Advertisement

Molecular Cloning, Expression, and Characterization of Metabotropic Glutamate Receptor Subtypes

  • Peter D. Suzdak
  • Christian Thomsen
  • Eileen Mulvihill
  • Peter Kristensen
Chapter
Part of the The Receptors book series (REC)

Abstract

The excitatory amino acid, l-glutamate, is a primary neurotransmitter in excitatory synaptic pathways in the central nervous system (for a review, see Monaghan et al., 1989; Headley and Grillner, 1990; Mayer and Miller 1990; Nakanishi, 1992). l-Glutamate-mediated neurotransmission is involved in numerous neuronal functions, and excess glutamatergic stimulation may also be involved in the etiology of stroke, epilepsy, and neurodegenerative disorders (Monaghan et al., 1989; Meldrum and Garthwaite, 1990). Receptors for l-glutamate can be classified into two distinct groups based on their signal transduction pathways: (1) ionotropic glutamate receptors, which when activated are directly coupled to the opening of cationic channels (MacDermott et al., 1986; Murphy et al., 1987)—ionotropic glutamate receptors have been further defined by pharmacological and electrophysiological selectivity for N-methyl-d-aspartate (NMDA), α-amino-3-hydroxyl-5-methyl-1-isoxazole-4-propionic acid (AMPA), and kainic acid—and (2) metabotropic glutamate receptors (mGluRs), which are G-protein-coupled receptors (Monaghan et al., 1989; Nahorski and Potter, 1989; Mayer and Miller, 1990; Schoepp and Conn, 1993).

Keywords

Xenopus Oocyte Excitatory Amino Acid Metabotropic Glutamate Receptor Pertussis Toxin Agonist Selectivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, T., Sugihara, H., Nawa, H., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J. Biol. Chem. 267, 13,361–13,368.Google Scholar
  2. Aramon, I. and Nakanishi, S. (1992) Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluRla, in transfected CHO cells. Neuron 8, 757–765.Google Scholar
  3. Ashkenazi, A., Peralta, E. G., Winslow, J. W., Ramachandran, J., and Capon, D. J. (1989) Functional diversity of muscarinic receptor subtypes in cellular signal and growth, in Subtypes of Muscarinic Receptors IV ( Lavine, R. L. and Birdsall, N. J. M., eds.), Elsevier, New York, pp. 16–22.Google Scholar
  4. Baskys, A., and Malenka, R. (1991) Agonists at metabotropic glutamate receptors presynaptically inhibit EPSCs in neonatal rat hippocampus. J. Physiol (Lond.) 444, 687–701.Google Scholar
  5. Baude, A., Nusser, Z., Roberts, J. D. B., Mulvihill, E., McIlhinney, R. A. J., and Somogyo, P. (1993) The la form of metabotropic glutamate receptor (mGluRla) is concentrated at extra and perisynaptic membrane of discrete sub-populations of neurons as detected by immunogold reaction in the rat. Neuron 11, 771–787.Google Scholar
  6. Bessho, Y., Nawa, H., and Nakanishi, S. (1993) Glutamate and quisqualate regulate expression of metabotropic glutamate receptor messenger RNA in cultured cerebellar granule cells. J. Neurochem. 60, 253–259.PubMedCrossRefGoogle Scholar
  7. Birse, E., Eaton, S., Jane, D., Jones, P., Porter, R., Pook, P., Sunter, D., Udvarhelyi, P., Wharton, B., Roberts, P., and Watkins, J. (1993) Phenylglycine derivatives as new pharmacological tools for investigating the role of metabotropic glutamate receptors in the central nervous system. Neurosci. 52, 481–488.CrossRefGoogle Scholar
  8. Bonner, T. (1989) New subtypes of muscarinic acetylcholine receptors, in Subtypes of Muscarinic Receptors IV ( Lavine, R. L. and Birdsall, N. J. M., eds.), Elsevier, New York, pp. 11–15.Google Scholar
  9. Bowie, J. W., Luthy, R., and Eisenberg, D. (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 252, 164–170.CrossRefGoogle Scholar
  10. Canonico, P. L., Favit, A., Catania, M. V., and Nicoletti, F. (1988) Phorbol esters attenuate glutamate-stimulated inositol phospholipid hydrolysis in neuronal cultures. J. Neurochem. 51, 1049–1053.PubMedCrossRefGoogle Scholar
  11. Catania, M., Hollingsworth, Z., and Young, A. (1993) Quisqualate resolves 2 distinct metabotropic [3-H] glutamate binding-sites. Neurorep. 4, 311–313.CrossRefGoogle Scholar
  12. Cha, J. J., Makowiec, R. L., Penney, J. B., and Young A. B. (1990) L-[3H]glutamate labels the metabotropic excitatory amino acid receptor in rodent brain. Neurosci. Lett. 113, 78–83.PubMedCrossRefGoogle Scholar
  13. Condorelli, D., Dellalbani, P., Amico, C., Casabona, G., Genazzani, A., Sortino, M., and Nicoletti, F. (1992) Developmental Profile of Metabotropic Glutamate Receptor Messenger RNA in Rat Brain. Mol. Pharmacol. 41, 660–664.PubMedGoogle Scholar
  14. Conklin, B. R., Brann, M. R., Buckley, N. J., Ma, A. L., and Bonner, T. I. (1988) Stimulation of arachidonic acid release and inhibition of mitogenesis by cloned genes for muscarinic receptor subtypes stably expressed in A9 L cells. Proc. Natl. Acad. Sci. USA 85, 8698–8702.PubMedCrossRefGoogle Scholar
  15. Doolittle, R. F. (1987) Of urfs and orfs: a primer on how to analyze devised amino acid sequences. University Science Books, Mill Valley, CA, pp. 11, 12.Google Scholar
  16. Eaton, S. A., Jane, D. E., St. J. Jones, P. L., Porter, R. H. P., Pook, P. C.-K., Sunter, D. C., Udvarhelyi, P. M., Roberts, P. J., Salt, T. E., and Watkins, J. C. (1993) Competitive antagonism at metabotropic glutamate receptors by (S)-4-carboxyphenylglycine and (RS)-a-methyl-4-carboxyphenylglycine. Eur. J. Pharmacol. Mol. Pharmacol. Sect. 244, 195–214.CrossRefGoogle Scholar
  17. Felder, C. C., Kanterman, R. Y., Ma, A. L., and Axelrod, J. (1989) A transfected ml muscarinic acetylcholine receptor stimulates adenylate cyclase via phosphatidylinositol hydrolysis. J. Biol. Chem. 264, 20,356–20, 362.Google Scholar
  18. Forsythe, I. D. and Clements, J. D. (1990) Presynaptic glutamate receptors depress excitatory monosynaptic transmission between mouse hippocampal neurones. J. Physiol. (Lond.) 429, 1–16.Google Scholar
  19. Franke, R. R., König, B., Sakmar, T. P., Khorana, H. G., and Hofmann, K. P. (1990) Rhodopsin mutants that bind but fail to activate transduction. Science 250, 123–125.PubMedCrossRefGoogle Scholar
  20. Frielle, T., Daniel, K. W., Caron, M. G., and Lefkowitz, R. J. (1988) Structural basis of beta-adrenergic receptor subtype specificity studied with chimeric beta 1/beta 2 adrenergic receptors. Proc. Natl. Acad. Sci. USA 85, 9494–9498.PubMedCrossRefGoogle Scholar
  21. Gabellini, N., Manev, R., Candeo, P., and Manev, H. (1993) Carboxyl domain of the glutamate receptor directs its coupling to metabolic pathways. Neurorep. 4, 531–534.CrossRefGoogle Scholar
  22. Gilman, A. G. (1989) G Proteins and regulation of adenylyl cyclase. JAMA 262, 1819–1825.PubMedCrossRefGoogle Scholar
  23. Hayashi, Y., Tanabe, Y., Aramon, I., Masu, M., Shimamoto, K., Ohfune, Y., and Nakanishi, S. (1992) Agonist analysis of 2-(carboxycyclopropyl)glycine isomers for cloned metabotropic glutamate receptor subtypes expressed in Chinese hamster ovary cells. Br. J. Pharmacol. 107, 539–543.PubMedCrossRefGoogle Scholar
  24. Headley, P. M. and Grillner, S. (1990) Excitatory amino acids and synaptic transmission: the evidence for a physiological function. Trends Pharmacol. Sci. 11, 205–211.PubMedCrossRefGoogle Scholar
  25. Hille, B. (1992) G Protein-coupled mechanisms and nervous signaling. Neuron 9, 187–195.PubMedCrossRefGoogle Scholar
  26. Honoré, T., Petersen, V., Suzdak, P., Thomsen, C., and Mulvihill, E. (1992) Configu- rations of non-NMDA glutamate receptors. Mol. Neuropharmacol. 2, 61–64.Google Scholar
  27. Hoshino, T. and Kose, K. (1989) Cloning and nucleotide sequence of BarC, the structural gene for the Leucine-, isoleucine-and valine-binding protein of Pseudomonas aeruginosa. J. Bacteriol. 171, 6300–6306.PubMedGoogle Scholar
  28. Houamed, K. M., Kuijper, J. L., Gilbert, T. L., Haldeman, B. A., O’Hara, P. J., Mulvihill, E. R., Almers, W., and Hagen, F. S. (1991) Cloning, expression and gene structure of a G protein-coupled glutamate receptor from rat brain. Science 252, 1318–1321.PubMedCrossRefGoogle Scholar
  29. Ito, I., Kohda, A., Tanabe, S., Hirose, E., Hayashi, M., Mitsunaga, S., and Sugiyama, H. (1992) 3,5-Dihydroxyphenylglycine—A potential agonist of metabotropic glutamate receptors. Neurorep. 3, 1013–1016.Google Scholar
  30. Iversen, L., Mulvihill, E., Haldeman, B., Diemer, N. H., Kaiser, F., Sheardown, M. J., and Kristensen, P. (1994) Changes in metabotropic glutamate receptor mRNA levels following global ischemia: Increase of a putative presynaptic subtype (mGluR4) in highly vulnerable brain areas. J. Neurochem. (in press).Google Scholar
  31. Kobilka, B. K., Kobilka, T. S., Daniel, K., Regan, J. W., Caron, M. G., and Lefkowitz, R. J. (1988) Chimeric alpha-1, beta-2 adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science 240, 1310–1316.PubMedCrossRefGoogle Scholar
  32. Koerner, J. F. and Cotman, C. W. (1981) Micromolar L-2-amino-4-phosphonobutyric acid selectively inhibits perforant path synapses from lateral entorhinal cortex. Brain Res. 216, 192–197.PubMedCrossRefGoogle Scholar
  33. Kristensen, P., Suzdak, P. D., and Thomsen, C. (1993) Expression pattern and pharmacology of the rat type IV metabotropic glutamate receptor. Neurosci. Lett. 155, 159–162.PubMedCrossRefGoogle Scholar
  34. Kubo, T., Bujo, H., Nakai, I., Mishina, M., and Numa, S. (1988) Location of a region of the muscarinic acetylcholine receptor involved in selective effector coupling. FEBS Lett. 241, 119–125.PubMedCrossRefGoogle Scholar
  35. Lonart, G., Alagarsamy, S., and Johnson, K. M. (1993) (R,S)-a-amino-3-hydroxy-5methylisoxazole-4-propionic acid (AMPA) receptors mediate a calcium-dependent inhibition of the metabotropic glutamate receptor-stimulated formation of inositol 1,4,5-trisphosphate. J. Neurochem. 60, 1739.Google Scholar
  36. Luttrell, L. M., Ostrowski, J., Cotecchia, S., Kendall, H., and Lefkowitz, R. J. (1993) Antagonism of catecholamine receptor signaling by expression of cytoplasmic domains of the receptors. Science 259, 1453–1456.PubMedCrossRefGoogle Scholar
  37. MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. L., and Barker, J. L. (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurons. Nature 321, 519–522.PubMedCrossRefGoogle Scholar
  38. Maggio, R., Vogel, Z., and Wess, J. (1993) Reconstitution of functional muscarinic receptors by co-expression of amino-and carboxyl-terminal receptor fragments. FEBS Lett. 319, 195–200.PubMedCrossRefGoogle Scholar
  39. Manev, R. M., Favaron, M., Gabellini, N., Candeo, P., and Manev, H. (1993) Functional evidence for a L-AP3-sensitive metabotropic receptor different from glutamate metabotropic receptor mGluR1. Neurosci. Lett. 155, 73–76.Google Scholar
  40. Manzoni, O. J. J., Poulat, F., Do, E., Sahuquet, A., Sassetti, I., Bockaert, J., and Sladeczek, F. (1991) Pharmacological characterization of the quisqualate receptor coupled to phospholipase C (Q P)in striatal neurons. Eur. J. Pharmacol. 207, 231–241.PubMedCrossRefGoogle Scholar
  41. Martin, L. J., Blackstone, C. D., Huganir, R. L., and Price, D. L. (1992) Cellular localization of a metabotropic glutamate receptor in rat brain. Neuron 9, 259–270.PubMedCrossRefGoogle Scholar
  42. Masu, M., Tanabe, Y., Tsuchida, K., Shigemoto, R., and Nakanishi, S. (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349, 760–765.PubMedCrossRefGoogle Scholar
  43. Mayer, M. L. and R. J. Miller (1990) Excitatory amino acid receptors. Second messengers and regulation of intracellular calcium in mammalian neurons. Trends Pharmacol. Sci. 11, 254–265.PubMedCrossRefGoogle Scholar
  44. Meldrum, B. and Garthwaite, J. (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 11, 379–388.PubMedCrossRefGoogle Scholar
  45. Miller, R. F. and Slaughter, M. M. (1986) Excitatory amino acid receptors of the retina: diversity of subtypes and conductance mechanisms. Trends Neurosci. 9, 211–218.CrossRefGoogle Scholar
  46. Minakami, R., Katsuki, F., and Sugiyama, H. (1993) A variant of metabotropic glutamate receptor subtype 5: an evolutionary conserved insertion with no termination codon. Biochem. Biophys. Res. Comm. 194, 622–627.PubMedCrossRefGoogle Scholar
  47. Minakami, R., Hirose, E., Yoshioka, K., Yoshimura, R., Misumi, Y., Sakaki, Y., Tohyama, M., Kiyama, H., and Sugiyama, H. (1992) Postnatal development of messenger RNA specific for a metabotropic glutamate receptor in the rat brain. Neurosci. Res. 15, 58–63.PubMedCrossRefGoogle Scholar
  48. Monaghan, D. T., Bridges, R. J., and Cotman, C. W. (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 29, 365–402.PubMedCrossRefGoogle Scholar
  49. Mowbray, S. L. and Petsko, G. A. (1993) The X-ray structure of the periplasmic galactose binding protein from Salmonella typhimurium at 3.0 A resolution. J. Biol. Chem. 259, 7991–7997.Google Scholar
  50. Murphy, S. N., Thayer, S. A., and Miller, R. J. (1987) The effects of excitatory amino acids on intracellular calcium in single mouse striatal neurons in-vitro. J. Neurosci. 7, 4145–4152.PubMedGoogle Scholar
  51. Nahorski, S. R. and Potter, B. V. L. (1989) Molecular recognition of inositol polyphosphates by intracellular receptors and metabolic enzymes. Trends Pharmacol. Sci. 10, 139–146.PubMedCrossRefGoogle Scholar
  52. Nakajima, Y., Iwakabe, H., Akazawa, C., Nawa, H., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1993) Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4phosphonobutyrate. J. Biol. Chem. 268, 11,868–11, 873.Google Scholar
  53. Nakanishi, S. (1992) Molecular diversity of glutamate receptors and implications for brain function. Nature 258, 597–603.Google Scholar
  54. Nicoletti, F., Meek, J. L., Iadorola, M. J., Chaung, D. M., Roth, B. L., and Costa, E. (1986a) Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J. Neurochem. 50, 1605–1613.Google Scholar
  55. Nicoletti, F., Iadarola, M. J., Wroblewski, J. T., and Costa, E. (1986b) Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with alpha 1-adrenoceptors. Proc. Natl. Acad. Sci. USA 83, 1931–1935.PubMedCrossRefGoogle Scholar
  56. O’Hara, P. J. (1994) Metabotropic glutamate receptors in Biomembranes,vol. 2, in press.Google Scholar
  57. O’Hara, P. J., Sheppard, P.O., Thogersen, H., Venzia, D., Haldeman, B. A., McGrane, V., Houamed, K. M., Thomsen, C., Gilbert, T. L., and Mulvihill, E. R. (1993) The ligand binding domain in metabotropic glutamate receptors belongs to a family of receptor structures related to bactorial periplasmic binding proteins. Neuron 11, 41–52.PubMedCrossRefGoogle Scholar
  58. Ohishi, H., Shigemoto, R., and Mizuno, N. (1993a) Distribution of the messenger-RNA for a metabotropic glutamate receptor, mGluR2, in the central-nervoussystem of the rat. Neuroscience 53, 1009–1018.PubMedCrossRefGoogle Scholar
  59. Ohishi, H., Shigemoto, R., and Mizuno, N. (1993b) Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain, an in-situ hybridization study. J. Comp. Neurol. 335, 252–266.PubMedCrossRefGoogle Scholar
  60. Okamoto, N., Seiji, H., Akazawa, C., Hayashi, Y., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1994) Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J. Biol. Chem. 269, 1231–1236.PubMedGoogle Scholar
  61. Palmer, E., Monaghan, D. T., and Cotman, C. W. (1989) Trans-ACPD, a selective agonist of the phosphoinositide-coupled excitatory amino acid receptor. Eur. J. Pharmacol. 166, 585–594.PubMedCrossRefGoogle Scholar
  62. Pickering, D. S., Thomsen, C., Suzdak, P. D., Fletcher, E. J., Robitaille, R., Salter, M. W., MacDonald, J. F., Huang, X.-P., and Hampson, D. R. (1993) A comparison of two alternatively spliced forms of a metabotropic glutamate receptor coupled to phosphoinositide turnover. J. Neurochem. 61, 85–92.PubMedCrossRefGoogle Scholar
  63. Pin, J. P., Joly, C., Heinemann, S. F., and Bockaert, J. (1994) Functional roles of intracellular domains of metabotropic glutamate receptors. EMBO J. in press.Google Scholar
  64. Pin, J. P., Waeber, C., Prezeau, L., Bockaert, J., and Heinemann, S. F. (1992) Alternative splicing generates metabotropic glutamate receptors inducing different patterns of calcium release in Xenopus Oocytes. Proc. Natl. Acad. Sci. USA 89, 10,331–10, 335.Google Scholar
  65. Quiocho, F. A. and Vyas, N. K. (1984) Novel stereospecificity of the L-arabonisebinding protein. Nature 310, 381–386.PubMedCrossRefGoogle Scholar
  66. Quiocho, F. A. (1990) Atomic structures of periplasmic binding proteins and the high-affinity active transport systems in bacteria. Phil. Trans. R. Soc. Lond. B 326, 341–351.CrossRefGoogle Scholar
  67. Rainnie, D. G. and Shinnick-Gallagher, P. (1992) Trans-ACPD and L-APB presynaptically inhibit excitatory glutamergic transmission in the basolateral amygdala (BLA). Neurosci. Lett. 139, 87–91.PubMedCrossRefGoogle Scholar
  68. Récasens, M., Mayat, E., and Guiramand, J. (1991) Excitatory amino acid receptors and phosphoinositid breakdown: Facts and perspectives, in Current Aspects of the Neurosciences, vol. 3 ( Osborne, N. N., ed.), Macmillan, New York, pp. 103–175.Google Scholar
  69. Sack, J. S., Saper, M. A., and Quiocho, F. A. (1989a) Periplasmic binding protein structure and function. Refined X-ray structures of the leucine/isoleucine/valinebinding protein and its complex with leucine. J. Mol. Biol. 206, 171–191.PubMedCrossRefGoogle Scholar
  70. Sack, J. S., Trakhanov, S. D., Tsigannik, I. H., and Quiocho, F. A. (1989b) Structure of the L-leucine-binding protein refined at 2.4 A resolution and comparison with the Leu/lle/Val-binding protein structure. J. Mol. Biol. 206, 193–207.PubMedCrossRefGoogle Scholar
  71. Schoepp, D. D. and Conn, P. J. (1993) Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol. Sci. 14, 13–20.PubMedCrossRefGoogle Scholar
  72. Schoepp, D. D. and Johnson, B. G. (1988) Selective inhibition of excitatory amino acid-stimulated phosphoinositide hydrolysis in the rat hippocampus by activation of protein kinase C. Biochem. Pharmacol. 37, 4299–4305.PubMedCrossRefGoogle Scholar
  73. Schoepp, D. D., Bockaert, J., and Sladeczek, F. (1990) Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. Trends Pharmacol. Sci. 11, 508–515.PubMedCrossRefGoogle Scholar
  74. Schulz, S., Lowe, D. G., Thorpe, D. S., Rodriguez, H., Kuang, W. J., Dangott, L. J., Chinkers, M., Goeddel, D. V., and Garbers, D. L. (1988) Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinase. Nature 334, 708–712.CrossRefGoogle Scholar
  75. Shigemoto, R., Nakanishi, S., and Mizuno, N. (1992) Distribution of the messenger RNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system—An In situ hybridization study in adult and developing rat. J. Comp. Neurol. 322, 121–135.PubMedCrossRefGoogle Scholar
  76. Simoncini, L., Haldeman, B. A., Yamagiwa, T., and Mulvihill, E. R. (1993) Functional characterization of metabotropic glutamate receptor subtypes. Biophys. J. 64, A84.Google Scholar
  77. Singh, S., Lowe, D. G., Thorpe, D. S., Rodriguez, H., Kuang, W. J., Dangott, L. J., Chinkers, M., Goeddel, D. V., and Garbers, D. L. (1988) Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinase. Nature 334, 708–712.PubMedCrossRefGoogle Scholar
  78. Sladeczek, F., Pin, J.-P., Récasens, M., Bockaert, J., and Weiss, S. (1985) Glutamate stimulates inositol phosphate formation in striatal neurons. Nature 317, 717–719.PubMedCrossRefGoogle Scholar
  79. Sugijama, H., Ito, I., and Watanabe, M. (1989) Glutamate receptor subtypes may be classified into two major categories: A study on Xenopus oocytes injected with rat brain mRNA. Neuron 3, 129–132.CrossRefGoogle Scholar
  80. Takahashi, K., Tsuchida, K., Taneba, Y., Masu, M., and Nakanishi, S. (1993) Role of the large extracellular domain of metabotropic glutamate receptors in agonist selectivity determination. J. Biol. Chem. 268, 19,341–19, 345.Google Scholar
  81. Tam, R. and Saier, M. H. (1993) Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol. Rev. 57, 320–346.PubMedGoogle Scholar
  82. Tanabe, Y., Masu, M., Ishii, T., Shigemoto, R., and Nakanishi, S. (1992) A family of metabotropic glutamate receptors. Neuron 8, 169–179.PubMedCrossRefGoogle Scholar
  83. Tanabe Y., Nomura, A., Masu, M., Shigemoto, R., and Nakanishi, S. (1993) Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J. Neurosci. 13, 13721378.Google Scholar
  84. Thomsen, C. and Suzdak, P. D. (1993a) L-Serine-O-phosphate has affinity for the type IV, but not the type I, metabotropic glutamate receptor. Neurorep. 4, 1099–1101.CrossRefGoogle Scholar
  85. Thomsen, C. and Suzdak, P. D. (1993b) 4-Carboxy-3-hydroxyphenylglycine, an antagonist at type I metabotropic glutamate receptors. Eur. J. Pharmacol. Mol. Pharmacol. Sect. 245, 299–301.Google Scholar
  86. Thomsen, C., Kristensen, P., Mulvihill, E., Haldeman, B., and Suzdak, P. D. (1992) L-2-Amino-4-phosphonobutyrate (L-AP4) is an agonist at the type IV metabotropic glutamate receptor which is negatively coupled to adenylate cyclase. Eur. J. Pharmacol. Mol. Pharmacol. Sect. 227, 361–363.CrossRefGoogle Scholar
  87. Thomsen, C., Mulvihill, E. R., Haldeman, B., Pickering, D. S., Hampson, D. R., and Suzdak, P. D. (1993) A pharmacological characterization of the mGluR l a subtype of the metabotropic glutamate receptor expressed in a cloned baby hamster kidney cell line. Brain Res. 619, 22–28.PubMedCrossRefGoogle Scholar
  88. Thomsen C., Boel, E., and Suzdak, P. D. (1994) Actions of phenylglycine analogs at subtypes of the metabotropic glutamate receptor family. Eur. J. Pharmacol. Mol. Pharmacol. Sect. 267, 77–84.CrossRefGoogle Scholar
  89. Thrombley, P. Q. and Westbrook, G. L. (1992) L-AP4 inhibits calcium currents and synaptic transmission via a G-protein-coupled glutamate receptor. J. Neurosci. 12, 2043–2050.Google Scholar
  90. Westbrook, G. L., Sahara, Y., Saugstad, J. A., Kinzie, J. M., and Segerson, T. P. (1993) Regulation of ion channels by ACPD and AP4. Funct. Neurol. 8 (4), 56.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Peter D. Suzdak
  • Christian Thomsen
  • Eileen Mulvihill
  • Peter Kristensen

There are no affiliations available

Personalised recommendations