Adenosine Activates Potassium Channels in Porcine Coronary Arterial Myocytes

  • C. Dart
  • N. B. Standen
Part of the Experimental Biology and Medicine book series (EBAM, volume 26)


It has been over thirty years since Berne (2) first suggested that adenosine released from metabolically active or stressed cardiac muscle acts as a regulator of coronary blood flow. According to his model, whenever the metabolic demands of the heart increase to an extent that the oxygen supply is no longer adequate adenosine acts to improve blood flow and oxygen delivery by initiating coronary vasodilation. The vasodilator activity of adenosine is generally ascribed to the stimulation of the A2 adenosine receptor subtype on the surface of the coronary smooth muscle cells. A2 receptors are coupled to adenylyl cyclase and it is believed that the binding of adenosine to the receptor leads to elevated intracellular levels of cAMP which increases the phosphorylation and thereby the inactivation of myosin light chain kinase (see 16)


Adenosine Receptor Myosin Light Chain Current Noise Porcine Coronary Artery Adenosine Receptor Subtype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belardinelli, L., Linden, J., and R. M. Berne. The cardiac effects of adenosine. Prog. Cardiovasc. Dis. 32: 73–97, 1989.PubMedCrossRefGoogle Scholar
  2. 2.
    Berne, R. M. Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am. J. Physiol. 204: 317–322, 1962.Google Scholar
  3. 3.
    Burnstock, G. A basis for distinguishing two types of purinergic receptor. Cell Membrane Receptors for Drugs and Hormones: A Multidisiplinary Approach, ed. Bolls, L. and R.W. Straub, pp. 107–118. Raven, New York, 1978.Google Scholar
  4. 4.
    Cook, N. S. and U. Quast. Potassium channel pharmacology. Potassium Channels. Structure, Classification, Function and Therapeutic Potential, ed. Cook, N.S., pp. 181–255. Ellis Horwood, Chicester, 1990.Google Scholar
  5. 5.
    Dart, C. and N. B. Standen. Adenosine-activated potassium current in smooth muscle cells isolated from the pig coronary artery. J. Physiol. Lond. 471: 767–786, 1993.Google Scholar
  6. 6.
    Daut, J., Maier-Rudolph, W., von Beckerath, N., Mehrke, G., Günther, K. and L. Goedel-Meinen. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 247: 1341–1344, 1990.PubMedCrossRefGoogle Scholar
  7. 7.
    De Weille, J. R., Fosset, M., Mourre, C., Schmid-Antomarchi, H., Bernardi, H. and M. Lazdunski. Regulation and pharmacology of ATP-sensitive K+ channels. Pflügers Arch. 414: Suppl. 1, S80–87, 1989.Google Scholar
  8. 8.
    Ghai, G., Francis, J. E., Williams, M., Dotson, R. A., Hopkins, M. F., Cote, D. T., Goodman, F. R. and M. B. Zimmerman. Pharmacological characterization of CGS 15943a: a novel nonxanthine adenosine antagonist. J. Pharm. & Exp. Therap. 242: 784–790, 1987.Google Scholar
  9. 9.
    Haleen, S. J., Steffen, R. P. and H. W. Hamilton. DPCPX, a highly-selective A1 adenosine receptor antagonist. Life Sciences 40: 555–563, 1987.PubMedCrossRefGoogle Scholar
  10. 10.
    Hutchison, A. J., Webb, R. L., Oei, H. H., Ghai, G. R., Zimmerman, M. B. and M. Williams. CGS 21,680C, an A2 selective adenosine receptor agonist with preferential hypotensive activity. J. Pharm. Exp. Ther. 251: 47–55, 1989.Google Scholar
  11. 11.
    Kirsch, G. E., Codina, J., Birnbaumer, L. and A. M. Brown. Coupling of ATP-sensitive K+ channels to A1 receptors by G proteins in rat ventricular myocytes. Am. J. Physiol. 259: H820–826, 1990.Google Scholar
  12. 12.
    Lohse, M. J., Klotz, K, -N., Schwabe, U., Cristalli, G., Vittori, S.and M. Grifantini. 2-Chloro-N6-cyclopentyladenosine: a highly selective agonist at Al adenosine receptors. Naunyn-Schmiedeberg’s Arch. Pharmacol. 328: 687–689, 1988.Google Scholar
  13. 13.
    Merkel, L. A., Lappe, R. W., Rivera, L. M., Cox, B. F. and M. H. Perrone. Demonstration of vasorelaxant activity with Al-selective adenosine agonist in porcine coronary artery: involvement of potassium channels. J. Pharm. Exp. Ther. 260: 437–443, 1992.Google Scholar
  14. 14.
    Mills, L and H. Gewirtz. Cultured vascular smooth muscle cells from porcine coronary artery possess Al and A2 adenosine receptor activity. Biochem. Biophys. Res. Comm. 168: 1297–1302, 1990.Google Scholar
  15. 15.
    Nelson, M. T., Patlak, J. B., Worley, J. F. and N. B. Standen. Calcium channels, potassium channels and the voltage-dependence of arterial smooth muscle tone. Am. J. Physiol. 259: C3–18, 1990.PubMedGoogle Scholar
  16. 16.
    Olsson, R. A. and J. D. Pearson. Cardiovascular purinoceptors. Physiol. Rev. 70: 761–845, 1990.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • C. Dart
    • 1
  • N. B. Standen
    • 1
  1. 1.Department of Cell Physiology & PharmacologyUniversity of LeicesterLeicesterUK

Personalised recommendations