K(ATP)+ Channels in Neonatal Pulmonary Vessels during Normal Development and Chronic Hypoxia

  • Piet J. Boels
  • Robert M. Tulloh
  • Sheila G. Haworth
Part of the Experimental Biology and Medicine book series (EBAM, volume 26)


The pulmonary circulation undergoes major morphological changes at birth and during adaptation to extra-uterine life (Haworth, 1988, Haworth & Hislop, 1981). It has recently been appreciated that this vascular remodelling is accompanied by major changes in the pharmacological reactivity of the large arteries (Liu et al., 1992). It is unknown to what extent these changes could be caused by alterations of K+-channels, which have emerged as an important mechanism in the control of vascular tone (Nelson et al., 1991, Standen et al. 1989, Weston & Edwards, 1991).


Large Artery Pulmonary Circulation Chronic Hypoxia Newborn Piglet Small Pulmonary Artery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BOELS, P.J., V.A. CLAES, D.L. BRUTSAERT. Mechanics of K+-induced isotonic and isometric contractions in isolated canine coronary microarteries. Am. J. Physiol. 258: C512–0523, 1990.PubMedGoogle Scholar
  2. 2.
    BOELS, P.J., M. TROSCHKA, J.C. RÜEGG, G. PFITZER. Higher Cat+ sensitivity of triton skinned guinea pig mesenteric microarteries as compared with large arteries. Circ. Res. 69: 989996, 1991.Google Scholar
  3. 3.
    CAUVIN C., K. SAIDA, C. VAN BREEMEN. Extracellular Ca2+ dependence and diltiazem inhibition of contraction in rabbit conduit arteries and mesenteric resistance vessels. Blood Vessels, 21: 23–31, 1984.PubMedGoogle Scholar
  4. 4.
    CAUVIN C., S. LUKEMAN, J. CAMERON, O. HWANG, C. VAN BREEMEN. Differences in norepinephrine activation and diltiazem inhibition of calcium channels in isolated rabbit aorta and mesenteric resistance vessels. Circ. Res. 56: 822–828, 1985.PubMedCrossRefGoogle Scholar
  5. 5.
    DE MEY J.G., P.M. VANHOUTTE. Heterogeneous behavior of the canine arterial and venous wall. Importance of the endothelium. Circ. Res. 51: 439–447, 1982.PubMedCrossRefGoogle Scholar
  6. 6.
    HAWORTH, S.G. Pulmonary vascular remodelling in neonatal pulmonary hypertension. State of the art. Chest 93: 133S - 138S, 1988.Google Scholar
  7. 7.
    HAWORTH, S.G., A.A. HISLOP. Adaptation of the pulmonary circulation to extra-uterine life in the pig and its relevance to the human infant. Cardiovasc. Res. 15: 108–119, 1981.PubMedCrossRefGoogle Scholar
  8. 8.
    HAWORTH, S.G., A.A. HISLOP. Effect of hypoxia on adaptation of the pulmonary circulation to extra-uterine life in the pig. Cardiovasc. Res. 16: 293–303, 1982.PubMedCrossRefGoogle Scholar
  9. 9.
    IGNARRO L.J., R.E. BYRNS, K.S. WOOD. Endothelium-dependent modulation of cGMP levels and intrinsic smooth muscle tone in isolated bovine intrapulmonary artery and vein. Circ. Res. 60: 82–92, 1987.PubMedCrossRefGoogle Scholar
  10. l0. LIU, S.F., A.A. HISLOP, S.G. HAWORTH, P.J. BARNES. Developmental changes in endothelium-dependent pulmonary vasodilation in pigs. Brit. J. Pharmacol. 106: 324–330, 1992.Google Scholar
  11. 11.
    NELSON, M.T., J.G. MCCARRON, J.M. QUAYLE. Ion channels in resistance arteries. In “The Resistance Vasculature, J.A. Bevan et al., Eds. Humana Press”, 265–279, 1991.CrossRefGoogle Scholar
  12. 12.
    OHNO M., G.H. GIBBONS, V.J. DZAU, J.P. COOKE. Shear stress elevates endothelial cGMP. Role of a potassium channel and G protein coupling. Circulation 88: 193–197, 1993.PubMedCrossRefGoogle Scholar
  13. 13.
    OLESEN S.-P., D.E. CLAPHAM, P.F. DAVIES. Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331: 168–170, 1988.PubMedCrossRefGoogle Scholar
  14. 14.
    PERREAULT T., J. DE MARTE. Maturational changes in endothelium-derived relaxations in newborn piglet pulmonary circulation. Am. J. Physiol. 264: H302 - H309, 1993.Google Scholar
  15. 15.
    PINHEIRO J.B., A.B. MALIK. K+(ATP) -channel activation causes marked vasodilation in the hypertensive neonatal pig lung. A.. J. Physiol. 263: H1532 - H1536, 1992.Google Scholar
  16. 16.
    PRIEST, R.M., J.P.T. WARD. 4-aminopyridine induced contractions in small pulmonary arteries of the rat are increased following chronic hypoxia (abstract). J. Vascular. Res. 31 (51): 41, 1994.Google Scholar
  17. 17.
    QUAST U., N.S. COOK. In vitro and in vivo comparison of two K+ channel openers, diazoxide and cromakalim, and their inhibition by glibenclamide. J. Pharmacol. Exp. Ther. 250:26–171, 1989.Google Scholar
  18. 18.
    RENDAS A., M.BRANTHWAITE, L. REID. Growth of pulmonary circulation in normal pig -structural analysis and cardiopulmonary function. J. Appl. Physiol. 45: 806–817, 1978.PubMedGoogle Scholar
  19. 19.
    STANDEN S.B., J.M. QUAYLE, N.W. DAVIES, J.E. BRAYDEN, Y. HUANG, M.T. NELSON. Hyperpolarizing vasodilators activate ATP-sensitive K+-channels in arterial smooth muscle. Science 245: 177–180, 1989.PubMedCrossRefGoogle Scholar
  20. 20.
    WARD, J.P.T., L.C. CAPPELL, R.M. LEACH. Effects of BRL38227 and glibenclamide on small pulmonary arteries of the rat. In “Resistance arteries, strucure and function, M.J. Mulvany et al., Eds, Excerpta Medica”, 139–143, 1991.Google Scholar
  21. 21.
    WESTON, A.H., G. EDWARDS. Latest developments in K-channel modulator pharmacology. Z. Kardiol. 80 Suppl 7: 1–8, 1991.Google Scholar
  22. 22.
    WICKENDEN A.D., S. GRIMWOOD, T.L. GRANT, M.H. TODD. Comparison of the effects of the K(+)-channel openers cromakalim and minoxidil sulphate on vascular smooth muscle. Brit. J. Pharmacol. 103: 1148–52, 1991.CrossRefGoogle Scholar
  23. 23.
    WINQUIST R.J., L.A. HEANEY, A.A. WALLACE, E.P. BASKIN, R.B. STEIN, M.L. GARCIA, G. J. KACZOROWSKI. Gyburide blocks the relaxation response to BRL 34915 (cromakalim), minoxidil sulfate and diazoxide in vascular smooth muscle. J. Pharmacol. Exp. Ther. 248: 149–56, 1989.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Piet J. Boels
    • 1
  • Robert M. Tulloh
    • 1
  • Sheila G. Haworth
    • 1
  1. 1.Pharmacology and Vascular Biology UnitInstitute of Child HealthLondonUK

Personalised recommendations