Protein Kinase C and Contraction of Vascular Smooth Muscle

  • J. Ohanian
  • F. Statham
  • L. Shaw
  • S. White
  • A. M. Heagerty
  • V. Ohanian
Part of the Experimental Biology and Medicine book series (EBAM, volume 26)


Protein Kinase C (PKC) is a Ca++ and phosphatidylserine (PS) dependent serine/threonine kinase that functions as a ubiquitous cellular mediator of signal transduction initiated by a variety of agonists (1).


Phosphatidic Acid Vascular Smooth Muscle Contraction Bovine Tracheal Smooth Muscle Vasoconstrictor Hormone Phosphatidic Acid Phosphohydrolase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Nishizuka, Y. Intracellular signalling by hydrolysis of phospholipids and activation of PKC. Science 258: 607–613, 1992PubMedCrossRefGoogle Scholar
  2. 2).
    Pears, C.J, and Parker, P.J. Domain interactions in protein kinase C. J.Cell Science 100: 683–686, 1991PubMedGoogle Scholar
  3. 3).
    Berridge, M.J. Inositol trisphosphate and calcium signalling. Nature 361: 315–325, 1993PubMedCrossRefGoogle Scholar
  4. 4).
    Crabos, M., Fabbro, D., Stabel, S, and Erne P. Effect of phorbol ester, thrombin and vasopressin in translocation of three distinct protein kinase C isoforms in human platelets. Biochem J. 288: 891–896, 1992PubMedGoogle Scholar
  5. 5).
    Mochly-Rosen, D., Henrich, C., Cheever, L., Khmer, H., and Simpson, P. A protein kinase C isozyme is translocated to cytoskeletal elements on activation. Cell Reg. 1: 693–706, 1990Google Scholar
  6. 6).
    Kiley, S., Schaap, D., Parker, P., Hsieh, L-L, and Jaken, S. Protein kinase C heterogeneity in GH4C1 rat pituitary cells. J.Biol.Chem. 265: 15704–15712, 1990PubMedGoogle Scholar
  7. 7).
    Kiley, S., Parker, P., Fabbro, D., and Jaken, S. Differential regulation of protein kinase C isozymes by Thyrotropin releasing hormone in GH4C, cells. J.Biol Chem. 266: 23761–23768, 1991PubMedGoogle Scholar
  8. 8).
    Griendling, K.K., Rittenhouse, S.E., Brock, T.A., Ekstein, L.S., Gimbrone, M.A. JR., Alexander, R.W. Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells. J.Biol.Chem. 261: 5901–5906, 1986PubMedGoogle Scholar
  9. 9).
    Ohanian, J., Izzard AS, Littlewood M, Heagerty AM. Regulation of diacylglycerol metabolisms by vasoconstrictor hormones in intact small arteries. Circ. Res. 72: 1163–1171, 1993PubMedCrossRefGoogle Scholar
  10. 10).
    Danthuluri, NR and Deth, R.C. Phorbol-ester-induced contractions of arterial smooth muscle and inhibition of aadrenergic response. Biochim Biophys Res Commun. 125: 1103–1109, 1984CrossRefGoogle Scholar
  11. 11).
    Park, S., and Rasmussen, H. Carbachol-induced protein phosphorylation changes in bovine tracheal smooth muscle. J.Biol.Chem. 261: 15734–15739, 1986PubMedGoogle Scholar
  12. 12).
    Andrea, J.E and Walsh, M.P. Protein kinase C of smooth muscle. Hypertens. 20: 585–595, 1992CrossRefGoogle Scholar
  13. 13).
    Shaw, L, White, S., Ohanian, J., Parker, P.J., Ohanian, V and Heagerty, A.M. Down regulation of protein kinase C does not markedly alter the contractile response to agonists in small arteries. J.Vasc. Res. 31, S1: 46, 1994Google Scholar
  14. 14).
    Collins, E.M., Walsh, M.P., and Morgan, K.G. Contraction of single vascular smooth muscle cells by phenylephrine. Am.J. Physiol 262: H754 - H762, 1992PubMedGoogle Scholar
  15. 15).
    Ohanian, J., Ollerenshaw J.D., Collins, P., and Heagerty, AM. Agonist-induced production of 1,2-diacylglycerol and phosphatidic acid in intact resistance arteries. J. Biol. Chem. 256: 8921–8928, 1990Google Scholar
  16. 16).
    Exton, J. Signalling through phosphatidylcholine breakdown. J.Biol. Chem. 265: 1–4, 1990PubMedGoogle Scholar
  17. 17).
    Jones, A.W., Shivendra, D., Shukla, and Geisbuhler, B.B. Stimulation of phospholipase D activity and phosphatidic acid production by norepinephrine in rat aorta. Am. J. Physiol, 264: C609 - C616, 1993Google Scholar
  18. 18).
    Liu, Y., Geisbuhler, B., and Jones, A.W. Activation of multiple mechanisms including phospholipase D by endothelin-1 in rat aorta. Am. J. Physiol. 262: C941 - C949, 1992Google Scholar
  19. 19).
    Gu, H., Trajkovic, S., and LaBelle, E.F. Norepinephrineinduced phsophatidylcholine hydrolysis by phospholipases D and C in rat tail artery. Am.J.Physiol. 262: C1376 - C1383, 1992PubMedGoogle Scholar
  20. 20).
    Ward, D., Ohanian, J., Ohanian, V., and Heagerty, A.M. Stimulation of phospholipase D hydrolysis of phosphatidylcholine by noradrenaline in rat small arteries. J.Vasc.Res. 31, Si: 54, 1994Google Scholar
  21. 21).
    Jackowski, S., and Rock, C.O. Stimulation of phosphatidylinos itol 4,5 bisphosphate phospholipase C activity by phosphatidic acid. Arch. Biochem. Biophys. 268: 516 - 524, 1989CrossRefGoogle Scholar
  22. 22).
    Salmon, D.M and Honeyman, T.W. Proposed mechanism of cholinergic action in smooth muscle. Nature, 284: 344–347, 1980PubMedCrossRefGoogle Scholar
  23. 23).
    Thibonnier, M, Bayer, A.L., Simonson, M.S., and Kester, M. Multiple signalling pathways of V,-vascular vasopressin receptors of A7rs cells. Endocrinology, 129: 2845–2856, 1991PubMedCrossRefGoogle Scholar
  24. 24).
    Cadena, D.L, and Gill, G.N. Receptor tyrosine kinases. FASEB J. 6: 2332–2337, 1992PubMedGoogle Scholar
  25. 25).
    Hughes, A.D. The action of platelet derived growth factor on tone and intracellular Cat+ in isolated rabbit ear artery. J. V asc. Res. 31, S 1: 17, 1994Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J. Ohanian
    • 1
  • F. Statham
    • 1
  • L. Shaw
    • 1
  • S. White
    • 1
  • A. M. Heagerty
    • 1
  • V. Ohanian
    • 1
  1. 1.Dept of MedicineUniversity Hospital of South ManchesterManchesterUK

Personalised recommendations