Systems of Linear Equations

  • J. Stoer
  • R. Bulirsch
Part of the Texts in Applied Mathematics book series (TAM, volume 12)


In this chapter direct methods for solving systems of linear equations
$$Ax = b.A = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}& \cdots &{{a_{{1_n}}}} \\ \vdots &{}& \vdots \\ {{a_{{n_1}}}}& \cdots &{{a_{nn}}} \end{array}} \right],b = \left[ {\begin{array}{*{20}{c}} {{b_1}} \\ \vdots \\ {{b_n}} \end{array}} \right]$$
will be presented. Here A is a given n × n matrix, and b is a given vector. We assume in addition that A and b are real, although this restriction is inessential in most of the methods. In contrast to the iterative methods (Chapter 8), the direct methods discussed here produce the solution in finitely many steps, assuming computations without roundoff errors.


Simplex Method Triangular Matrix Feasible Point Positive Definite Matrix Gaussian Elimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 4

  1. Barker, V. A. (Ed.): Sparse Matrix Techniques. Lecture Notes in Mathematics 572. Berlin, Heidelberg, New York: Springer-Verlag (1977).Google Scholar
  2. Bartels, R. H.: A stabilization of the simplex method. Numer. Math. 16, 414–434 (1971).MathSciNetMATHCrossRefGoogle Scholar
  3. Bauer, F. L.: Genauigkeitsfragen bei der Lösung linearer Gleichungssysteme. ZAMM 46, 409–421 (1966).MATHCrossRefGoogle Scholar
  4. Björck, A.: Least squares methods. In: Ciarlet, Lions, Eds. (1990), 465–647 (1990).Google Scholar
  5. Blum, E., Oettli, W.: Mathematische Optimierung. Berlin, Heidelberg, New York: Springer (1975).Google Scholar
  6. Ciarlet, P. G., Lions, J. L. (Eds): Handbook of Numerical Analysis, Vol. 1. Finite Difference Methods (Part 1), Solution of Equations in l“ (Part 1). Amsterdam: North Holland (1990).Google Scholar
  7. Collatz, L.: Functional Analysis and Numerical Mathematics. New York: Academic Press (1966).Google Scholar
  8. Daniel, J. W., Gragg, W. B., Kaufmann, L., Stewart, G. W.: Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization. Math. Comp. 30, 772–795 (1976).MathSciNetMATHGoogle Scholar
  9. Dantzig, G. B.: Linear Programming and Extensions. Princeton, N.J.: Princeton University Press (1963).Google Scholar
  10. Dongarra, J. J., Bunch, J. R., Moler, C. B., Stewart, G. W.: UNPACK Users Guide. Philadelphia: SIAM Publications (1979).CrossRefGoogle Scholar
  11. Duff, I. S., Erisman, A. M., Reid, J. K.: Direct Methods for Sparse Matrices. Oxford: Oxford University Press (1986).Google Scholar
  12. Duff, I. S., Erisman, A. M., Reid, J. K, Reid, J. K.: MA27: A set of FORTRAN subroutines for solving sparse symmetri sets of linear equations. Techn. Rep. AERE R 10533, Harwell, U.K. (1982).Google Scholar
  13. Eisenstat, S. C., Gursky, M. C., Schultz, M. H., Sherman, A. H.: The Yale sparse matrix package I. The symmetric codes. Internat. J. Numer. Methods Engrg. 18, 1145–1151 (1982).MATHCrossRefGoogle Scholar
  14. Forsythe, G. E., Moler, C. B.: Computer Solution of Linear Algebraic Systems. Series in Automatic Computation. Englewood Cliffs, N.J.: Prentice-Hall (1967).Google Scholar
  15. Gass, S. T.: Linear Programming. 3d edition. New York: McGraw-Hill (1969).Google Scholar
  16. George, J. A., Liu, J. W.: Computer Solution of Large Sparse Positive Definite Systems. Englewood Cliffs, N.J.: Prentice-Hall (1981).MATHGoogle Scholar
  17. George, J. A., Liu, J. W.: The evolution of the minimum degree ordering algorithm. SIAM Review 31, 1–19 (1989).MathSciNetMATHGoogle Scholar
  18. George, J. A., Liu, J. W.:, Ng, E. G.: Users guide for SPARSEPAK: Waterloo sparse linear equa-tions package. Tech. Rep. CS-78–30, Dept. of Computer Science, University of Waterloo, Waterloo (1980).Google Scholar
  19. Gill, P. E., Golub, G. H., Murray, W., Saunders, M. A.: Methods for modifying matrix factorizations. Math. Comp. 28, 505–535 (1974).MathSciNetMATHCrossRefGoogle Scholar
  20. Golub, G. H., van Loan, C. F.: Matrix Computations. Baltimore: The John Hopkins University Press (1983).MATHGoogle Scholar
  21. Grossmann, W.: Grundzüge der Ausgleichsrechnung. 3. Aufl. Berlin, Heidelberg, New York: Springer (1969).CrossRefGoogle Scholar
  22. Guest, P. G.: Numerical Methods of Curve Fitting. Cambridge: University Press (1961).MATHGoogle Scholar
  23. Hadley, G.: Linear Programming. Reading, MA: Addison-Wesley (1962). Householder, A. S.: The Theory of Matrices in Numerical Analysis. New York: Blaisdell (1964).Google Scholar
  24. Lawson, C. L., Hanson, H. J.: Solving Least Squares Problems. Englewood Cliffs, N.J.: Prentice-Hall (1974).MATHGoogle Scholar
  25. Murty, K. G.: Linear and Combinatorial Programming. New York: Wiley (1976).MATHGoogle Scholar
  26. Prager, W., Oettli, W.: Compatibility of approximate solution of linear equations with given error bounds for coefficients and right hand sides. Num. Math. 6, 405–409 (1964).Google Scholar
  27. Reid, J. K. (Ed): Large Sparse Sets of Linear Equations. London, New York: Academic Press (1971).MATHGoogle Scholar
  28. Rose, D. J.: A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations, pp. 183–217. In: Graph Theory and Computing, R. C. Read, ed., New York: Academic Press (1972).Google Scholar
  29. Rose, D. J., Willoughby, R. A. (Eds.): Sparse Matrices and Their Applications. New York: Plenum Press (1972).Google Scholar
  30. Sautter, W.: Dissertation TU München (1971).Google Scholar
  31. Schwarz, H. R., Rutishauser, H., Stiefel, E.: Numerik symmetrischer Matrizen. Leitfäden der angewandten Mathematik, Bd. 11. Stuttgart: Teubner 1968.Google Scholar
  32. Seber, G. A. F.: Linear Regression Analysis. New York: Wiley (1977).MATHGoogle Scholar
  33. Stewart, G. W.: Introduction to Matrix Computations. New York: Academic Press (1973).MATHGoogle Scholar
  34. Tewarson, R. P.: Sparse Matrices. New York: Academic Press (1973).MATHGoogle Scholar
  35. Wilkinson, J. H.: The Algebraic Eigenvalue Problem. Monographs on Numerical Analysis, Oxford: Clarendon Press (1965).Google Scholar
  36. Wilkinson, J. H., Reinsch, Ch.: Linear Algebra. Handbook for Automatic Computation, Vol. II. Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 186. Berlin, Heidelberg, New York: Springer (1971).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • J. Stoer
    • 1
  • R. Bulirsch
    • 2
  1. 1.Institut für Angewandte MathematikUniversität WürzburgWürzburgGermany
  2. 2.Institut für MathematikTechnische UniversitätMünchenGermany

Personalised recommendations