Fruit Flies pp 105-113 | Cite as

The Study of Movement in Tephritid Flies: Review of Concepts and Recent Advances

  • M. Aluja
Conference paper


Kinesis is a fundamental component of almost any activity a fruit fly larvae or adult engages in: movement within the fruit pulp or inflorescence while feeding or while escaping a parasitoid sting, exit from a fruit and burial into the ground for pupation, movement of a newly emerged fly to a sheltered site, foraging of adults while searching for food, mates, oviposition sites, refugia, escape from predators such as spiders, oriented movement towards a pheromone or host volatile source, long range displacements between patches or habitats.


Sterile Insect Technique Range Displacement Vola Tile Flight Mill Flight Frequency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aluja, M. 1985. Manejo Integrado de las Moscas de la Fruta. Direccion General de Sanidad Vegetal-Secretaria de Agricultura y Recursos Hidraulicos (DGSV-SARH). Mexico D.F., Mexico. 245 p.Google Scholar
  2. Aluja, M. 1992. The study of movement in tephritid flies (Diptera: Tephritidae). Review of work conducted during the last 90 years. (in prep.)Google Scholar
  3. Aluja, M. and Liedo, P. 1986. Future perspectives on integrated management of fruit flies in Mexico. In: Pest Control: Operations and Systems Analysis in Fruit Fly Management ( M. Mangel, R. Plant and J. Carey, eds.) pp. 12–48. Springer, New York, USA.Google Scholar
  4. Aluja, M. and Prokopy, R.J. 1992. Host search behaviour by Rhagoletis potnonella flies: inter-tree movement patterns in response to wind-borne fruit volatiles under field conditions. Physiol. Entomol. (in press)Google Scholar
  5. Aluja, M., Celedonio-Hurtado, H., Liedo, P. and Guillen, J. 1986. Some results of general interest for control of Anast epha spp. In: Fruit Flies of Economic Importance 84 CEC/IOBC ‘ad-hoc meeting’ ( R. Cavalloro, ed.) pp. 209–216. Balkema, Rotterdam, The Netherlands.Google Scholar
  6. Aluja, M., Prokopy, R.J., Elkinton, J.S. and Laurence, F. 1989. Novel approach for tracking and quantifying the movement patterns of insects in three dimensions under seminatural conditions. Environ. Entomol. 18: 1–7.Google Scholar
  7. Aluja, M., Prokopy, R.J., Buonaccorsi, J.P. and Carde, R.T. 1992. Wind tunnel assays of olfactory responses of female Rhagoletis potnonella flies to apple volatiles: effect of wind speed and odour release rate. Entomol. Exp. Appl. (in press)Google Scholar
  8. Andrewartha, H.G. and Birch, L.C. 1954. The Distribution and Abundance of Animals. Univ. of Chicago Press, Chicago, USA. 782 p.Google Scholar
  9. Baker, R.R. 1982. Migration Paths Through Time and Space. Holder and Stoughton, London, U.K. 248 p.Google Scholar
  10. Bateman, M.A. 1972. The ecology of fruit flies. Ann. Rev. Entomol. 17: 493–518.Google Scholar
  11. Bateman, M.A., Boller, E.F., Bush, G.L., Chambers, D.L., Economopoulos, A.P., Fletcher, B.S., Huettel, M.D., Moericke, V. and Prokopy, R.J. 1976. Fruit Flies. In: Studies in Biological Control ( V.L. Delucchi, ed.) pp. 11–49. Cambridge Univ. Press. Cambridge, U.K.Google Scholar
  12. Christenson, L.D. and Foote, R.H. 1960. Biology of fruit flies. Ann. Rev. Entomol. 5: 171–192.Google Scholar
  13. Danthanarayana, W. 1986. Introductory chapter. In: Insect Flight: Dispersal and Migration ( W. Danthanarayana, ed.) pp. 1–10. Springer, Berlin, Germany.CrossRefGoogle Scholar
  14. Denno, R.F. 1983. Tracking variable plants in space and time. In: Variable Plants and Herbivores in Natural and Managed Systems ( R.F. Denno and M.S. McClure eds.). Academic Press, New York, USA. 291–341 p.Google Scholar
  15. Fletcher, B.S. 1973. The ecology of a natural population of the Queensland fruit fly Dacus tryoni. IV. The immigration and emigration of adults. Australian J. Zool. 21: 541–565.Google Scholar
  16. Fletcher, B.S. 1987. The biology of dacine fruit flies. Ann. Rev. Entomol. 32: 115–144.Google Scholar
  17. Fletcher, B.S. 1989. Movements of tephritid fruit flies. In: Fruit Flies Their Biology, Natural Enemies and Control Vol.3B ( Robinson, A.S. and Hooper, G. eds.) pp. 209–219. Elsevier, Amsterdam, The Netherlands.Google Scholar
  18. Hassel, M.P. and Southwood, T.R.E. 1978. Foraging strategies of insects. Ann. Rev. Ecol. Syst. 9: 75–98.Google Scholar
  19. Johnson, C.B. 1969. Migration and Dispersal of Lnsects by Flight. Methuen, London, U.K.Google Scholar
  20. Kennedy, J.S. 1961. A turning point in the study of insect migration. Nature 189: 785–791.CrossRefGoogle Scholar
  21. Kennedy, J.S. 1986. Migration, behavioral and ecological. In: Migration: Mechanisms and Adaptive Significance (MA. Rankin, ed.). pp. 5–26. Contributions in Marine Science27 (Suppl.).Google Scholar
  22. Nakamori, H. and Simizu, K. 1983. Comparison of flight ability between wild and mass-reared melon fly, Dacus cucurbitae Coquillet ( Diptera: Tephritidae), using a flight mill. Appl. Ent. Zool. 18: 371–381.Google Scholar
  23. Prokopy, R.J., Papaj, D.J. and Wong, T.T.Y. 1986. Fruit-foraging behavior of Mediterranean fruit fly females on host and non-host plants. Florida Entomol. 69: 651–657.CrossRefGoogle Scholar
  24. Prokopy, R.J., Green, T.A. and Wong, T.T.Y. 1989. Learning to find fruit in Ceratitis capitata flies. Entomol. Exp. Appl. 53: 65–72.Google Scholar
  25. Prokopy, R.J., Johnson, S.A. and O’Brien, M.T. 1990. Second-stage integrated management of apple arthropod pests. Entomol. Exp. Appl. 54: 9–19.Google Scholar
  26. Prokopy, R.J., Papaj, D.R, Opp, S.B. and Wong, T.T.Y. 1987. Intra-tree foraging behavior of Ceratitis capitata flies in relation to host fruit density and quality. Entomol. Exp. Appl. 45: 251–258.Google Scholar
  27. Provost, M.W. 1952. The dispersal of Aedes taeniorhyncluts I. Preliminary studies. Mosquito News 12: 174–190Google Scholar
  28. Roitberg, B.D. 1985. Search dynamics in fruit-parasitic insects. J. Insect Physiol. 31: 865–872.CrossRefGoogle Scholar
  29. Roitberg, B.D., Cairl, R.S. and Prokopy, R.J. 1984. Oviposition deterring pheromone influences dispersal distance in tephritid fruit flies. Ent. Exp. Appl. 35: 217–220.Google Scholar
  30. Roitberg, B.D., Van Lenteren, J.C., Van Alphen, J.J.M., Galis, F. and Prokopy, R.J. 1982. Foraging behaviour of Rhagoletis pomonella, a parasite of hawthorn (Crataegus viridis), in nature. J. Anim. Ecol. 51: 307–325.Google Scholar
  31. Sokolowski, M.B. 1980. Foraging strategies of Drosophila melanogaster: a chromosomal analysis. Beh. Genet. 10: 291–302.Google Scholar
  32. Southwood, T.R.E. 1962. Migration of terrestrial arthropods in relation to habitat. Biol. Reviews 37: 171–214.Google Scholar
  33. Southwood, T.R.E. 1981. Ecological aspects of insect migration. In: Animal Migration ( D.J. Aidley, ed.) pp. 196–208. Cambridge Univ. Press, Cambridge, U.K.Google Scholar
  34. Taylor, L.R. 1986. The four kinds of migration. In: Insect Flight: Dispersal and Migration. ( W. Danthanarayana ed.) pp. 266–280. Springer, Berlin, Germany.Google Scholar
  35. Taylor, L.R. and Taylor, R.A.J. 1983. Insect migration as a paradigm for survival by movement. In: The Ecology of Animal Movement ( I.R. Swingland and P.J. Greenwood, eds.) pp. 181–214. Clarendon Press, Oxford, U.K.Google Scholar
  36. Tortorici, C. and Bell, W.J. 1988. Search orientation in adult Drosophila melanogaster: response of rovers and sitters to resource dispersion in a food patch. J. Insect Behay. 1: 209223.Google Scholar
  37. Wiens, J.A. 1976. Population responses to patchy environments. Ann. Rev. Entomol. 7:81–120. Young, A.M. 1982. Population Biology of Tropical Insects. Plenum Press, New York, USA. 511 p.Google Scholar
  38. Young, A.M. 1982. Population Biology of Tropical Insects. Plenum Press, New York, USA. 511 p.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • M. Aluja

There are no affiliations available

Personalised recommendations