Skip to main content

Quasistatic-State Methods

  • Chapter
  • 255 Accesses

Part of the book series: Applied Mathematical Sciences ((AMS,volume 94))

Abstract

The appearance of several time scales in a problem can mean that various components of the system equilibrate at different rates. Rapidly responding components can try to reach some equilibrium, while the other components change hardly at all. It is not surprising that such perturbation problems can be studied using stability methods, because both deal with how solutions approach equilibria. These problems differ from those in Chapter 7 where oscillations occurred on a fast time scale relative to other changes. In this chapter, we study problems that try to equilibrate on a fast time scale while other components in the system change more slowly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.C. Hoppensteadt, Singular perturbations on the infinite interval, Trans. AMS, 123 (1966): 521–535.

    Article  MathSciNet  MATH  Google Scholar 

  2. F.C. Hoppensteadt, Properties of solutions of ordinary differential equations with small parameters, Comm. Pure Appl. Math. 24 (1971): 807–840.

    Article  MathSciNet  MATH  Google Scholar 

  3. R.E. O’Malley, Introduction to Singular Perturbations, Academic Press, New York, 1974.

    MATH  Google Scholar 

  4. M. van Dyke, Perturbation Methods in Fluid Mechanics, Parabolic Press, Palo Alto, C., 1975.

    Google Scholar 

  5. J.D. Cole, Perturbation Methods in Applied Mathematics, Blaisdale, Waltham, Mass., 1968.

    MATH  Google Scholar 

  6. J. Kevorkian, J.D. Cole, Perturbation Methods in Applied Mathematics, Springer-Verlag, New York, 1981.

    MATH  Google Scholar 

  7. J.J. Stoker, Nonlinear Vibrations, Wiley, New York, 1950.

    MATH  Google Scholar 

  8. K.O. Friedrichs, Asymptotic phenomena in mathematical physics, Bull. AMS, (1955): 485–504.

    Google Scholar 

  9. A.B. Vasil’eva, Asymptotic formulae for the solution of a system of ordinary differential equations containing parameters of different orders of smallness multiplying the derivatives, Dokl. Akad. Nauk SSSR, 128 (1959): 1110–1113.

    MathSciNet  MATH  Google Scholar 

  10. W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Inter-science, New York, 1965.

    MATH  Google Scholar 

  11. L.E. Frankel, On the method of matched asymptotic expansions, Proc. Camb. Phil. Soc. 65 (1969): 209–284.

    Article  Google Scholar 

  12. J.L. Massera, Contributions to stability theory, Ann. Math. 64(1956): 182–206; 68 (1958): 202.

    Article  MathSciNet  Google Scholar 

  13. A.B. Vasil’eva, V.F. Butuzov, Asymptotic Expansions of Solutions of Singularly Perturbed Equations, Nauka, Moscow, 1973 (in Russian).

    Google Scholar 

  14. G.E. Briggs, J.B.S. Haldane, A note on the kinetics of enzyme action. Biochem J. 19 (1925): 338–339.

    Google Scholar 

  15. M.A. Cartwright, J.E. Littlewood, Ann. Math. 54 (1951): 1–37.

    Article  MathSciNet  Google Scholar 

  16. N. Levinson, A second order differential equation with singular solutions, Ann. Math. 50(19): 127–152.

    Google Scholar 

  17. L.S. Pontryagin, Asymptotic behavior of the solutions of systems of differential equations with a small parameter in the higher derivatives, AMS Transi. Ser. 2, 18 (1961): 295–320.

    MathSciNet  Google Scholar 

  18. E.F. Mishchenko, Asymptotic calculation of periodic solutions of systems of differential equations containing small parameters in the derivatives, AMS Trans!. Ser. 2, 18 (1961): 199–230.

    Google Scholar 

  19. J. Grasman, E.J.M. Velig, G. Willems, Relaxation oscillations governed by a van der Pol equation, SIAM J. Appl. Math. 31 (1976): 667–676.

    Article  MathSciNet  MATH  Google Scholar 

  20. J.E. Flaherty, F.C. Hoppensteadt, Frequency entrainment of a forced van der Pol oscillator, Studies Appl. Math. 58 (1978): 5–15.

    MathSciNet  Google Scholar 

  21. M. Levi, F.C. Hoppensteadt, W.L. Miranker, Dynamics of the Josephson junction, Quart. Appl. Math. (July 1978): 167–198.

    Google Scholar 

  22. P. Kokotovic, H. Khalil, Singular Perturbation Methods in Control: Analysis and Design, Academic, London, 1986.

    Google Scholar 

  23. N. Gordon, F.C. Hoppensteadt, Nonlinear stability analysis of static states which arise through bifurcation, Comm. Pure Appl. Math. 28 (1975): 355–373.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford University Press, 1961.

    Google Scholar 

  25. P. Alfeld, F.C. Hoppensteadt, Explosion Mode Analysis of H2 - 02 Combustion. Chemical Physics Series, Springer-Verlag, New York, 1980.

    Google Scholar 

  26. N.N. Semenov, Chemical Kinetics and Chain Reactions, Clarendon, Oxford, 1935.

    Google Scholar 

  27. A.C. Hindmarsh, Gear’s ordinary differential equation solver, UCID-30001 (rev. 3 ) Lawrence Livermore, Lab, Livermore, CA, Dec. 1974.

    Google Scholar 

  28. W.L. Miranker, Numerical Methods for Stiff Equations and Singular Perturbation Problems, D. Reidel, Holland, 1981.

    Google Scholar 

  29. F.C. Hoppensteadt, W.L. Miranker, An extrapolation method for the numerical solution of singular perturbation problems, SIAM J. Sci. Stat. Comp. 4(1983).

    Google Scholar 

  30. R.Z. Khas’minskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Rockville, Md., 1980.

    Book  Google Scholar 

  31. M.I. Freidlin, A.D. Ventsel, Random Perturbations of Dynamical Systems, Springer-Verlag, New York, 1984.

    Book  MATH  Google Scholar 

  32. F.C. Hoppensteadt, Mathematical Theories of Populations, SIAM Publications., 1975.

    Google Scholar 

  33. J.M. Greenberg, F.C. Hoppensteadt, Asymptotic behavior of solutions to a population equation, SIAM J. Appl. Math. 17 (1975): 662–674.

    Article  MathSciNet  Google Scholar 

  34. F.C. Hoppensteadt, On quasi-linear parabolic equations with a small parameter, Comm. Pure Appl. Math. 24 (1971): 17–38.

    Article  MathSciNet  MATH  Google Scholar 

  35. E.N. Lorenz, Deterministic nonperiodic flow, J. Atoms. Sci. 20 (1963): 130–141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hoppensteadt, F.C. (1993). Quasistatic-State Methods. In: Analysis and Simulation of Chaotic Systems. Applied Mathematical Sciences, vol 94. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2275-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2275-8_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2277-2

  • Online ISBN: 978-1-4757-2275-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics