Biomechanics pp 500-544 | Cite as

Bone and Cartilage

  • Yuan-Cheng Fung


Bone works in the small strain range; yet its biology is very sensitive to the strain level. Its constitutive equation is linear with respect to the strain, and the strain-displacement relationship is also linear; but the relationship is anisotropic. In this chapter the mechanical properties of bone are described with an emphasis on biology.


Anterior Cruciate Ligament Articular Cartilage Constitutive Equation Trabecular Bone Entropy Production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amtmann, E. (1968) The distribution of breaking strength in the human femur shaft. J. Biomech. 1, 271–277.PubMedCrossRefGoogle Scholar
  2. Amtmann, E. (1971) Mechanical stress, functional adaptation, and the variation of structure of the human femur diaphysis. Ergebnisse Anat. Entwicklungsgeschichte 44, 7–89.Google Scholar
  3. Amtmann, E and Schmitt, H. P. (1968) Über die Verteilung der Corticalisdichte im menschlichen Femurschaft und ihre Bedeutung für die Bestimung der Knochenfestigkeit. Z. Anat. u. Entwickl.-ges. 127, 25–41.CrossRefGoogle Scholar
  4. Basset, C. A. L. and Pawlick, R. J. (1964) Effect of electrical currents on bone in vivo. Nature 204, 652–653.CrossRefGoogle Scholar
  5. Becker, R. O. and Murray D. G. (1970) The electrical control system regulating fracture healing in amphibians. Clin. Orthopedics 73, 169–198.Google Scholar
  6. Boume, G. H. (ed.) (1972) The Biochemistry and Physiology of Bone, 2nd edition, Vol. 1: Structure. Vol. 2: Physiology and Pathology. Vol. 3: Development and Growth. Academic Press, New York.Google Scholar
  7. Brânemark, P.-I., Hansson, B. O., Breine, U., Lindström, J., Hallén, O., and Öhman, A. (1977) Osseointegrated Implants in the Treatment of the Edentulous Jaw. Almquist and Wiksell, Stockholm, 132 pp.Google Scholar
  8. Brannan, E. W., Rockwood, C. A., and Potts, P. (1963) The influence of specific exercises in the prevention of debilitating musculoskeletal disorders. Aerospace Med. 34, 900–906.Google Scholar
  9. Brookes, M. (1971) The Blood Supply of Bone. An Approach to Bone Biology. Butter-worths, London.Google Scholar
  10. Carter, D. R. and Hayes, W. C. (1977) The compressive behavior of bone as a two-phase porous material. J. Bone Joint Surg. 49A, 954–962.Google Scholar
  11. Carter, D. R., Harris, W. H., Vasu, R., and Caler, W. E. (1981) The mechanical and biological response of cortical bone to in vivo strain histories. In Mechanical Properties of Bone, S. Cowin ed. AMD Vol. 45, American Society of Mechanical Engineering, New York, pp. 81–92.Google Scholar
  12. Carter, D. R., Fyhrie, D. P., and Whalen, R. T. (1987) Trabecular bone density and loading history: Regulation of connective tissue biology by mechanical energy. J. Biomech. 20, 785–794.PubMedCrossRefGoogle Scholar
  13. Carter, D. R. (1987) Mechanical loading history and skeletal biology. J. Biomech. 20, 1095–1109.PubMedCrossRefGoogle Scholar
  14. Carter, D. R., Orr, T. E., Fyhrie, D. P., and Schurman, D. J. (1987) Influences of mechanical stress on prenatal and postnatal skeletal development. Clin. Orthopaedics 219, 237–250.Google Scholar
  15. Carter, D. R. and Wong, M. (1988) Mechanical stresses and endochondralossification in the chondroepiphysis. J. Orthopaedic Res. 6, 148–154.CrossRefGoogle Scholar
  16. Cassidy, J. J. and Davy, D. T. (1985) Mechanical and architectural properties in bovine cancellous bone. Trans. Orthopaedic Res. Soc. 31, 354.Google Scholar
  17. Churches, A. E. and Howlett, C. R. (1981) The response of mature cortical bone to controlled time-varying loading. In Mechanical Propoerties of Bone S. Cowin (ed.) AMD Vol. 45. American Society of Mechanical Engineering, New York, pp. 69–80.Google Scholar
  18. Cowin, S. C. and Hegedus, D. M. (1976) Bone remodeling. J. Elasticity 6, 313–325, 337–352.Google Scholar
  19. Cowin, S. C and Nachlinger, R. R. (1978) Bone remodeling III. J. Elasticity 8, 285–295.CrossRefGoogle Scholar
  20. Cowin, S. C. and Van Buskirk, W. C. (1978) Internal bone remodeling induced by a medullary pin. J. Biomech. 11, 269–275.PubMedCrossRefGoogle Scholar
  21. Cowin, S. C. and Van Buskirk, W. C. (1979) Surface remodeling induced by a medullary pin. J. Biomech. 12, 269–276.PubMedCrossRefGoogle Scholar
  22. Cowin, S. C. (ed.) (1981) Mechanical Properties of Bone, ASME Publication No. AMD Vol. 45.Google Scholar
  23. Cowin, S. C. (1983) The mechanical and stress adaptive properties of bone. Ann. Biomed. Eng. 2, 263–295.CrossRefGoogle Scholar
  24. Cowin, S. C. (1984) Modeling of the stress adaptation process in bone. Cal. Tissue Int. 36 (Suppl.), S99 - S104.Google Scholar
  25. Cowin, S. C., Hart, R. T., Balser, J. R., and Kohn, D. H. (1985) Functional adaptation in long bones: Establishing in vivo values for surface remodeling rate coefficients. J. Biomech. 18, 665–684.PubMedCrossRefGoogle Scholar
  26. Cowin, S. C. (1986) Wolff’s law of trabecular architecture at remodeling equilibrium. J. Biomech. Eng. 108, 83–88.PubMedCrossRefGoogle Scholar
  27. Cowin, S. C and Van Buskirk, W. C. (1986) Thermodynamic restrictions on the elastic constants of bone. J. Biomech. Eng. 108, 83–88.PubMedCrossRefGoogle Scholar
  28. Cowin, S. C., Van Buskirk, W. C., and Ashman, R. B. (1987) Properties of bone. In Handbook of Bioengineering, R. Skalak and S. Chien (eds.) McGraw-Hill, New York, pp. 2. 1–2. 27.Google Scholar
  29. Cowin, S. C. (1988) Strain assessment by bone cells. In Tissue Engineering, R. Skalak and C. F. Fox (eds.) Alan Liss, New York, pp. 181–188.Google Scholar
  30. Cowin, S. C., Sadegh, A. M., and Luo, G. M. (1992) An evolutionary Wolff’s law for trabecular architecture. J. Biomech. Eng. 114, 129–136.PubMedCrossRefGoogle Scholar
  31. Crowningshield, R. D. and Pope, M. H. (1974) The response of compact bone in tension at various strain rates. Ann. Biomed. Eng. 2, 217–225.CrossRefGoogle Scholar
  32. Culmann, C. ( 1866 and 1875) Die Graphische Statik. 1st edition, Meyer und Zeller, Zurich.Google Scholar
  33. Currey, J. D. (1964) Three analogies to explain the mechanical properties of bone. Biorheology 2, 1–10.Google Scholar
  34. Dietrick, J. E., Whedon, G., and Shorr, E. (1948) Effects of immobilization upon various metabolic and physiological functions of normal man. Am. J. Med. 4, 3–36.CrossRefGoogle Scholar
  35. Dintenfass, L. (1963) Rheology of synovial fluid and its role in joint lubrication. Proc. Int. Congress Rheolog. 4, 489.Google Scholar
  36. Dowson, D., Longfield, M., Walker, P., and Wright, V. (1968) An investigation of the friction and lubrication in human joints. Proc. Institution Mech. Eng. (London) 181, Part 3J, 45–54.Google Scholar
  37. Dowson, D. and Whoms, T. L. (1968) Effect of surface quality upon the traction characteristics of lubricated cylindrical contacts. Proc. Institution Mech. Eng. (London) 182, Part 1, 292–299.Google Scholar
  38. Evans, F. G. (1957) Stress and Strain in Bones. Their Relation to Fractures and Osteogenesis. C. C. Thomas, Springerfield, I I.Google Scholar
  39. Evans, F. G. (1969) The mechanical properties of bone. Artificial Limbs 13, 37–48.PubMedGoogle Scholar
  40. Evans, F. G. (1973) Mechanical Properties of Bone. Charles C. Thomas, Springfield, IL.Google Scholar
  41. Fein, R. S. (1967) Are synovial joints squeeze film lubricated? Proc. Inst. Mech. Eng. 181, 125–128.Google Scholar
  42. Firoozbakhsh, K. and Cowin, S. C. (1980) Devolution of inhomogeneities in bone structure— Predictions of adpative elasticity theory. J. Biomech. Eng. 102, 287–293.PubMedCrossRefGoogle Scholar
  43. Frost, H. M. (1964) The Laws of Bonre Structure. Charles C. Thomas, Springfield, IL.Google Scholar
  44. Fukada, E. and Yasuda, I. (1957) Piezoelectric effect of bone. J. Physical. Soc. Jpn. 12, 1158–1162.CrossRefGoogle Scholar
  45. Fukada, E. (1968) Mechanical deformation and electrical polarization in biological substances. Biorheology 5, 199–208.PubMedGoogle Scholar
  46. Fung, Y. C. (1972) Stress-strain history relations of soft tissues in simple elongation. In Biomechanics: Its Foundations and Objectives. Prentice-Hall, Englewood Cliffs, NJ, pp. 181–208.Google Scholar
  47. Fung, Y. C. (1990) Biomechanics: Motion, Flow, Stress, and Growth. Springer-Verlag, New York.Google Scholar
  48. Fyhrie, D. P. and Carter, D. R. (1985) A unifying principle relating stress state to trabecular bone morphology. Trans. Orthopaedic Res. Soc. 31, 337.Google Scholar
  49. Gjelsvik, A. (1973) Bone remodeling and piezoelectricity. I and II. J. Biomech. 6, 69–77, 187–193.Google Scholar
  50. Glücksmann, A. (1938) Studies on bone mechanics in vitro. I. Influence of pressure on orientation of structure. Anat. Record 72, 97–115.CrossRefGoogle Scholar
  51. Glücksmann, A. (1939) II. Role of tension and pressure in chodrogenesis. Anat. Record 73, 39–55.CrossRefGoogle Scholar
  52. Glücksmann, A. (1942) The role of mechanical stress in bone formation in vitro. J. Anat. 76, 231–239.PubMedGoogle Scholar
  53. Ham, A. W. (1969) Histology, 6th edition. Lippincott, Philadelphia.Google Scholar
  54. Harrigan, T. and Mann, R. W. (1984) Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J. Mater. Sci. 19, 761–767.CrossRefGoogle Scholar
  55. Hayes, W. C. and Snyder, B. (1981) Toward a gnemtitative formulation of Wolff’s law in trabecular bone. In Mechanical Properties of Bone, S. C. Cowin ed. AMD Vol. 45. American Society of Mechanical Engineers, New York.Google Scholar
  56. Hegedus, D. H. and Cowin, S. C. (1976) Bone remodeling II • Small strain adaptive elasticity. J. Elasticity 6, 337–352.CrossRefGoogle Scholar
  57. Hert, J. A., Liskova, M., and Landa, J. (1971) Reaction of bone to mechanical stimuli. Part 1. Continuous and intermittent loading of tibia in rabbit. Folia Morphol. 19, 290–317.Google Scholar
  58. Hert, J., Sklenska, A., and Liskova, M. (1971) Reaction of bone to mechanical stimuli. Part 5. Effect of intermittent stress on the rabbit tibia after resection of the pripheral nerves. Folia Morphol. 19, 378–387.Google Scholar
  59. Hoffman, 0. (1967) The brittle strength of orthotropic materials. J. Composite Mater. 1, 200–207.CrossRefGoogle Scholar
  60. Holmes, M. H. (1986) Finite deformation of soft tissue: Analysis of a mixture model in uniaxial compression. J. Biomech. Eng. 108, 372–381.PubMedCrossRefGoogle Scholar
  61. Hong, S. Z., Wu, Z. K., and Zu, C. M. (1987) Experiments on human vertebrae cervical. Chin. J. Biomed. Eng. 6, 75–83.Google Scholar
  62. Johnson, M. W. and Katz, J. L. (1987) Electromechanical effects in bone. In Handbook of Bioengineering, R. Skalak and S. Chien (eds.) McGraw-Hill, New York, pp. 3. 1–3. 11.Google Scholar
  63. Jones, H. H., Priest, J. D., Hayes, W. C., Tichemor, C. C., and Nagel, D. A. (1977) Humeral hypertrophy in response to exercise. J. Bone Joint Surg. A 59, 204–208.Google Scholar
  64. Justus, R. and Luft, J. H. (1970) A mechanochemical hypothesis for bone remodeling induced by mechanical stress. Calcified Tissue Res. 5, 222–235.CrossRefGoogle Scholar
  65. Katz, J. L. and Mow, V. C. (1973) Mechanical and structural criteria for orthopaedic implants. Biomat. Med. Dev. Art. Organs 1, 575–638.Google Scholar
  66. Kazarian, L. E. and van Gierke, H. E. (1969) Bone loss as a result of immobilization and chelation. Clin. Orthopedics 65, 67–75.Google Scholar
  67. Knese, K.-H. (1972) Knochenstruktur als Verbundbau. G. Thieme, Stuttgart.Google Scholar
  68. Kummer, B. K. F. (1972) Biomechanics of bone: Mechanical properties, functional structure, and functional adaptation. In Biomechanics: Its Foundations and Objectives, Y. C. Fung, N. Perrone, and M. Anliker (eds.) Prentice-Hall, Englewood Cliffs, NJ, pp. 237–271.Google Scholar
  69. Kwan, M. K., Lai, W. M., and Mow, V. C. (1984) Fundamentals of fluid transport through cartilage in compression. Ann. Biomedical Eng. 12, 537–558.CrossRefGoogle Scholar
  70. Kwan, M. K., Lai, W. M. and Mow, V. C. (1990) A finite deformation theory for cartilage and other soft hydrated connective tissues. I. Equilibrium results. J. Biomechanics. 23, 145–155.CrossRefGoogle Scholar
  71. Lai, W. M., Hou, J. S., and Mow, V. C. (1991) A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113, 245–258.PubMedCrossRefGoogle Scholar
  72. Lakes, R. S., Katz, J. L., and Sternstein, S. (1979) Viscoelastic properties of wet cortical bone—I. Torsional and biaxial Studies. J. Biomech. 12, 657–678.PubMedCrossRefGoogle Scholar
  73. Lakes, R. S. and Katz, J. L. (1979) Viscoelastic properties of wet cortical bone. II. Relaxation mechanisms. III. A nonlinear constitutive equation. J. Biomech. 12, 679–687, 689–698.Google Scholar
  74. Lanyon, L. B. and Baggott, D. G. (1976) Mechanical function as an influence on the structure and form of bone. J. Bone Joint Surg. B 58, 436–443.Google Scholar
  75. Lew, H. S. and Fung, Y. C. (1970) Formulation of a statistical equation of motion of a viscous fluid in an anisotropic nonrigid porous solid. Int. J. Solids Struct. 6, 1323–1340.CrossRefGoogle Scholar
  76. Linn, F. C. (1967) Lubrication of animal joints: I. The arthrotripsometer. J. Bone Joint Surg. A 49, 1079–1098.Google Scholar
  77. Linn, F. C. and Radin, E. L. (1968) Lubrication of animal joints: III. The effect of certain chemical alterations of the cartilage and lubricant. Arth. Rheum. 11, 674–682.CrossRefGoogle Scholar
  78. Lotz, J. C., Gerhart, T. N., and Hayes, W. C. (1991) Mechanical properties of metaphysical bone in the proximal femur. J. Biomech. 24, 317–329.PubMedCrossRefGoogle Scholar
  79. Lotz, J. C., Cheal, E. J., and Hayes, W. D. (1991) Fracture prediction for the proximal femur using finite element models. Part I: Linear analysis. Part II: Nonlinear analysis. J. Biomech. Eng. 113, 353–365.PubMedCrossRefGoogle Scholar
  80. MacConaill, M. A. (1932) The function of intra-articular fibrocartilages, with special reference to the knee and inferior radio-ulnar joints. J. Anat. 66, 210–227.PubMedGoogle Scholar
  81. Mack, P. B., La Change, P. A., Vost, G. P., and Vogt, F. B. (1967) Bone demineralization of the foot and hand of Gemini IV, V, and VII astronauts during orbital flight. Am. J. Roentgenol. 100, 503–511.Google Scholar
  82. Mak, A. F. (1986) The apparent viscoelastic behavior of articular cartilage—The contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows. J. Biomech. Eng. 108, 123–130.PubMedCrossRefGoogle Scholar
  83. Malcom, L. L. (1976) Frictional and deformational responses of articular cartilage interfaces to static and dynamic loading. Ph.D. thesis, University of California, San Diego, La Jolla, California.Google Scholar
  84. Maroudas, A. (1967) Hyaluronic acid films. Proc. Inst. Mech. Eng. 181, 122–124.Google Scholar
  85. Martin, B. (1972) The effects of geometric feedback in the development of osteoporosis. J. Biomech. 5, 447–455.PubMedCrossRefGoogle Scholar
  86. Martin, R. B. (1984) Porosity and specific surface of bone. CRC Crit. Rev. Biomed. Eng. 10, 179–222.Google Scholar
  87. McCutchen, C. W. (1959) Mechanism of animal joints. Nature 184, 1284–1285.CrossRefGoogle Scholar
  88. McCutchen, C. W. (1962) The frictional properties of animal joints. Wear 5, 1.CrossRefGoogle Scholar
  89. McCutchen, C. W. (1967) Lubrication and wear in living and artificial joints. Proc. Inst. Mech. Eng. 181, 55, Part 3J.Google Scholar
  90. Merz, W. A. and Schenk, R. K. (1970) Quantitative structural analysis of human cancellous bone. Acta Anat. 75, 54–66.PubMedCrossRefGoogle Scholar
  91. Mow, V. C. (1969) The role of lubrication in biomechanical joints. J. Lubr. Technol. Trans. ASME 91, 320–329.CrossRefGoogle Scholar
  92. Mow, V. C., Lipschitz, H., and Glimcher, M. J. (1977) Mechanisms of stress relaxation in articular cartilage Trans. Ortho. Res. Soc. 2, 75.Google Scholar
  93. Mow, V. C., Kuei, S. C., Lai, W. M., and Armstrong, C. G. (1980) Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. J. Biomech. Eng. Trans. ASME 102, 73–84.CrossRefGoogle Scholar
  94. Mow, V. C. and Lai, W. M. (1980) Recent developments in synovial joint biomechanics. SIAM Rev. 22, 275–317.CrossRefGoogle Scholar
  95. Mow, V. C., Ratcliffe, A., and Woo, S. L.-Y. (eds.) (1991) Biomechanics of Diarthroidal Joints, Vols. 1 and 2. Springer-Verlag, New York.Google Scholar
  96. Mow, V. C. and Hayes, W. C. (1991) Basic Orthopaedic Biomechanics. Raven Press, New York.Google Scholar
  97. Oda, M. (1976) Fabrics and their effects on the deformation behaviors of sand. Department of Foundation Engineering, Saitama University.Google Scholar
  98. Oda, M., Konishi, J., and Nemat-Nasser, S. (1980) Some experimentally based fundamental results on the mechanical behavior of granular materials. Geotechnique 30, 479–495.CrossRefGoogle Scholar
  99. Ogston, A. G. and Stanier, J. E. (1953) The physiological function of hyaluronic acid in synovial fluid: Viscous, elastic, and lubrication properties. J. Physiol. 119, 244–252, 253–258.Google Scholar
  100. Patwardham, A. G., Bunch, W. H., Meade, K. P., Vanderby, R., and Knight, G. W. (1986) A biomechanical analog of curve progression and orthotic stabilization in idiopathic scoliosis. J. Biomech. 19, 103–117.CrossRefGoogle Scholar
  101. Pauwels, F. (1948) Die Bedeutung der Bauprinzipien der Stütz-und Bewegungs- apparatus für die Beanspruchung der Röhrenknochen. Z. Anat. 114, 129–166.CrossRefGoogle Scholar
  102. Pauwels, F. (1950) Die Bedeutung der Muskelkräfte für der Regelung der Beanspruchung des Röhrenknochens während der Bewegung der Glieder. Z. Anat. 115, 327–351.CrossRefGoogle Scholar
  103. Pauwels, F. (1968) Gesammelte Abhandlungen zur funktionellen Anatomie des Bewegungsapparates. Springer-Verlag, New York.Google Scholar
  104. Powell, M. J. D. (1965) A method for minimizing a sum of species of nonlinear functions without calculating derivatives. Computer J. 7, 303–307.CrossRefGoogle Scholar
  105. Radin, E. L., Swann, D. A., and Weisser, P. A. Separation of a hyaluronate—free lubricating factor from synovial fluid. (1970) Nature 228, 377.Google Scholar
  106. Reilly, D. T. and Burstein, A. H. (1974) The mechanical properties of cortical bone. J. Bone Joint Surg. A 56, 1001–1022.Google Scholar
  107. Rhinelander, F. W. (1972) Circulation of bone. In The Biochemistry and Physiology of Bone, 2nd edition, G. H. Bourne (ed.) Academic, New York, pp. 2–78.Google Scholar
  108. Roux, W. (1895) Gasammelte Abhandlungen über Entwicklungsmechanik der Organismen Vols. I and I I. Engelmann, Leipzing.Google Scholar
  109. Rydevik, B., Bränemark, P.-I., and Skalak, R. (eds.) (1990) International Workshop on Osseointegration in Skeletal Reconstruction and Joint Replacement. Institute for Applied Biotechnology, Göteborg, Sweden.Google Scholar
  110. Schmitt, H. P. (1968) Über die Beiehungen zwischen Dichte und Festigkeit des Knochens am Beispiel des menschlichen Femur. Z. Anat. 127, 1–24.CrossRefGoogle Scholar
  111. Sedlin, E. (1985) A rheological model for cortical bone. Suppl. 83, Acta Scand. Ortho. 36.Google Scholar
  112. Skalak, R. and Chien, S. (eds.) (1987) Handbook of Bioengineering. McGraw-Hill, New York.Google Scholar
  113. Skalak, R. and Fox, C. F. (eds.) (1988) Tissue Engineering. Alan Liss, New York.Google Scholar
  114. Spilker, R. L., Jakobs, D. M., and Schultz, A. B. (1986) Material constants for a finite element model of the intervertebral disk with a fiber composite amulus. J. Biomech. Eng. 108, 1–11.Google Scholar
  115. Stone, J. L., Beaupre, G. S., and Hayes, W. O. (1983) Multiaxial strength characteristics of trabecular bone. J. Biomech. 16, 743–752.PubMedCrossRefGoogle Scholar
  116. Stone, J. L., Snyder, B. D., Hayes, W. C., and Strang, G. L. (1984) Three-dimensional stress morphology analysis of trabecular bone. Trans. Orthopedic Res. Soc. 30, 199.Google Scholar
  117. Tencer, A. F., Ahmed, A. M., and Burke, D. C. (1982) Some static mechanical properties of the lumbar intervertebral joint, intact and injured. J. Biomech. Eng. 104.Google Scholar
  118. Torino, A. J., Davidson, C. L., Klopper, P. J., and Lindau, L. A. (1976) Protection from stress in bone and its effects: Experiments with stainless steel and plastic plates in dogs. J. Bone Joint Surg. B 58, 107–113.Google Scholar
  119. Torzilli, P. A. and Mow, V. C. (1972) On the fundamental fluid transport mechanisms through normal and pathological articular cartilage during function, parts I and II. J. Biomech. 9, 541–522 (this is in error), 587–606.Google Scholar
  120. Turner, C. H. (1989) Yield behavior of bovine cancellous bone. J. Biomech. Eng. 11, 257–260.Google Scholar
  121. Unsworth, A., Dowson, D., and Wright, V. (1975) The frictional behavior of human synovial joints—Part I: Natural joints. J. Lub. Tech. Trans. ASME 97, 369–376.CrossRefGoogle Scholar
  122. Walker, P. S., Dowson, D., Longfield, M. D., and Wright, V. (1968) “Boosted lubrication” in synovial joints by fluid entrapment and enrichment. Ann. Rheum. Dis. 27, 512–520.Google Scholar
  123. Wertheim, G. (1847) Memoire sur l’elasticité et la cohésion des principaux tissus du corps humain. Ann. Chim. Phys. 21, 385–414.Google Scholar
  124. Whitehouse, W. J. (1974) The quantitative morphology of anisotropic trabecular bone. J. Microsc. 101, 153–168.PubMedCrossRefGoogle Scholar
  125. Whitehouse, W. J. and Dyson, E. D. (1974) Scanning electron microscope studies of trabecular bone in the proximal end of the human femur. J. Anat. 118, 417–444.PubMedGoogle Scholar
  126. Wolff, J. (1869) Über die bedeutung der Architektur der spongiösen Substanz. Zentralblatt für die medizinische Wissenschaft. VI. Jahrgang. pp. 223–234.Google Scholar
  127. Wolff, J. (1870) Über die innere Architektur der Knochen und ihre Bedeutung für die Frage vom Knochenwachstum. Arch. pathol. Anat. Physiol. klinische Medizin (Virchovs Arch.) 50 389–453.Google Scholar
  128. Wolff, J. (1884) Das Gesetz der Transformation der inneren Architektur der Knochen bei pathologischen Veränderungen der äusseren Knochenform. Sitz, Ber. Preuss. Akad. Wiss. 22. Sitzg., phys.-math. Kl.Google Scholar
  129. Wolff, J. (1892) Das Gesetz der Transformation der Knochen. Hirschwald, Berlin.Google Scholar
  130. Wonder, C. C., Briney, S. R., Kral, M., and Skavgstad, C. (1960) Growth of mouse femurs during continual centrifugation. Nature 188, 151–152.CrossRefGoogle Scholar
  131. Woo, S. L.-Y., Akeson, W. H., Coutts, R. D., Rutherford, L., Doty, D., Jemmott, G. F., and Amiel, D. (1976) A comparison of cortical bone atrophy secondary to fixation with plates with large differences in bending stiffness. J. Bone Joint Surg. A 58, 190–195.Google Scholar
  132. Woo, S. L.-Y., Simon, B. R., Kuei, S. C., and Akeson, W. H. (1979) Quasi-linear viscoelastic properties of normal articular cartilage. J. Biomech. Eng. 102, 85–90.CrossRefGoogle Scholar
  133. Woo, S. L.-Y., Gomez, M. A., Woo, Y.-K., and Akeson, W. H. (1982) Mechanical properties of tendons and ligaments. II. The relationships of immobilization and exercise on tissue remodeling. Biorheology 19, 397–408.PubMedGoogle Scholar
  134. Woo, S. L.-Y. and Buckwalter, J. A. (eds.) (1988) The Injury and Repair of Musculoskeletal Soft Tissues. American Academy of Orthopedic Surgeons, Park Ridge, IL.Google Scholar
  135. Woo, S. L.-Y. and Seguchi, Y. (eds.) (1989) Tissue Engineering. ASME BIO Vol. 14. American Society of Mechanical Engineers, New York.Google Scholar
  136. Woo, S. L.-Y., and Wayne, J. S. (1990). Mechanics of the anterior cruciate ligament and its contribution to knee kinematics. Appl. Mech. Rev. 43, 5142–5149.CrossRefGoogle Scholar
  137. Yamada, H. (1970) Strength of Biological Materials, translated by F. G. Evans. Williams and Wilkins, Baltimore.Google Scholar
  138. Young, J. Z. (1957) The Life of Mammals. Oxford University Press, London.Google Scholar
  139. Young, J. T., Vaishnav, R. N., and Patel, D. J. (1977). Nonlinear anisotropic viscoelastic properties of canine arterial segments. J. Biomech. 10, 549–559.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Yuan-Cheng Fung
    • 1
  1. 1.Department of BioengineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations