Skip to main content

Molecular Cloning, Expression, and Characterization of Metabotropic Glutamate Receptor Subtypes

  • Chapter
The Metabotropic Glutamate Receptors

Part of the book series: The Receptors ((REC))

Abstract

The excitatory amino acid, l-glutamate, is a primary neurotransmitter in excitatory synaptic pathways in the central nervous system (for a review, see Monaghan et al., 1989; Headley and Grillner, 1990; Mayer and Miller 1990; Nakanishi, 1992). l-Glutamate-mediated neurotransmission is involved in numerous neuronal functions, and excess glutamatergic stimulation may also be involved in the etiology of stroke, epilepsy, and neurodegenerative disorders (Monaghan et al., 1989; Meldrum and Garthwaite, 1990). Receptors for l-glutamate can be classified into two distinct groups based on their signal transduction pathways: (1) ionotropic glutamate receptors, which when activated are directly coupled to the opening of cationic channels (MacDermott et al., 1986; Murphy et al., 1987)—ionotropic glutamate receptors have been further defined by pharmacological and electrophysiological selectivity for N-methyl-d-aspartate (NMDA), α-amino-3-hydroxyl-5-methyl-1-isoxazole-4-propionic acid (AMPA), and kainic acid—and (2) metabotropic glutamate receptors (mGluRs), which are G-protein-coupled receptors (Monaghan et al., 1989; Nahorski and Potter, 1989; Mayer and Miller, 1990; Schoepp and Conn, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, T., Sugihara, H., Nawa, H., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J. Biol. Chem. 267, 13,361–13,368.

    Google Scholar 

  • Aramon, I. and Nakanishi, S. (1992) Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluRla, in transfected CHO cells. Neuron 8, 757–765.

    Google Scholar 

  • Ashkenazi, A., Peralta, E. G., Winslow, J. W., Ramachandran, J., and Capon, D. J. (1989) Functional diversity of muscarinic receptor subtypes in cellular signal and growth, in Subtypes of Muscarinic Receptors IV ( Lavine, R. L. and Birdsall, N. J. M., eds.), Elsevier, New York, pp. 16–22.

    Google Scholar 

  • Baskys, A., and Malenka, R. (1991) Agonists at metabotropic glutamate receptors presynaptically inhibit EPSCs in neonatal rat hippocampus. J. Physiol (Lond.) 444, 687–701.

    Google Scholar 

  • Baude, A., Nusser, Z., Roberts, J. D. B., Mulvihill, E., McIlhinney, R. A. J., and Somogyo, P. (1993) The la form of metabotropic glutamate receptor (mGluRla) is concentrated at extra and perisynaptic membrane of discrete sub-populations of neurons as detected by immunogold reaction in the rat. Neuron 11, 771–787.

    Google Scholar 

  • Bessho, Y., Nawa, H., and Nakanishi, S. (1993) Glutamate and quisqualate regulate expression of metabotropic glutamate receptor messenger RNA in cultured cerebellar granule cells. J. Neurochem. 60, 253–259.

    Article  PubMed  CAS  Google Scholar 

  • Birse, E., Eaton, S., Jane, D., Jones, P., Porter, R., Pook, P., Sunter, D., Udvarhelyi, P., Wharton, B., Roberts, P., and Watkins, J. (1993) Phenylglycine derivatives as new pharmacological tools for investigating the role of metabotropic glutamate receptors in the central nervous system. Neurosci. 52, 481–488.

    Article  CAS  Google Scholar 

  • Bonner, T. (1989) New subtypes of muscarinic acetylcholine receptors, in Subtypes of Muscarinic Receptors IV ( Lavine, R. L. and Birdsall, N. J. M., eds.), Elsevier, New York, pp. 11–15.

    Google Scholar 

  • Bowie, J. W., Luthy, R., and Eisenberg, D. (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 252, 164–170.

    Article  Google Scholar 

  • Canonico, P. L., Favit, A., Catania, M. V., and Nicoletti, F. (1988) Phorbol esters attenuate glutamate-stimulated inositol phospholipid hydrolysis in neuronal cultures. J. Neurochem. 51, 1049–1053.

    Article  PubMed  CAS  Google Scholar 

  • Catania, M., Hollingsworth, Z., and Young, A. (1993) Quisqualate resolves 2 distinct metabotropic [3-H] glutamate binding-sites. Neurorep. 4, 311–313.

    Article  CAS  Google Scholar 

  • Cha, J. J., Makowiec, R. L., Penney, J. B., and Young A. B. (1990) L-[3H]glutamate labels the metabotropic excitatory amino acid receptor in rodent brain. Neurosci. Lett. 113, 78–83.

    Article  PubMed  CAS  Google Scholar 

  • Condorelli, D., Dellalbani, P., Amico, C., Casabona, G., Genazzani, A., Sortino, M., and Nicoletti, F. (1992) Developmental Profile of Metabotropic Glutamate Receptor Messenger RNA in Rat Brain. Mol. Pharmacol. 41, 660–664.

    PubMed  CAS  Google Scholar 

  • Conklin, B. R., Brann, M. R., Buckley, N. J., Ma, A. L., and Bonner, T. I. (1988) Stimulation of arachidonic acid release and inhibition of mitogenesis by cloned genes for muscarinic receptor subtypes stably expressed in A9 L cells. Proc. Natl. Acad. Sci. USA 85, 8698–8702.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle, R. F. (1987) Of urfs and orfs: a primer on how to analyze devised amino acid sequences. University Science Books, Mill Valley, CA, pp. 11, 12.

    Google Scholar 

  • Eaton, S. A., Jane, D. E., St. J. Jones, P. L., Porter, R. H. P., Pook, P. C.-K., Sunter, D. C., Udvarhelyi, P. M., Roberts, P. J., Salt, T. E., and Watkins, J. C. (1993) Competitive antagonism at metabotropic glutamate receptors by (S)-4-carboxyphenylglycine and (RS)-a-methyl-4-carboxyphenylglycine. Eur. J. Pharmacol. Mol. Pharmacol. Sect. 244, 195–214.

    Article  CAS  Google Scholar 

  • Felder, C. C., Kanterman, R. Y., Ma, A. L., and Axelrod, J. (1989) A transfected ml muscarinic acetylcholine receptor stimulates adenylate cyclase via phosphatidylinositol hydrolysis. J. Biol. Chem. 264, 20,356–20, 362.

    Google Scholar 

  • Forsythe, I. D. and Clements, J. D. (1990) Presynaptic glutamate receptors depress excitatory monosynaptic transmission between mouse hippocampal neurones. J. Physiol. (Lond.) 429, 1–16.

    CAS  Google Scholar 

  • Franke, R. R., König, B., Sakmar, T. P., Khorana, H. G., and Hofmann, K. P. (1990) Rhodopsin mutants that bind but fail to activate transduction. Science 250, 123–125.

    Article  PubMed  CAS  Google Scholar 

  • Frielle, T., Daniel, K. W., Caron, M. G., and Lefkowitz, R. J. (1988) Structural basis of beta-adrenergic receptor subtype specificity studied with chimeric beta 1/beta 2 adrenergic receptors. Proc. Natl. Acad. Sci. USA 85, 9494–9498.

    Article  PubMed  CAS  Google Scholar 

  • Gabellini, N., Manev, R., Candeo, P., and Manev, H. (1993) Carboxyl domain of the glutamate receptor directs its coupling to metabolic pathways. Neurorep. 4, 531–534.

    Article  CAS  Google Scholar 

  • Gilman, A. G. (1989) G Proteins and regulation of adenylyl cyclase. JAMA 262, 1819–1825.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, Y., Tanabe, Y., Aramon, I., Masu, M., Shimamoto, K., Ohfune, Y., and Nakanishi, S. (1992) Agonist analysis of 2-(carboxycyclopropyl)glycine isomers for cloned metabotropic glutamate receptor subtypes expressed in Chinese hamster ovary cells. Br. J. Pharmacol. 107, 539–543.

    Article  PubMed  CAS  Google Scholar 

  • Headley, P. M. and Grillner, S. (1990) Excitatory amino acids and synaptic transmission: the evidence for a physiological function. Trends Pharmacol. Sci. 11, 205–211.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B. (1992) G Protein-coupled mechanisms and nervous signaling. Neuron 9, 187–195.

    Article  PubMed  CAS  Google Scholar 

  • Honoré, T., Petersen, V., Suzdak, P., Thomsen, C., and Mulvihill, E. (1992) Configu- rations of non-NMDA glutamate receptors. Mol. Neuropharmacol. 2, 61–64.

    Google Scholar 

  • Hoshino, T. and Kose, K. (1989) Cloning and nucleotide sequence of BarC, the structural gene for the Leucine-, isoleucine-and valine-binding protein of Pseudomonas aeruginosa. J. Bacteriol. 171, 6300–6306.

    PubMed  CAS  Google Scholar 

  • Houamed, K. M., Kuijper, J. L., Gilbert, T. L., Haldeman, B. A., O’Hara, P. J., Mulvihill, E. R., Almers, W., and Hagen, F. S. (1991) Cloning, expression and gene structure of a G protein-coupled glutamate receptor from rat brain. Science 252, 1318–1321.

    Article  PubMed  CAS  Google Scholar 

  • Ito, I., Kohda, A., Tanabe, S., Hirose, E., Hayashi, M., Mitsunaga, S., and Sugiyama, H. (1992) 3,5-Dihydroxyphenylglycine—A potential agonist of metabotropic glutamate receptors. Neurorep. 3, 1013–1016.

    Google Scholar 

  • Iversen, L., Mulvihill, E., Haldeman, B., Diemer, N. H., Kaiser, F., Sheardown, M. J., and Kristensen, P. (1994) Changes in metabotropic glutamate receptor mRNA levels following global ischemia: Increase of a putative presynaptic subtype (mGluR4) in highly vulnerable brain areas. J. Neurochem. (in press).

    Google Scholar 

  • Kobilka, B. K., Kobilka, T. S., Daniel, K., Regan, J. W., Caron, M. G., and Lefkowitz, R. J. (1988) Chimeric alpha-1, beta-2 adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science 240, 1310–1316.

    Article  PubMed  CAS  Google Scholar 

  • Koerner, J. F. and Cotman, C. W. (1981) Micromolar L-2-amino-4-phosphonobutyric acid selectively inhibits perforant path synapses from lateral entorhinal cortex. Brain Res. 216, 192–197.

    Article  PubMed  CAS  Google Scholar 

  • Kristensen, P., Suzdak, P. D., and Thomsen, C. (1993) Expression pattern and pharmacology of the rat type IV metabotropic glutamate receptor. Neurosci. Lett. 155, 159–162.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, T., Bujo, H., Nakai, I., Mishina, M., and Numa, S. (1988) Location of a region of the muscarinic acetylcholine receptor involved in selective effector coupling. FEBS Lett. 241, 119–125.

    Article  PubMed  CAS  Google Scholar 

  • Lonart, G., Alagarsamy, S., and Johnson, K. M. (1993) (R,S)-a-amino-3-hydroxy-5methylisoxazole-4-propionic acid (AMPA) receptors mediate a calcium-dependent inhibition of the metabotropic glutamate receptor-stimulated formation of inositol 1,4,5-trisphosphate. J. Neurochem. 60, 1739.

    Google Scholar 

  • Luttrell, L. M., Ostrowski, J., Cotecchia, S., Kendall, H., and Lefkowitz, R. J. (1993) Antagonism of catecholamine receptor signaling by expression of cytoplasmic domains of the receptors. Science 259, 1453–1456.

    Article  PubMed  CAS  Google Scholar 

  • MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. L., and Barker, J. L. (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurons. Nature 321, 519–522.

    Article  PubMed  CAS  Google Scholar 

  • Maggio, R., Vogel, Z., and Wess, J. (1993) Reconstitution of functional muscarinic receptors by co-expression of amino-and carboxyl-terminal receptor fragments. FEBS Lett. 319, 195–200.

    Article  PubMed  CAS  Google Scholar 

  • Manev, R. M., Favaron, M., Gabellini, N., Candeo, P., and Manev, H. (1993) Functional evidence for a L-AP3-sensitive metabotropic receptor different from glutamate metabotropic receptor mGluR1. Neurosci. Lett. 155, 73–76.

    Google Scholar 

  • Manzoni, O. J. J., Poulat, F., Do, E., Sahuquet, A., Sassetti, I., Bockaert, J., and Sladeczek, F. (1991) Pharmacological characterization of the quisqualate receptor coupled to phospholipase C (Q P)in striatal neurons. Eur. J. Pharmacol. 207, 231–241.

    Article  PubMed  CAS  Google Scholar 

  • Martin, L. J., Blackstone, C. D., Huganir, R. L., and Price, D. L. (1992) Cellular localization of a metabotropic glutamate receptor in rat brain. Neuron 9, 259–270.

    Article  PubMed  CAS  Google Scholar 

  • Masu, M., Tanabe, Y., Tsuchida, K., Shigemoto, R., and Nakanishi, S. (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349, 760–765.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, M. L. and R. J. Miller (1990) Excitatory amino acid receptors. Second messengers and regulation of intracellular calcium in mammalian neurons. Trends Pharmacol. Sci. 11, 254–265.

    Article  PubMed  CAS  Google Scholar 

  • Meldrum, B. and Garthwaite, J. (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 11, 379–388.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R. F. and Slaughter, M. M. (1986) Excitatory amino acid receptors of the retina: diversity of subtypes and conductance mechanisms. Trends Neurosci. 9, 211–218.

    Article  CAS  Google Scholar 

  • Minakami, R., Katsuki, F., and Sugiyama, H. (1993) A variant of metabotropic glutamate receptor subtype 5: an evolutionary conserved insertion with no termination codon. Biochem. Biophys. Res. Comm. 194, 622–627.

    Article  PubMed  CAS  Google Scholar 

  • Minakami, R., Hirose, E., Yoshioka, K., Yoshimura, R., Misumi, Y., Sakaki, Y., Tohyama, M., Kiyama, H., and Sugiyama, H. (1992) Postnatal development of messenger RNA specific for a metabotropic glutamate receptor in the rat brain. Neurosci. Res. 15, 58–63.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan, D. T., Bridges, R. J., and Cotman, C. W. (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 29, 365–402.

    Article  PubMed  CAS  Google Scholar 

  • Mowbray, S. L. and Petsko, G. A. (1993) The X-ray structure of the periplasmic galactose binding protein from Salmonella typhimurium at 3.0 A resolution. J. Biol. Chem. 259, 7991–7997.

    Google Scholar 

  • Murphy, S. N., Thayer, S. A., and Miller, R. J. (1987) The effects of excitatory amino acids on intracellular calcium in single mouse striatal neurons in-vitro. J. Neurosci. 7, 4145–4152.

    PubMed  CAS  Google Scholar 

  • Nahorski, S. R. and Potter, B. V. L. (1989) Molecular recognition of inositol polyphosphates by intracellular receptors and metabolic enzymes. Trends Pharmacol. Sci. 10, 139–146.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, Y., Iwakabe, H., Akazawa, C., Nawa, H., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1993) Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4phosphonobutyrate. J. Biol. Chem. 268, 11,868–11, 873.

    Google Scholar 

  • Nakanishi, S. (1992) Molecular diversity of glutamate receptors and implications for brain function. Nature 258, 597–603.

    CAS  Google Scholar 

  • Nicoletti, F., Meek, J. L., Iadorola, M. J., Chaung, D. M., Roth, B. L., and Costa, E. (1986a) Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J. Neurochem. 50, 1605–1613.

    Google Scholar 

  • Nicoletti, F., Iadarola, M. J., Wroblewski, J. T., and Costa, E. (1986b) Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with alpha 1-adrenoceptors. Proc. Natl. Acad. Sci. USA 83, 1931–1935.

    Article  PubMed  CAS  Google Scholar 

  • O’Hara, P. J. (1994) Metabotropic glutamate receptors in Biomembranes,vol. 2, in press.

    Google Scholar 

  • O’Hara, P. J., Sheppard, P.O., Thogersen, H., Venzia, D., Haldeman, B. A., McGrane, V., Houamed, K. M., Thomsen, C., Gilbert, T. L., and Mulvihill, E. R. (1993) The ligand binding domain in metabotropic glutamate receptors belongs to a family of receptor structures related to bactorial periplasmic binding proteins. Neuron 11, 41–52.

    Article  PubMed  Google Scholar 

  • Ohishi, H., Shigemoto, R., and Mizuno, N. (1993a) Distribution of the messenger-RNA for a metabotropic glutamate receptor, mGluR2, in the central-nervoussystem of the rat. Neuroscience 53, 1009–1018.

    Article  PubMed  CAS  Google Scholar 

  • Ohishi, H., Shigemoto, R., and Mizuno, N. (1993b) Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain, an in-situ hybridization study. J. Comp. Neurol. 335, 252–266.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, N., Seiji, H., Akazawa, C., Hayashi, Y., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1994) Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J. Biol. Chem. 269, 1231–1236.

    PubMed  CAS  Google Scholar 

  • Palmer, E., Monaghan, D. T., and Cotman, C. W. (1989) Trans-ACPD, a selective agonist of the phosphoinositide-coupled excitatory amino acid receptor. Eur. J. Pharmacol. 166, 585–594.

    Article  PubMed  CAS  Google Scholar 

  • Pickering, D. S., Thomsen, C., Suzdak, P. D., Fletcher, E. J., Robitaille, R., Salter, M. W., MacDonald, J. F., Huang, X.-P., and Hampson, D. R. (1993) A comparison of two alternatively spliced forms of a metabotropic glutamate receptor coupled to phosphoinositide turnover. J. Neurochem. 61, 85–92.

    Article  PubMed  CAS  Google Scholar 

  • Pin, J. P., Joly, C., Heinemann, S. F., and Bockaert, J. (1994) Functional roles of intracellular domains of metabotropic glutamate receptors. EMBO J. in press.

    Google Scholar 

  • Pin, J. P., Waeber, C., Prezeau, L., Bockaert, J., and Heinemann, S. F. (1992) Alternative splicing generates metabotropic glutamate receptors inducing different patterns of calcium release in Xenopus Oocytes. Proc. Natl. Acad. Sci. USA 89, 10,331–10, 335.

    Google Scholar 

  • Quiocho, F. A. and Vyas, N. K. (1984) Novel stereospecificity of the L-arabonisebinding protein. Nature 310, 381–386.

    Article  PubMed  CAS  Google Scholar 

  • Quiocho, F. A. (1990) Atomic structures of periplasmic binding proteins and the high-affinity active transport systems in bacteria. Phil. Trans. R. Soc. Lond. B 326, 341–351.

    Article  CAS  Google Scholar 

  • Rainnie, D. G. and Shinnick-Gallagher, P. (1992) Trans-ACPD and L-APB presynaptically inhibit excitatory glutamergic transmission in the basolateral amygdala (BLA). Neurosci. Lett. 139, 87–91.

    Article  PubMed  CAS  Google Scholar 

  • Récasens, M., Mayat, E., and Guiramand, J. (1991) Excitatory amino acid receptors and phosphoinositid breakdown: Facts and perspectives, in Current Aspects of the Neurosciences, vol. 3 ( Osborne, N. N., ed.), Macmillan, New York, pp. 103–175.

    Google Scholar 

  • Sack, J. S., Saper, M. A., and Quiocho, F. A. (1989a) Periplasmic binding protein structure and function. Refined X-ray structures of the leucine/isoleucine/valinebinding protein and its complex with leucine. J. Mol. Biol. 206, 171–191.

    Article  PubMed  CAS  Google Scholar 

  • Sack, J. S., Trakhanov, S. D., Tsigannik, I. H., and Quiocho, F. A. (1989b) Structure of the L-leucine-binding protein refined at 2.4 A resolution and comparison with the Leu/lle/Val-binding protein structure. J. Mol. Biol. 206, 193–207.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp, D. D. and Conn, P. J. (1993) Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol. Sci. 14, 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp, D. D. and Johnson, B. G. (1988) Selective inhibition of excitatory amino acid-stimulated phosphoinositide hydrolysis in the rat hippocampus by activation of protein kinase C. Biochem. Pharmacol. 37, 4299–4305.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp, D. D., Bockaert, J., and Sladeczek, F. (1990) Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. Trends Pharmacol. Sci. 11, 508–515.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, S., Lowe, D. G., Thorpe, D. S., Rodriguez, H., Kuang, W. J., Dangott, L. J., Chinkers, M., Goeddel, D. V., and Garbers, D. L. (1988) Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinase. Nature 334, 708–712.

    Article  Google Scholar 

  • Shigemoto, R., Nakanishi, S., and Mizuno, N. (1992) Distribution of the messenger RNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system—An In situ hybridization study in adult and developing rat. J. Comp. Neurol. 322, 121–135.

    Article  PubMed  CAS  Google Scholar 

  • Simoncini, L., Haldeman, B. A., Yamagiwa, T., and Mulvihill, E. R. (1993) Functional characterization of metabotropic glutamate receptor subtypes. Biophys. J. 64, A84.

    Google Scholar 

  • Singh, S., Lowe, D. G., Thorpe, D. S., Rodriguez, H., Kuang, W. J., Dangott, L. J., Chinkers, M., Goeddel, D. V., and Garbers, D. L. (1988) Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinase. Nature 334, 708–712.

    Article  PubMed  CAS  Google Scholar 

  • Sladeczek, F., Pin, J.-P., Récasens, M., Bockaert, J., and Weiss, S. (1985) Glutamate stimulates inositol phosphate formation in striatal neurons. Nature 317, 717–719.

    Article  PubMed  CAS  Google Scholar 

  • Sugijama, H., Ito, I., and Watanabe, M. (1989) Glutamate receptor subtypes may be classified into two major categories: A study on Xenopus oocytes injected with rat brain mRNA. Neuron 3, 129–132.

    Article  Google Scholar 

  • Takahashi, K., Tsuchida, K., Taneba, Y., Masu, M., and Nakanishi, S. (1993) Role of the large extracellular domain of metabotropic glutamate receptors in agonist selectivity determination. J. Biol. Chem. 268, 19,341–19, 345.

    Google Scholar 

  • Tam, R. and Saier, M. H. (1993) Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol. Rev. 57, 320–346.

    PubMed  CAS  Google Scholar 

  • Tanabe, Y., Masu, M., Ishii, T., Shigemoto, R., and Nakanishi, S. (1992) A family of metabotropic glutamate receptors. Neuron 8, 169–179.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe Y., Nomura, A., Masu, M., Shigemoto, R., and Nakanishi, S. (1993) Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J. Neurosci. 13, 13721378.

    Google Scholar 

  • Thomsen, C. and Suzdak, P. D. (1993a) L-Serine-O-phosphate has affinity for the type IV, but not the type I, metabotropic glutamate receptor. Neurorep. 4, 1099–1101.

    Article  CAS  Google Scholar 

  • Thomsen, C. and Suzdak, P. D. (1993b) 4-Carboxy-3-hydroxyphenylglycine, an antagonist at type I metabotropic glutamate receptors. Eur. J. Pharmacol. Mol. Pharmacol. Sect. 245, 299–301.

    Google Scholar 

  • Thomsen, C., Kristensen, P., Mulvihill, E., Haldeman, B., and Suzdak, P. D. (1992) L-2-Amino-4-phosphonobutyrate (L-AP4) is an agonist at the type IV metabotropic glutamate receptor which is negatively coupled to adenylate cyclase. Eur. J. Pharmacol. Mol. Pharmacol. Sect. 227, 361–363.

    Article  CAS  Google Scholar 

  • Thomsen, C., Mulvihill, E. R., Haldeman, B., Pickering, D. S., Hampson, D. R., and Suzdak, P. D. (1993) A pharmacological characterization of the mGluR l a subtype of the metabotropic glutamate receptor expressed in a cloned baby hamster kidney cell line. Brain Res. 619, 22–28.

    Article  PubMed  CAS  Google Scholar 

  • Thomsen C., Boel, E., and Suzdak, P. D. (1994) Actions of phenylglycine analogs at subtypes of the metabotropic glutamate receptor family. Eur. J. Pharmacol. Mol. Pharmacol. Sect. 267, 77–84.

    Article  CAS  Google Scholar 

  • Thrombley, P. Q. and Westbrook, G. L. (1992) L-AP4 inhibits calcium currents and synaptic transmission via a G-protein-coupled glutamate receptor. J. Neurosci. 12, 2043–2050.

    Google Scholar 

  • Westbrook, G. L., Sahara, Y., Saugstad, J. A., Kinzie, J. M., and Segerson, T. P. (1993) Regulation of ion channels by ACPD and AP4. Funct. Neurol. 8 (4), 56.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Suzdak, P.D., Thomsen, C., Mulvihill, E., Kristensen, P. (1994). Molecular Cloning, Expression, and Characterization of Metabotropic Glutamate Receptor Subtypes. In: Conn, P.J., Patel, J. (eds) The Metabotropic Glutamate Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2298-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2298-7_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-006-9

  • Online ISBN: 978-1-4757-2298-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics