Biomechanics pp 392-426 | Cite as

Skeletal Muscle

  • Yuan-Cheng Fung


There are three kinds of muscles: skeletal, heart, and smooth. Skeletal muscle makes up a major part of the animal body. It is the prime mover of animal locomotion. It is controlled by voluntary nerves. It has the feature that if it is stimulated at a sufficiently high frequency, it can generate a maximal tension, which remains constant in time. It is then said to be tetanized. The activity of the contracting mechanism is then thought to be maximal.


Skeletal Muscle Motor Unit Muscle Length Sarcomere Length Contractile Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, R. M. (1968) Animal Mechanics. University of Washington Press, Seattle.Google Scholar
  2. Bergel, D. H. and Hunter, P. J. (1979) The mechanics of the heart, In Quantitative Cardiovascular Studies, N. H. C. Hwang, D. R. Gross, and D. J. Patel (eds.) University Park Press, Baltimore, Chapter 4, pp. 151–213.Google Scholar
  3. Caplan, S. R. (1966) A characteristic of self-regulated linear energy converters. The Hill force-velocity relation for muscle. J. Theor. Biol. 11, 63–86.PubMedCrossRefGoogle Scholar
  4. Carlson, F. D. and Siger, A. (1960) The mechanochemistry of muscular contraction. I. The isometric twitch. J. Gen. Physiol. 43, 33–60.CrossRefGoogle Scholar
  5. Eisenberg, E. and Hill, T. L. (1978) A cross-bridge model of muscle contraction. Progr. Biophys. Mol. Biol. 33, 55–82.CrossRefGoogle Scholar
  6. Eisenberg, E., Chen, Y., and Hill, T. L. (1980) A cross-bridge model of muscle contraction, quantitative analysis. Biophys. J. 29, 195–227.PubMedCrossRefGoogle Scholar
  7. Eisenberg, E. and Hill, T. L. (1985) Muscle contraction and free energy transduction in biological systems. Science 227, 999–1006.PubMedCrossRefGoogle Scholar
  8. Fenn, W. P. and Marsh, B. S. (1935) Muscular force at different speeds of shortening. J. Physiol. 85, 277.PubMedGoogle Scholar
  9. Ferenezi, M. A., Goldman, Y. E., and Simmons, R. M. (1984) The dependence of force and shortening velocity on substrate concentration in skinned muscle fibers from Rana Temporaria. J. Physiol. (London) 350, 519–543.Google Scholar
  10. Ford, L. E., Huxley, A. F., and Simmons, R. M. (1977) Tension responses to sudden length change in stimulated frog muscle fibers near slack length. J. Physiol. 269, 441–515.PubMedGoogle Scholar
  11. Fung, Y. C. (1970) Mathematical representation of the mechanical properties of the heart muscle. J. Biomech. 3, 381–404.PubMedCrossRefGoogle Scholar
  12. Gordon, A. M., Huxley, A. F., and Julian, F. J. (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibers. J. Physiol. (London) 185, 170–192.Google Scholar
  13. Heuser, J. E. and Cooke, R. (1983) Actin-myosin interactions visualized by quick-freeze, deep-etch replica technique. J. Mol. Biol. 169, 97–122.PubMedCrossRefGoogle Scholar
  14. Higuchi, H. and Goldman, Y. E. (1991) Sliding distance between actin and myosin filaments per ATP molecule hydrolyzed in skinned muscle fibers. Nature 352, 352–354.PubMedCrossRefGoogle Scholar
  15. Hill, A. V. (1938) The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc. London B 126, 136–195.CrossRefGoogle Scholar
  16. Hill, A. V. (1970) First and Last Experiments in Muscle Mechanics. Cambridge University Press, Cambridge, U.K.Google Scholar
  17. Hill, T., Eisenberg, E., Chen, Y.-D., and Podolsky, R. J. (1975) Some self-consistent two-state sliding filament models of muscle contraction. Biophys. J. 15, 335–372.PubMedCrossRefGoogle Scholar
  18. Huxley, A. F. and Niedergerke, R. (1954) Structural changes in muscle during contraction. Nature 173, 971–973.PubMedCrossRefGoogle Scholar
  19. Huxley, A. F. (1957) Muscle structure and theories of contraction. Progr. Biophys. Biophys. Chem. 7, 255–318.Google Scholar
  20. Huxley, A. F. and Simmons, R. M. (1971) Proposed mechanism of force generation in striated muscle. Nature (London) 233, 533–538.CrossRefGoogle Scholar
  21. Huxley, A. F. (1974) Muscular contraction. A review lecture. J. Physiol. 243, 1–43.PubMedGoogle Scholar
  22. Huxley, H. E. and Hanson, J. (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173, 973–976.PubMedCrossRefGoogle Scholar
  23. Huxley, H. E. (1957) The double array of filaments in cross—striated muscle. J. Biophys. Biochem. Cytol. 3, 631–643.PubMedCrossRefGoogle Scholar
  24. Huxley, H. E. (1958) The contraction of muscle. Sci. Am. 199, 67.PubMedCrossRefGoogle Scholar
  25. Huxley, H. E. (1969) The mechanism of muscular contraction. Science 164, 1356–1366.PubMedCrossRefGoogle Scholar
  26. Huxley, H. E. (1990) Sliding filaments and molecular motile systems. J. Biol. Chem. 265, 8347–8350.PubMedGoogle Scholar
  27. Ishijima, A., Doi, T., Sakurada, K., and Yanagida, T. (1991) Sub-piconewton force fluctuations of actomyosin in vitro. Nature 352, 301–306.PubMedCrossRefGoogle Scholar
  28. Iwazumi, T. (1970) A new field theory of muscle contraction. Ph.D. Thesis. University of Pennsylvania, Philadelphia.Google Scholar
  29. Julian, F. J. and Sollins, M. R. (1975) Sarcomere length-tension relations in living rat papillary muscle. Circulation Res. 37, 299–308.PubMedCrossRefGoogle Scholar
  30. Kishino, A. and Yanagida, T. (1988) Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334, 74–76.PubMedCrossRefGoogle Scholar
  31. Kreuger, J. E. and Pollack, G. H. (1975) Myocardial sarcomere dynamics during isometric contraction. J. Physiol. 251, 627–643.Google Scholar
  32. Mommaerts, W. F. H. M. (1954) Is adenosine triphosphate broken down during a single muscle twitch? Nature 174, 1083–1084.PubMedCrossRefGoogle Scholar
  33. Mommaerts, W. F. H. M., Olmsted, M., Seraydarian, K., and Wallner, A. (1962) Contraction with and without demonstratable splitting of energy-rich phosphate in turtle muscle. Biochim. Biophys. Acta 63, 82–92, 75–81.Google Scholar
  34. Moore, P. B., Huxley, H. E., and DeRosier, D. J. (1970) Three-dimensional reconstruction of F-actin, thin filaments, and decorated thin filaments. J. Mol. Biol. 50, 279–295.PubMedCrossRefGoogle Scholar
  35. Noble, M. I. M. and Pollack, G. H. (1977) Molecular mechanism of contraction. Controversies in research. Circulation Res. 40, 333–342.PubMedCrossRefGoogle Scholar
  36. Parmley, W. W. and Sonnenblick, E. H. (1967) Series elasticity in heart muscle. Circulation Res. 20, 112–123.PubMedCrossRefGoogle Scholar
  37. Podolsky, R. J. and Nolan A. C. (1971) In Contractility of Muscle Cells and Related Processes. R. J. Podolsky (ed.) Prentice-Hall, Englewood Cliffs, NJ, pp. 247–260.Google Scholar
  38. Podolsky, R. J., Nolan, A. C., and Zavelier, S. A. (1969) Cross-bridge properties derived from muscle isotonic velocity transient. Proc. Natl. Acad. Sci. U.S.A. 64, 504–511.PubMedCrossRefGoogle Scholar
  39. Polissar, M. J. (1952) Physical chemistry of contractile process in muscle. 1. A physicochemical model of contractile mechanism. Am. J. Physiol. 168, 766–781.PubMedGoogle Scholar
  40. Reedy, M. K. (1968) Ultrastructure of insect flight muscle: I. Screw sense and structural grouping in the rigor cross-bridge lattice. J. Mol. Biol. 31, 155–176.PubMedCrossRefGoogle Scholar
  41. Simons, R. M. and Jewell, B. R. (1974) Mechanics and models of muscular contraction. In Recent Advances in Physiology, R. J. Linden (ed.) Churchill, London, Vol. 9, pp. 87–147.Google Scholar
  42. Sugi, H. and Tsuchiya, T. (1981) Enhancement of mechanical performance in frog muscle fibers after quick increases in load. J. Physiol. (London) 319, 239–252.Google Scholar
  43. Taro, Q., Uyeda, P., Warrick, H. M., Kron, S. J., and Spudich, J. A. (1991) Quantized velocities at low myosin densities in an in vitro motility assay. Nature 352, 307–311.CrossRefGoogle Scholar
  44. Tözeren, A. (1983) Static analysis of the left ventricle. J. Biomech. Eng. 105, 39–46.PubMedCrossRefGoogle Scholar
  45. Tözeren, A. (1985) Constitutive equations of skeletal muscle based on cross-bridge mechanism. Biophys. J. 47, 225–236.PubMedCrossRefGoogle Scholar
  46. Tözeren, A. (1985) Continuum rheology of muscle contraction and its application to cardiac contractility. Biophys. J. 47, 303–309.PubMedCrossRefGoogle Scholar
  47. Tözeren, A. (1986) Assessment of fiber strength in a urinary bladder by using experimental pressure volume curves: An analytical method. J. Biomech. Eng. 108, 301–305.PubMedCrossRefGoogle Scholar
  48. Uyeda, T. Q. P., Warrick, H. W., Kron, S. J., and Spudich, J. A. (1991) Quantized velocities at low myosin densities in an in vitro motility assay. Nature 352, 307–311.PubMedCrossRefGoogle Scholar
  49. Warwick, R. and Williams, P. L. (eds.) (1973) Gray’s Anatomy, 35th British Edition. W. B. Saunders, Philadelphia.Google Scholar
  50. White, D. C. S. and Thorson, J. (1973) The kinetics of muscle contraction. Progr. Biophys. Mol. Biol. 27, 173–255.CrossRefGoogle Scholar
  51. Zahalak, G. I., Duffy, J., Stewart, P. A., Litchman, H. M., Hawley, R. H., and Pasley, P. R. (1976) Partially activated human skeletal muscle: An experimental investigation of force, velocity, and EMG. J. Appl. Mech. 98, 81–86.CrossRefGoogle Scholar
  52. Zahalak, G. I. (1981) A distribution-moment approximation for kinetic theories of muscle contraction. Math. Biosci. 55, 89–116.CrossRefGoogle Scholar
  53. Zahalak, G. I. and Ma, S.-P. (1990) Muscle activation and contraction: Constitutive relations based directly on cross-bridge kinetics. J. Biomech. Eng. 112, 52–62.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Yuan-Cheng Fung
    • 1
  1. 1.Department of BioengineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations