Advertisement

Plasticity of Metabotropic Glutamate Receptors in Physiological and Pathological Conditions

  • F. Nicoletti
  • E. Aronica
  • G. Battaglia
  • V. Bruno
  • G. Casabona
  • M. V. Catania
  • A. Copani
  • A. A. Genazzani
  • M. R. L’Episcopo
  • D. F. Condorelli
Chapter
Part of the The Receptors book series (REC)

Abstract

Information on native mGluRs has been provided by studies performed in brain slices, synaptoneurosomes, and primary cultures of neurons or astrocytes. In brain slices, mGluRs are either coupled to phosphatidylinositol (PI) turnover (mGluRPI) (Nicoletti et al., 1986a; Schoepp and Johnson, 1988) or negatively linked to adenylyl cyclase activity (mG1uR↓cAMP) (Cartmell et al., 1992; Schoepp et al., 1992; Genazzani et al., 1993). Recently, two independent groups have shown that mGluR agonists activate phospholipase D (Boss and Conn, 1993; Holler et al., 1993), a process that generates large amounts of diacylglycerol as a result of phosphatidylcholine hydrolysis and phosphatidic acid formation. The selective mGluR agonist (1S, 3R)-1-aminocyclopentane-1, 3-dicarboxylic acid (1S, 3R-ACPD) potentiates cAMP responses to agonists of Gs-coupled receptors, and increases basal cAMP formation (Winder and Conn, 1992), by potentiating the response to endogenous adenosine acting at A2 purinergic receptors (Winder and Conn, 1993; Cartmell et a1., 1993; see Chapter 3).

Keywords

Brain Slice Excitatory Amino Acid Metabotropic Glutamate Receptor Cerebellar Granule Cell Metabotropic Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, T., Sugihara, H., Nawa, H., Shigemoto, R., and Nakanishi, S. (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J. Biol. Chem. 267, 13, 361.Google Scholar
  2. Akijama, K., Norihito, Y., and Mitsumoto, S. (1987) Increase in ibotenate-stimulated phosphatidylinositol hydrolysis in slices of the amygdala/pyriform cortex and hippocampus of rats by amygdala kindling. Exp. Neurol. 98, 499–508.CrossRefGoogle Scholar
  3. Aniksztein, L., Bregestovski, P., and Ben-Ari, Y. (1991) Selective activation of quisqualate metabotropic receptor potentiates NMDA but not AMPA responses. Eur. J. Pharmacol. 205, 327, 328.Google Scholar
  4. Aronica, E., Frey, U., Wagner, M., Schroeder, H., Krug, M., Ruthrich, H., Catania, M. V., Nicoletti, F., and Reymann, K. G. (1991) Enhanced sensitivity of “metabotropic” glutamate receptors after induction of long-term potentiation in rat hippo-campus. J. Neurochem. 51, 725–729.Google Scholar
  5. Aronica, E., Condorelli, D. F., Nicoletti, F., Dell’Albani, P., Amico, C., and Balzs, R. (1993a) Metabotropic glutamate receptors in cultured cerebellar granule cells: developmental profile. J. Neurochem. 60, 559–565.PubMedCrossRefGoogle Scholar
  6. Aronica, E., Nicoletti, F., Condorelli, D. F., and Balazs, R. (1993b) Pharmacological characterization of metabotropic glutamate receptors in cultured cerebellar granule cells. Neurochem. Res. 18, 605–612.PubMedCrossRefGoogle Scholar
  7. Aronica, E., Dell’ Albani, P., Condorelli, D. F., Nicoletti, F., Hack, N., and Balazs, R. (1993c) Mechanisms underlying developmental changes in the expression of metabotropic glutamate receptors in neuronal culture. Mol. Pharmacol. 44, 981989.Google Scholar
  8. Balazs, R., Gallo, V., and Kingsbury, A. (1988) Effect of depolarization on the matu- ration of cerebellar granule cells in culture. Dey. Brain Res. 468, 269–273.CrossRefGoogle Scholar
  9. Bashir, Z.I., Sunter, D.C., Watkins, J. C., and Collingridge, G. L. (1993) Metabotropic glutamate receptors contribute to the induction of long-term depression in the CA1 region of the hippocampus. Eur. J. Pharmacol. 239, 265, 266.Google Scholar
  10. Behnish, T., Fedorov, K., and Reymann, K. G. (1991) L-2-Amino-3-phosphonopropionate blocks late synaptic long-term potentiation. NeuroReport 2, 386–388.Google Scholar
  11. Ben-Ari, Y. (1993) Metabotropic receptors and synaptic plasticity: a gating mechanism for the induction of LTP. Abstract presented at the International Meeting on Function and Regulation of Metabotropic Glutamate Receptors, September 1923, Taormina, Italy. Functional Neurology (suppl. 4 ), 10.Google Scholar
  12. Bessho, Y., Nawa, H., and Nakanishi, S. (1993) Glutamate and quisqualate regulate expression of metabotropic glutamate receptor mRNA in cultured cerebellar granule cells. J. Neurochem. 60, 253–259.PubMedCrossRefGoogle Scholar
  13. Boss, V. and Conn, P. J. (1993) Coupling of metabotropic excitatory amino acid receptors to phospholipase D: a novel pathway for generation of second messenger. Abstract presented at the International Meeting on Function and Regulation of Metabotropic Glutamate Receptors, September 19–23, Taormina, Italy. Functional Neurology (suppl. 4 ), 12.Google Scholar
  14. Cartmell, J., Kemp, J. A., Alexander, S. P. H., Hill, P. H., and Kendall, D. A. (1992) Inhibition of forskolin-stimulated cAMP formation by 1-aminocyclopentanetrans-1, 3-dicarboxylate in guinea pig cerebral cortical slices. J. Neurochem. 58, 1964–1966.PubMedCrossRefGoogle Scholar
  15. Cartmell, J., Kemp, J. A., Alexander, S. P. H., and Kendall, D. A. (1993) Endogenous adenosine regulates the apparent efficacy of 1-amino-cyclopentyl-1S, 3Rdicarboxylate inhibition of forskolin-stimulated cyclic AMP accumulation in rat cerebral cortical slices. J. Neurochem. 60, 780–782.PubMedCrossRefGoogle Scholar
  16. Casabona, G., Genazzani, A. A., Di Stefano, M., Sortino, M. A., and Nicoletti, F. (1992) Developmental changes in the modulation of cyclic AMP formation by the metabotropic glutamate receptor agonist 1 S, 3R, aminocyclpentane-l, 3-dicarboxylic acid in brain slices. J. Neurochem. 59, 1161–1163.PubMedCrossRefGoogle Scholar
  17. Catania, M. V., Landwehrmeyer, B., Standaert, D., Testa, C., Penney, J. B., and Young, A. B. (1993) Differential expression patterns of metabotropic glutamate receptor mRNAs and binding sites in developing and adult rat brain. Abstract presented at the International Meeting on Function and Regulation of Metabotropic Glutamate Receptors, September 19–23, Taormina, Italy. Functional Neurology (suppl. 4 ), 15.Google Scholar
  18. Cha, J.-H. J., Makowiec, R. L., Penney, J. B., and Young, A. B. (1990) AP3 and LBMAA displace [3H]glutamate binding to the metabotropic receptor. Abstract 231.19 presented at annual meeting of the American Society for Neuroscience, October 28—November 2, St. Louis, MO.Google Scholar
  19. Chen, C. K., Silverstein, F. S., Fisher, S. K., Statman, D., and Johnston, M. V. (1988) Perinatal hypoxic-ischemic injury enhances quisqualic acid-stimulated phosphoinositide turnover. J. Neurochem. 51, 353–359.PubMedCrossRefGoogle Scholar
  20. Condorelli, D. F., Ingrao, F., Magri, G., Bruno, V., Nicoletti, F., and Avola, R. (1989a) Activation of excitatory amino acid receptors reduces thymidine incorporation and cell proliferation rate in primary cultures of astrocytes. Glia 2, 67–69.PubMedCrossRefGoogle Scholar
  21. Condorelli, D. F., Kaczmarek, L., Nicoletti, F., Arcidiacono, A., Dell’Albani, P., Ingrao, F., Magri, G., Malaguamera, L., Avola, R., Messina, A., and Giuffrida, A. M. (1989b) Induction of protooncogene fos by extracellular signal in primary glial cell cultures. J. Neurosci. Res. 23 (2), 234–239.PubMedCrossRefGoogle Scholar
  22. Condorelli, D. F., Dell’ Albani, P., Amico, C., Casabona, G., Genazzani, A. A., Sortino, M. A., and Nicoletti, F. (1992) Developmental profile of metabotropic glutamate receptor mRNA in rat brain. Mol. Pharm. 41, 660–664.Google Scholar
  23. Copani, A., Canonico, P. L., and Nicoletti, F. (1990) Beta-N-methylamino-L-alanine (L-BMAA) is a potent agonist of “metabolotropic” glutamate receptors. Eur. J. Pharmacol. 181, 327–328.PubMedCrossRefGoogle Scholar
  24. Copani, A., Canonico, P. L., Catania, M. V., Aronica, E., Bruno, V., Ratti, E., van Amsterdam, F. T. M., Gaviraghi, G., and Nicoletti, F. (1991) Interaction between 13-N-methylamino-L-alanine and excitatory amino acid receptors in brain slices and neuronal cultures. Brain Res. 558, 79–86.PubMedCrossRefGoogle Scholar
  25. Dewar, D., Chalmers, D. T., Graham, D. I., and Mc Culloch, J. (1991) Glutamate metabotropic and AMPA binding sites are reduced in Alzheimer’s disease: an autoradiographic study of the hippocampus. Brain Res. 553, 58–64.PubMedCrossRefGoogle Scholar
  26. Dudek, S. M. and Bear, M. F. (1989) A biochemical correlate of the critical period for synaptic modification in the visual cortex. Science 246, 673–675.PubMedCrossRefGoogle Scholar
  27. Eaton, S. A., Jane, D. E., Jones, P. L. St. J., Porter, R. H. P., Pook, P. C.-K, Sunter, D. C., Udvarhelyi, P. M., Roberts, P. J., Salt, T. E., and Watkins, J. C. (1993) Competitive antagonism at metabotropic glutamate receptors by (S)-4-carboxypheylglycine (CPG) and (RS)-a-methyl-4-carboxyphenylglycine (MCPG). Eur. J. Pharmacol. 244, 195–197.PubMedCrossRefGoogle Scholar
  28. Favaron, M., Rimland, J. M., and Manev, H. (1992) Depolarization–and agonistregulated expression of neuronal metabotropic glutamate receptor 1 (mGluR1). Life Sci. 50, 189–194.CrossRefGoogle Scholar
  29. Forscher, P. (1989) Calcium and polyphosphoinositide control of cytoskeleton dynamics. Trends Neurosci. 12, 468–474.PubMedCrossRefGoogle Scholar
  30. Gallo, V., Kingsbury, A., Balazs, R., and Jorgensen, O. S. (1987) The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J. Neurosci. 7, 2203–2213.PubMedGoogle Scholar
  31. Genazzani, A. A., Casabona, G., L’Episcpo, M. R., Condorelli, D. F., Dell’Albani, P., Shinozaki, H., and Nicoletti, F. (1993) Characterization of metabotropic glutamate receptors negatively linked to adenylyl cyclase in brain slices. Brain Res. 622, 132–138.PubMedCrossRefGoogle Scholar
  32. Guiramand, J., Sassetti, I., and Recasens, M. (1989) Developmental changes in the chemsensitivity of rat brain synaptoneursomes to excitatory amino acids estimated by inositol phosphate formation. Int. J. Dey. Neurosci. 7, 257–266.CrossRefGoogle Scholar
  33. Harvey, J., Frenguelli, B. G., Watkins, J. C., and Collingridge G. L. (1991) The actions of 1S, 3R-ACPD, a glutamate metabotropic receptor agonist, in area CA1 of rat hippocampus. Br. J. Pharmacol. 104, C79.Google Scholar
  34. Hayashi, Y., Moueryame, A., Takahashi, T., Ohishi, H., Ojawa-Meyuro, R., Shigemoto, R., Mizuno, M., and Nakamishi, S. (1993) Role of metabotropic glutamate receptor in synaptic modulation in the accessory olfactory bulb. Nature 366, 687–690.PubMedCrossRefGoogle Scholar
  35. Herrero, I., Miras-Portugal, M. T., and Sanchez-Prieto, J. (1992) Positive feedback of glutamate exocytosis by metabotropic receptor stimulation. Nature 360, 163–166.Google Scholar
  36. Holler, T., Klein, J., and Loffelholz, K. (1993) Glutamate activates phospholipase D in rat hippocampus. Abstract presented at the International Meeting on Function and Regulation of Metabotropic Glutamate Receptors, September 19–23, Taormina, Italy. Functional Neurology (suppl. 4 ), 26.Google Scholar
  37. Iadarola, M. J., Nicoletti, F., Naranjo, J. R., and Costa, E. (1986) Kindling enhances the stimulation of inositol phospholipid hydrolysis elicited by ibotenic acid in rat hippocampus. Brain Res. 374, 174–178.CrossRefGoogle Scholar
  38. Iversen, L., Mulvihill, E., Haldeman, B., and Kristensen, P. (1993) Metabotropic glutamate receptor subtype expression pattern in the rat brain analysed by in situ hybridisation. Abstract presented at the International Meeting on Function and Regulation of Metabotropic Glutamate Receptors, September 19–23, Taormina, Italy. Functional Neurology (suppl. 4 ), 27.Google Scholar
  39. Izumi, Y., Clifford, D. B., and Zorumski, C. F. (1991) 2-amino-3-phosphonopropionate blocks the induction and maintenance of long-term potentiation in rat hippocampal slices. Neurosci. Lett. 122, 187–190.Google Scholar
  40. Jensen, A. M. and Chiu, S. Y. (1990) Fluorescence measurement of changes in intracellular calcium induced by excitatory amino acids in cultured cortical astrocytes. J. Neurosci. 10, 1165–1175.PubMedGoogle Scholar
  41. Kelso, S. R., Nelson, T. E., and Leonard, J. P. (1992) Protein kinase C-mediated enhancement of NMDA currents by metabotropic glutamate receptors in Xenopus oocytes. J. Physiol. Lond. 449, 705–718.PubMedGoogle Scholar
  42. Klitgaard, H. and Jackson, H. C. (1993) Central administration of L-amino-3phosphoro-propionate (L-AP3) inhibits audiogenic seizures in DBA/2 mice. Abstract presented at the International Meeting on Function and Regulation of Metabotropic Glutamate Receptors, September 19–23, Taormina, Italy. Functional Neurology (suppl. 4 ), 28.Google Scholar
  43. Lin, W. W., Lee, C. Y., and Chuang, D. M. (1991) Endothelin-and sarafotoxininduced phosphoinositide hydrolysis in cultured cerebellar granule cells: biochemical and pharmacological characterization. J. Pharmacol. Exp. Ther. 257, 1053–1061.PubMedGoogle Scholar
  44. Littman, L., Munir, M., Flagg, S. D., and Robinson, M. B. (1992) Multiple mechanisms for inhibition of excitatory amino acid receptors coupled to phosphoinositide hydrolysis. J. Neurochem., 59.Google Scholar
  45. Littman, L., Glatt, B. S., Pritchett, D. B., and Robinson, M. B. (1993) Differentiation of metabotropic receptors using L-aspartate-b-hydroxamate (L-AbHA). Abstract presented at the International Meeting on Function and Regulation of Metabotropic Glutamate Receptors, September 19–23, Taormina, Italy. Functional Neurology (suppl. 4 ), 30.Google Scholar
  46. Masu, M., Tanabe, Y., Tsuchida, K., Shigemoto, R., and Nakanishi, S. (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349, 760–765.PubMedCrossRefGoogle Scholar
  47. Milani, D., Facci, L., Guidolin, D., Leon, A., and Skaper, S. D. (1989) Activation of polyphosphoinositide metabolism as a signal-transducing system coupled to excitatory amino acid receptors in astroglial cells. Glia 2, 161–169.PubMedCrossRefGoogle Scholar
  48. Miller, S., Cotman, C. W., and Bridges, R. (1992) 1-aminocyclopentane-trans-1, 3dicarboxylic acid induces glutamine synthetase activity in cultured astrocytes. J. Neurochem. 58, 1967–1970.Google Scholar
  49. Miller, S., Bridges, R. J., and Cotman, C. W. (1993) Regulation of glutamate metabotropic signal transduction in cultured astrocytes. Abstract presented at the International Meeting on Function and Regulation of Metabotropic Glutamate Receptors, September 19–23, Taormina, Italy. Functional Neurology (suppl. 4 ), 59.Google Scholar
  50. Nakagawa, Y., Saito, K., Ishihara, T., Ishida, M., and Shinozaki, H. (1990) (2S, 3S, 4S)a-(carboxycyclopropyl)glicine is a novel agonist of metabotropic glutamate receptors. Eur. J. Pharmacol. 184, 205–206.Google Scholar
  51. Nakanishi, S. (1992) Molecular diversity of glutamate receptors and implication for brain function. Science 258, 597–603.PubMedCrossRefGoogle Scholar
  52. Nicoletti, F., Iadarola, M. J., Wroblewski, J. T., and Costa, E. (1986a) Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with al-adrenoceptors. Proc. Natl. Acad. Sci. USA 83, 1931–1935.PubMedCrossRefGoogle Scholar
  53. Nicoletti, F., Wroblewski, J. T., Iadarola, M. J., and Costa, E. (1986b) Serine-0-phosphate, an endogenous metabolite, inhibits the stimulation of inositol phospholipid hydrolysis elicited by ibotenic acid in rat hippocampal slices. Neuropharmacology 25, 335–338.PubMedCrossRefGoogle Scholar
  54. Nicoletti, F., Wroblewski, J. T., Alho, H., Eva, C., Fadda, E., and Costa, E. (1987) Lesions of putative glutamatergic pathways potentiate the increase of inositol phospholipid hydrolysis elicited y excitatory amino acids. Brain Res. 436, 103–109.PubMedCrossRefGoogle Scholar
  55. Nicoletti, F., Valerio, C., Pellegrino, C., Drago, F., Scapagnini, U., and Canonico, P. L. (1988) Spatial learning potentiates the stimulation of phosphoinositide hydrolysis by excitatory amino acids in rat hippocampal slices. J. Neurochem. 51, 725–729.PubMedCrossRefGoogle Scholar
  56. Nicoletti, F., Magri, G., Ingrao, F., Bruno, V., Catania, M. V., Dell’Albani, P., Condorelli, D. F., and Avola, R. (1990) Excitatory amino acids stimulate inositol phospholipid hydrolysis and reduces proliferation in cultured astrocytes. J. Neurochem. 54, 771–777.PubMedCrossRefGoogle Scholar
  57. Nicoletti, F., Casabona, G., Genazzani, A. A., L’Episcopo, M. R., and Shinozaki, H. (1993) (2S, FR, TR, 3’R)-2-(2, 3-dicarboxycyclopropil)glycine enhances quisqualate stimulated inositol phospholipid hydrolysis in hippocampal slices. Eur. J. Pharmacol. (Mol. Pharmacol. Sec.) 245, 297, 298.Google Scholar
  58. Ninomiya, H., Taniguchi, T., and Fujiwara, M. (1990) Phosphoinositide breakdown in rat hippocampal slices: sensitivity to glutamate induced by in vitro anoxia. J. Neurochem. 55, 1001–1007.PubMedCrossRefGoogle Scholar
  59. Ohfune, Y., Shimamoto, K., Ishida, M., and Shinozaki, H. (1993) Synthesis of L-2(2, 3-dicarboxycyclopropil)glycines. Novel conformationally restricted glutamate analog. Bioorg. Med. Chem. Lett. 3, 15.Google Scholar
  60. Pearce, B., Morrow, C., and Murphy, S. (1986) Receptor-mediated inositol phospholipid hydrolysis in astrocytes. Eur. J. Pharmacol. 121, 231–243.PubMedCrossRefGoogle Scholar
  61. Pellegrini-Giampietro, D. E., Zukin, R. S., Bennett, M. V. L., Cho, S. H., and Pulsinelli, W. A. (1992) Switch in glutamate receptor subunit gene expression in CA1 sub-field of hippocampus following global ischemia in rats. Proc. Natl. Acad. Sci. USA 89, 10499–10503.PubMedCrossRefGoogle Scholar
  62. Pizzi, M., Fallacara, C., Arrighi, V., Memo, M., and Spano, P. F. (1993) Attenuation of excitatory amino acid toxicity by metabotropic glutamate receptor agonists and aniracetam in primary cultures of cerebellar granule cells. J. Neurochem. 61, 683–689.PubMedCrossRefGoogle Scholar
  63. Porter, R. H., Briggs, R. S., and Roberts, P. J. (1992) L-aspartate-b-hydroxamate exhibits mixed agonist/antagonist activity at the glutamate metabotropic receptor in rat neonatal cerebrocortical slices. Neurosci. Lett. 144, 87–89.PubMedCrossRefGoogle Scholar
  64. Reymann, K. and Matthies, H. (1989) 2-amino-4-phosphonobutyrate selectively eliminates late phases of long-term potentiation in rat hippocampus. Neurosci. Lett. 98, 166–171.Google Scholar
  65. Riedel, G., Vieweg, S., and Reymann, K. (1993) Tetanus induced long-term potentiation requires activation of metabotropic glutamate receptors in the dentate gyrus in vivo. Abstract presented at the International Meeting on Function and Regulation of Metabotropic Glutamate Receptors, September 19–23, Taormina, Italy. Functional Neurology (suppl. 4 ), 46.Google Scholar
  66. Sacaan, A. I., and Schoepp, D. D. (1992) Activation of hippocamapal metabotropic excitatory amino acid receptors leads to seizure and neuronal damage. Neurosci. Lett. 139, 77–82.PubMedCrossRefGoogle Scholar
  67. Schoepp, D. D. and Hillman, C. C. (1990) Developmental and pharmacological characterization of quisqualate-, ibotenate and trans-1-amino-1, 3-cyclopentanedicarboxylic acid stimulations of phosphoinositide hydrolysis in rat cortical brain slices. Bio genic Amines 7, 331–340.Google Scholar
  68. Schoepp, D. D. and Johnson, B. G. (1988) Excitatory amino acid agonist-antagonist interactions at 2-amino4-phosphonobutyrric acid-sensitive quisqualate receptors coupled to phosphoinositide hydrolysis in slices of rat hippocampus. J. Neurochem. 50, 1605–1613.PubMedCrossRefGoogle Scholar
  69. Schoepp, D. D. and Johnson, B. G. (1989) Inhibition of excitatory amino acid-stimulated phosphoinositide hydrolysis in the neonatal rat hippocampus by 2-amino-3phosphonopropionate. J. Neurochem. 50, 1865–1870.CrossRefGoogle Scholar
  70. Schoepp, D. D., True, R. A., and Monn, J. A. (1991) Comparison (1S, 3R)-1 aminocyclopentane-1, 3-dicarboxylic acid (1 S, 3R-ACPD)- and 1R, 3S-ACPD-stimulated brain phosphoinositide hydrolysis. Eur. J. Pharmacol. 207, 351–353.PubMedCrossRefGoogle Scholar
  71. Schoepp, D. D., Johnson, B. G., and Monn, J. A. (1992) Inhibition of cAMP formation by a selective metabotropic glutamate receptor agonist. J. Neurochem. 58, 1184–1186.PubMedCrossRefGoogle Scholar
  72. Schoepp, D. D. and Johnson, B. G. (1993) Metabotropic glutamate receptor modulation of cAMP accumulation in the neonatal rat hippocampus. Neuropharmacology in press.Google Scholar
  73. Seren, M. S., Aldinio, C., Zanoni, R., Leon, A., and Nicoletti, F. (1989) Stimulation of inositol phospholipid hydrolysis by excitatory amino acids is enhanced in brain slices from vulnerable regions after transient global ischaemia. J. Neurochem. 53, 1700–1705.PubMedCrossRefGoogle Scholar
  74. Sergueeva, O. A., Fedorov, N. B., and Reymann, K. G. (1993) An antagonist of glutamate metabotropic receptors, (RS)-a-methyl-4-carboxyphenylglycine, prevents the LTP-related increase in postsynaptic AMPA sensitivity in hippocampal slices. Neuropharmacology 32 (9), 933–935.PubMedCrossRefGoogle Scholar
  75. Sortino, M. A., Nicoletti, F., and Canonico, P. L. (1991) Metabotropic glutamate receptor in rat hypothalamus: characterization and developmental profile. Dev. Brain. Res. 61, 169–172.CrossRefGoogle Scholar
  76. Spencer, P. S., Nunn, P. B., Hugon, J., et al. (1987) Guam amyotrophic lateral scle- rosis: dementia linked to a plant excitant neurotoxin. Science 237, 517–522.PubMedCrossRefGoogle Scholar
  77. Thelen, M., Rosen, A., Nairn, A. C., and Aderem, A. (1991) Regulation by phosphorylation of reversible association of a myristoylated protein kinase C substrate with the plasma membrane. Nature 351, 320–322.PubMedCrossRefGoogle Scholar
  78. Tizzano, J. P., Griffey, K. I., Johnson, J. A., Fix, A. S., Helton, D. R., and Schoepp, D. D. (1993) Metabotropic glutamate receptor activation produces limbic seizures in mice which can be selectively attenuated by L-AP3 and dantrolene. Abstract presented at the International Meeting on Function and Regulation of Metabotropic Glutamate Receptors, September 19–23, Taormina, Italy. Functional Neurology (suppl. 4 ), 55.Google Scholar
  79. Vecil, G. G., Li, P. P., and Warsh, J. J. (1992) Evidence for metabotropic excitatory amino acid receptor heterogeneity: developmental and brain regional studies. J. Neurochem. 59, 252–258.PubMedCrossRefGoogle Scholar
  80. Young, A. B., Catania, M. V., Dure, L., Hollingsworth, Z., and Penney, J. B. (1993) Metabotropic glutamate receptors in neurodegenerative disorders. Abstract presented at the International Meeting on Function and Regulation of Metabotropic Glutamate Receptors, September 19–23, Taormina, Italy. Functional Neurology (suppl. 4 ), 57, 58.Google Scholar
  81. Weiss, S., Schmidt, B. H., Sebben, M., Kemp, D. E., Bockaert, J., and Sladeczek, F. (1988) Neurotransmitter-induced inositol phosphate formation in neurons in primary culture. J. Neurochem. 50, 1425–1433.PubMedCrossRefGoogle Scholar
  82. Winder, D. G. and Conn, P. J. (1992) Activation of metabotropic glutamate receptors in the hippocampus increases cyclic AMP accumulation. J. Neurochem. 59, 375–378.PubMedCrossRefGoogle Scholar
  83. Wroblewski, J. T., Ikonomovic, S., Santi, M. R., Wroblewska, B., and Grayson, D. R. (1993) Expression of metabotropic glutamate receptors in cultures of cerebellar granule cells. Abstract presented at the International Meeting on Function and Regulation of Metabotropic Glutamate Receptors, September 19–23, Taormina, Italy. Functional Neurology (suppl. 4 ), 57.Google Scholar
  84. Wyllie, A. H., Kerr, J. F. R., and Currie, A. R. (1980) Cell death: the significance of apoptosis, in International Review of Citology 68, Academic, New York, pp. 251–306.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • F. Nicoletti
  • E. Aronica
  • G. Battaglia
  • V. Bruno
  • G. Casabona
  • M. V. Catania
  • A. Copani
  • A. A. Genazzani
  • M. R. L’Episcopo
  • D. F. Condorelli

There are no affiliations available

Personalised recommendations