Advertisement

Iterative Methods for the Solution of Large Systems of Linear Equations. Some Further Methods

  • J. Stoer
  • R. Bulirsch
Part of the Texts in Applied Mathematics book series (TAM, volume 12)

Abstract

Many problems in practice require the solution of very large systems of linear equations Ax = b in which the matrix A, fortunately, is sparse, i.e., has relatively few nonvanishing elements. Systems of this type arise, e.g., in the application of difference methods or finite-element methods to the approximate solution of boundary-value problems in partial differential equations. The usual elimination methods (see Chapter 4) cannot normally be applied here, since without special precautions they tend to lead to the formation of more or less dense intermediate matrices, making the number of arithmetic operations necessary for the solution much too large, even for present-day computers, not to speak of the fact that the intermediate matrices no longer fit into the usually available computer memory.

Keywords

Iterative Method Model Problem Spectral Radius Relaxation Method Multigrid Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 8

  1. Axelsson, O.: Solution of linear systems of equations: Iterative methods. In: Barker (1977).Google Scholar
  2. Barker, V. A. (Ed.): Sparse Matrix Techniques. Lecture Notes in Mathematics 572. Berlin, Heidelberg, New York: Springer-Verlag (1977).Google Scholar
  3. Brandt, A.: Multi-level adaptive solutions to boundary value problems. Math. of Comput. 31, 333–390 (1977).MATHCrossRefGoogle Scholar
  4. Briggs, W. L.: A Multigrid Tutorial. Philadelphia: SIAM (1987).Google Scholar
  5. Buneman, O.: A compact non-iterative Poisson solver. Stanford University, Institute for Plasma Research Report No. 294, Stanford, CA (1969).Google Scholar
  6. Buzbee, B. L., Dorr, F. W.: The direct solution of the biharmonic equation on rectangular regions and the Poisson equation on irregular regions. SIAM J. Numer. Anal. 11, 753–763 (1974).MathSciNetMATHCrossRefGoogle Scholar
  7. Buzbee, B. L., Dorr, F. W., George, J. A., Golub, G. H.: The direct solution of the discrete Poisson equation on irregular regions. SIAM J. Numer. Anal. 8, 722–736 (1971).Google Scholar
  8. Buzbee, B. L., Golub, G. H., Nielson, C. W.: On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 7, 627–656 (1970).MathSciNetMATHCrossRefGoogle Scholar
  9. Chan, T. F., Glowinski, R., Periaux, J., Widlund, O. (Eds.): Proceedings of the Second International Symposium on Domain Decomposition Methods. Philadelphia: SIAM (1989).Google Scholar
  10. Forsythe, G. E., Moler, C. B.: Computer Solution of Linear Algebraic Systems. Series in Automatic Computation. Englewood Cliffs, N.J.: Prentice-Hall (1967).Google Scholar
  11. Glowinski, R., Golub, G. H., Meurant, G. A., Periaux, J. (Eds.): Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations. Philadelphia: SIAM (1988).Google Scholar
  12. Hackbusch, W.: Multigrid Methods and Applications. Berlin, Heidelberg, New York: Springer-Verlag (1985).Google Scholar
  13. Hackbusch, W., Trottenberg, U. (Eds.): Multigrid Methods. Lecture Notes in Mathematics 960. Berlin, Heidelberg, New York: Springer-Verlag (1982).Google Scholar
  14. Hestenes, M. R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. Nat. Bur. Standards J. Res. 49, 409–436 (1952).MathSciNetMATHCrossRefGoogle Scholar
  15. Hockney, R. W.: The potential calculation and some applications, Methods of Computational Physics 9, 136–211. New York, London: Academic Press (1969).Google Scholar
  16. Householder, A. S.: The Theory of Matrices in Numerical Analysis. New York: Blaisdell Publ. Co. (1964).MATHGoogle Scholar
  17. Keyes, D. E., Gropp, W. D.: A comparison of domain decomposition techniques for elliptic partial differential equations and their parallel implementation. SIAM J. Sci. Statist. Comput. 8, s166 — s202 (1987).MathSciNetCrossRefGoogle Scholar
  18. McCormick, S.: Multigrid Methods. Philadelphia: SIAM (1987).MATHCrossRefGoogle Scholar
  19. Meijerink, J. A., van der Vorst, H. A.: An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comp. 31, 148162 (1977).Google Scholar
  20. O’Leary, D. P., Widlund, O.: Capacitance matrix methods for the Helmholtz equation on general three-dimensional regions. Math. Comp. 33, 849–879 (1979).MathSciNetMATHGoogle Scholar
  21. Proskurowski, W., Widlund, O.: On the numerical solution of Helmholtz’s equation by the capacitance matrix method. Math. Comp. 30, 433–468 (1976).MathSciNetMATHGoogle Scholar
  22. Reid, J. K. (Ed.): Large Sparse Sets of Linear Equations. London, New York: Academic Press (1971).MATHGoogle Scholar
  23. Reid, J. K. (Ed.): On the method of conjugate gradients for the solution of large sparse systems of linear equations. In: Reid (1971), 231–252.Google Scholar
  24. Rice, J. R., Boisvert, R. F.: Solving Elliptic Problems Using ELLPACK. Berlin, Heidelberg, New York: Springer (1984).Google Scholar
  25. Schröder, J., Trottenberg, U.: Reduktionsverfahren für Differenzengleichungen bei Randwertaufgaben I. Numer. Math. 22, 37–68 (1973).MathSciNetMATHCrossRefGoogle Scholar
  26. Schröder, J., Trottenberg, U., Reutersberg, H.: Reduktionsverfahren für Differenzengleichungen bei Randwertaufgaben II. Numer. Math. 26, 429–459 (1976).MathSciNetMATHCrossRefGoogle Scholar
  27. Swarztrauber, P. N.: The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle. SIAM Rev. 19, 490–501 (1977).MathSciNetMATHCrossRefGoogle Scholar
  28. Varga, R. S.: Matrix Iterative Analysis. Series in Automatic Computation. Englewood Cliffs, N.J.: Prentice-Hall (1962).Google Scholar
  29. Wachspress, E. L.: Iterative Solution of Elliptic Systems and Application to the Neutron Diffusion Equations of Reactor Physics. Englewood Cliffs, N.J.: Prentice-Hall (1966).Google Scholar
  30. Wilkinson, J. H., Reinsch, C.: Linear Algebra. Handbook for Automatic Computation, Vol. II. Grundlehren der mathematischen Wissenschaften in Einzeldarsstellungen, Bd. 186. Berlin, Heidelberg, New York: Springer (1971).Google Scholar
  31. Wittmeyer, H.: Über die Lösung von linearen Gleichungssystemen durch Iteration. Z. Angew. Math. Mech. 16, 301–310 (1936).MATHCrossRefGoogle Scholar
  32. Young, D. M.: Iterative Solution of Large Linear Systems. Computer Science and Applied Mathematics. New York: Academic Press (1971).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • J. Stoer
    • 1
  • R. Bulirsch
    • 2
  1. 1.Institut für Angewandte MathematikUniversität WürzburgWürzburgGermany
  2. 2.Institut für MathematikTechnische UniversitätMünchenGermany

Personalised recommendations