA1 neurons in vitro. Functional Neurobiol. 8, 39, 40.Google Scholar
  40. Palmer, E., Nangel-Taylor, K., Krause, J. D., Roxas, A., and Cotman, C. W. (1990) Changes in excitatory amino acid modulation of phosphoinositide metabolism during development. Dev. Brain Res. 51, 132–134.CrossRefGoogle Scholar
  41. Pizzi, M., Fallacara, C., Arrighi, V., Memo, M., and Spano, P. (1993) Attenuation of excitatory amino acid toxicity by metabotropic glutamate receptor agonists and aniracetam in primary cultures of cerebellar granule cells. J. Neurochem. 61, 683–689.PubMedCrossRefGoogle Scholar
  42. Pizzi, M. Ribola, M., Valerio, A., Memo, M., and Spano, P. F. (1991) Various Ca“ entry blockers prevent glutamate-induced neurotoxicity. Eur. J. Pharmacol. 109, 169–173.CrossRefGoogle Scholar
  43. Prehn, J. H. M., Backhaub, C., Karkoutly, C. Nuglisch, J. Peruche, B., Roberg, C., and Krieglstein, J. (1991) Neuroprotective properties of 5-HTla receptor agonists in rodent models of focal and global cerebral ischemia. Eur. J. Pharmacol. 203, 213–222.Google Scholar
  44. Randall, A. D., Wheeler, D. B., and Tsien, R. W. (1993) Modulation of Q-type Ca’ channels and Q-type channel-mediated synaptic transmission by metabotropic and other G-protein linked receptors. Functional Neurobiol. 8, 44, 45.Google Scholar
  45. Rothman, S. M. (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J. Neurochem. 4, 1884–1891.Google Scholar
  46. Rudolphi, K. A., Schubert, P., Parkinson, F. E., and Fredholm, B. B. (1992) Neuroprotective role of adenosine in cerebral ischemia. Trends Pharm. Sci. 13, 439–445.PubMedCrossRefGoogle Scholar
  47. Saccan, A. I. and Schoepp, D. D. (1992) Activation of hippocampal metabotropic excitatory amino acid receptors leads to seizures and neuronal damage. Neurosci. Lett. 139, 77–82.CrossRefGoogle Scholar
  48. Sahara, Y. and Westbrook, G. L. (1993) Modulation of calcium currents by a metabotropic glutamate receptor involves fast and slow kinetic components in cultured hippocampal neurons. J. Neurosci. 13, 3041–3050.PubMedGoogle Scholar
  49. Schwartz, R. D., Birrell, G. J., and Marcoux, F. W. (1993) Involvement of metabotropic glutamate receptors in glutamate-induced neurotoxicity using rat cerebrocortical cultures. Functional Neurobiol. 8, 50, 51.Google Scholar
  50. Siesjo, B. K. and Bengtsson, F. (1989) Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J. Cereb. Blood Flow Metab. 9, 127–140.PubMedCrossRefGoogle Scholar
  51. Siliprandi. R., Lipartiti, M., Fadda, E., Sautter, J., and Manev, H. (1992) Activation of the glutamate metabotropic receptor protects retina against N-methyl-D-aspartate toxicity 1S,3R-ACPD ((1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid) metabotropic glutamate receptors excitotoxicity. Eur. J. Pharmacol. 219, 173, 174.Google Scholar
  52. Silverstein, F. S., Chen, R, and Johnston, M. V. (1986) The glutamate analogue quisqualic acid is neurotoxic in striatum and hippocampus of immature rat brain. Neurosci. Lett. 71, 13–18.PubMedCrossRefGoogle Scholar
  53. Simon, R. P., Griffiths, T., Evans, M. C., Swan, J. H., and Meldrum, B. S. (1984) Calcium overload in selectively vulnerable neurons of the hippocampus during and after ischemia: an electron microscopy study in the rat. J. Cereb. Blood Flow Metab. 4, 350–361.PubMedCrossRefGoogle Scholar
  54. Sloviter, R. S. and Dempster, D. W. (1985) Epileptic brain damage is replicated qualitatively in the rat hippocampus by central injection of glutamate or aspartate but not by GABA or acetylcholine. Brain Res. Bull. 15, 39–60.PubMedCrossRefGoogle Scholar
  55. Tymianski, M., Wallace, M. C., Spigelman, I., Uno, M., Carlen, P. L., Tator, C. H., and Charlton, M. P. (1993) Cell-permeant calcium chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo. Neuron 11, 221–235.PubMedCrossRefGoogle Scholar
  56. Valentino K., Newcomb, R., and Gadbois, T. (1993) A selective N-type calcium channel antagonist protects against neuronal loss after global ischemia. Proc. Natl. Acad. Sci. USA 90, 7894–7897.PubMedCrossRefGoogle Scholar
  57. Zinkand, W. C., DeFeo, P. A., Thompson, C., Hargrove, H., Salama, A. I., and Patel, J. (1992) Quisqualate neurotoxicity in rat cortical cultures: pharmacology and mechanisms. Eur. J. Pharm. 212, 129–136.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Jitendra Patel
  • William C. Zinkand

There are no affiliations available

Personalised recommendations