Advertisement

Biomechanics pp 427-465 | Cite as

Heart Muscle

  • Yuan-Cheng Fung
Chapter

Abstract

Both myocardial and skeletal muscle cells are striated. Their ultrastructures are similar. Each cell is made up of sarcomeres (from Z line to Z line), containing interdigitating thick myosin filaments and thin actin filaments. The basic mechanism of contraction must be similar in both; but important differences exist.

Keywords

Cardiac Muscle Papillary Muscle Heart Muscle Muscle Length Sarcomere Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, B. C. and Mommaerts, W. F. H. M. (1959) Study of inotropic mechanisms in the papillary muscle preparation. J. Gen. Physiol. 42, 533–551.PubMedCrossRefGoogle Scholar
  2. Allen, D. G. (1985) The cellular basis of the length-tension relaton in cardiac muscle. J. Mol. Cell Cardiol. 17, 821–840.PubMedCrossRefGoogle Scholar
  3. Berne, R. M. and Levy, M. N. (1972) Cardiovascular Physiology, 2nd edition. C. V. Mosby, St. Louis.Google Scholar
  4. Bogen, D. K. (1987) Strain-energy descriptions of biological swelling. I: Single Fluid Compartment Models; II: Multiple Fluid Compartment Models. J. Biomech. Eng. 109, 252–262.PubMedCrossRefGoogle Scholar
  5. Borelli, Giovanni Alfonso (1680) De Motu Animalium, first half published posthumously in 1680, second half published in 1681. Translated by Paul Maquet under the title of On The Movement of Animals. Springer-Verlag, Berlin (1989).Google Scholar
  6. Bornhorst, W. J. and Mirandi, J. E. (1969) Comparison of Caplan’s irreversible thermodynamics theory of muscle contraction with chemical data. Biophys. J. 9, 654–665.PubMedCrossRefGoogle Scholar
  7. Brady, A. J. (1965) Time and displacement dependence of cardiac contractility: Problems in defining the active state and force-velocity relations. Fed. Proc. 24, 1410 1420.Google Scholar
  8. Brady, A. (1979) Mechanical properties of cardiac fibers. In Handbook of Physiology, Sec. 2, The Circulation System, Vol. 1: The Heart. American Physiological Society, Bethesda, MD, Chap. 12, pp. 461–474.Google Scholar
  9. Brutsaert, D. I. and Sonnenblick, E. H. (1969) Force-velocity-length-time relations of the contractile elements in heart muscle of the cat. Circulation Res. 24, 137–149.PubMedCrossRefGoogle Scholar
  10. Brutsaert, D. L., Victor, A. C., and Ponders, J. H. (1972) Effect of controlling the velocity of shortening on force-velocity-length and time relations in cat papillary muscle velocity clamping. Circulation Res. 30, 310–315.PubMedCrossRefGoogle Scholar
  11. Caulfield, J. B. and Borg, T. K. (1979) The collagen network of the heart. Lab. Invest. 40, 364–372.PubMedGoogle Scholar
  12. Daniels, M., Noble, M., ter Keurs, H., and Wohlfart, B. (1984) Velocity of sarcomere shortening in rat cardiac muscle: Relationship to force, saromere length, calcium, and time. J. Physiol. 355, 367–381.Google Scholar
  13. Edman, K. A. P. and M. Johannsson (1976) The contractile state of rabbit papillary muscle in relation to stimulation frequency. J. Physiol. 245, 565–581.Google Scholar
  14. Edman, K. A. P. and Nilsson, E. (1968) The mechanical properties of myocardial contraction studied at a constant length of the contractile element. Acta Physiol. Scand. 72, 205–219.PubMedCrossRefGoogle Scholar
  15. Edman, K. A. P. and Nilsson, E. (1972) Relationships between force and velocity of shortening in rabbit papillary muscle. Acta Physiol. Scand. 85, 488–500.PubMedCrossRefGoogle Scholar
  16. Ford, L. E., Huxley, A. F., and Simmons, R. M. (1981) The relation between stiffness and filament overlap in stimulated frog muscle fibers. J. Physiol. 311, 219–249.PubMedGoogle Scholar
  17. Frank, J. S. and Langer, G. A. (1974) The myocardial interstitium: Its structure and its role in ionic exchange. J. Cell Biol. 60, 596–601.CrossRefGoogle Scholar
  18. Fung, Y. C. (1970) Mathematical representation of the mechanical properties of the heart muscle. J. Biomech. 3, 381–404.PubMedCrossRefGoogle Scholar
  19. Fung, Y. C. (1971a) Comparison of different models of the heart muscle. J. Biomech. 4, 289–295.PubMedCrossRefGoogle Scholar
  20. Fung, Y. C. (1971b) Muscle controlled flow. In Proc. 12th Midwest Mechanics Conf. University of Notre Dame Press, Notre Dame, IN, pp. 33–62.Google Scholar
  21. Fung, Y. C. (1972) Stress—strain-history relations of soft tissues in simple elongation. In Biomechanics, Its Foundations and Objectives, Y. C. Fung, N. Perrone, and M. Anliker (eds.) Prentice-Hall, Englewood Cliffs, NJ, pp. 191–208.Google Scholar
  22. Gay, W. A. and Johnson, E. A. (1967) Anatomical evaluation of the myocardial length-tension diagram. Circulation Res. 21, 33–43.PubMedCrossRefGoogle Scholar
  23. Glass, L. Hunter, P., and McCulloch, A. (eds.) (1991) Theory of Heart. Springer-Verlag, New York.Google Scholar
  24. Green, A. E. and Adkins, J. E. (1960) Large Elastic Deformations. Oxford University Press, London.Google Scholar
  25. Guccione, J. M. and McCulloch, A. (1991) Finite element modeling of ventricular mechanics. In Theory of Heart, Glass et al. (eds.) pp. 121–144.Google Scholar
  26. Guccione, J. M., McCulloch, A. D., and Waldman, L. K. (1991) Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 113, 42–55.PubMedCrossRefGoogle Scholar
  27. Hefner, L. L. and Bowen, T. E., Jr. (1967) Elastic components of cat papillary muscle. Am. J. Physiol. 212, 1221–1227.PubMedGoogle Scholar
  28. Hill, A. V. (1949) The abrupt transition from rest to activity in muscle. Proc. Roy. Soc. London B 136, 399–420.CrossRefGoogle Scholar
  29. Horowitz, A., Lanir, Y., Yin, F. C. P., Perl, M., Sheinman, I., and Strumpf, R. K. (1988) Structural three-dimensional constitutive law for the passive myocardium. J. Biomech. Eng. 110, 200–207.Google Scholar
  30. Hort, W. (1960) Makroskopische and mikrometrische Untersuchungen am Myodard verschieden stark gefüllter linker Kammern. Virchows Arch [Pathol Anat.] 333, 523–564.CrossRefGoogle Scholar
  31. Huisman, R. M., Sipkema, P., Westerhof, N., and Elzinga, G. (1980) Comparison of model used to calculate left ventricle wall force. Med. Biol. Eng. Comput. 18, 122–144.Google Scholar
  32. Humphrey, J. D. and Yin, F. C. P. (1988) Biaxial mechanical behavior of excised epicardium. J. Biomech. Eng. 110, 349–351.PubMedCrossRefGoogle Scholar
  33. Humphrey, J. D., Strumpf, R. H., and Yin, F. C. P. (1990) Determination of a constitutive relation for passive myocardium. I. A nero-functional form, II. Parameter identification. J. Biomech. Eng. 112, 333–339, 340–346.Google Scholar
  34. Humphrey, J. Strumpf, R. Halperin, H. and Yin, F. (1991) Toward a stress analysis in the heart. In Theory of Heart,Glass et al. (eds.) Springer-Verlag, New York, pp. 59–75.Google Scholar
  35. Huntsman, L. L., Rondinone, J. F., and Martyn, D. A. (1983) Force-length relations in cardiac muscle segments. Am. J. Physiol. 244, H701 — H707.PubMedGoogle Scholar
  36. Huxley, H. E. (1957) The double array of filaments in cross-striated muscle. J. Biophys. Biochem. Cytol. 3, 631–648.PubMedCrossRefGoogle Scholar
  37. Huxley, H. E. (1963) Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J. Mol. Biol. 7, 281–308.PubMedCrossRefGoogle Scholar
  38. Huxley, H. E. (1969) The mechanism of muscular contraction. Science 164, 1356–1366.PubMedCrossRefGoogle Scholar
  39. Jewell, B. R. (1977) A reexamination of the influence of muscle length on myocardial performance. Circulation Res. 40, 221–230.PubMedCrossRefGoogle Scholar
  40. Korecky, B. and Rakusan, K. (1983) Effects of hemodynamic load on myocardial fiber orientation. In Cardiac Adaptation to Hemodynamic Overload, Training, and Stress, International Erwin Riesch Symp., Tübingen, September 19–22, 1982, Dr. S. Steinkopff Verlag.Google Scholar
  41. Kreuger, J. W. and Pollack, G. H. (1975) Myocardiac sarcomere dynamics during isometric contraction. J. Physiol. (London) 251, 627–643.Google Scholar
  42. Lanir, Y. (1983) Constitutive equatons for fibrous connective tissue. J. Biomech. 16, 1–12.PubMedCrossRefGoogle Scholar
  43. Lee, M.-C., LeWinter, M. M., Freeman, G., Shabetai, R., and Fung, Y. C. (1985) Biaxial mechanical properties of the pericardium in normal and volume overload dogs. Am. J. Physiol. 249, H222 — H230.Google Scholar
  44. Martyn, D. A., Rondinone, J. F., and Huntsman, L. L. (1983) Myocardial segment velocity at a low load: Time, length, and calcium dependence. Am. J. Physiol. 244, H708 — H714.Google Scholar
  45. McCulloch, A. D., Smail, B. H., and Hunter, P. J. (1989) Regional left ventricular epicardial deformation in the passive dog heart. Circulation Res. 64, 721–733.Google Scholar
  46. Nevo, E. and Lanir, Y. (1989) Structural finite deformation model of the left ventricle during diastole and systole. J. Biomech. Eng. 111, 343–349.CrossRefGoogle Scholar
  47. Noble, M. I. M., Bowen, T. E., and Hefner, L. L. (1969) Force-velocity relationship of cat cardiac muscle, studied by isotonic and quick-release techniques. Circulation Res. 24, 821–834.Google Scholar
  48. Parmely, W. W. and Sonnenblick, E. H. (1967) Series elasticity in heart muscle; its relation to contractile element velocity and proposed muscle models. Ciruclation Res. 20, 112–123.CrossRefGoogle Scholar
  49. Parmley, W. W., Brutsaert, D. L., and Sonnenblick, E. H. (1969) Effects of altered loading on contractile events in isolated cat papillary muscle. Circulation Res. 24, 521–532.PubMedCrossRefGoogle Scholar
  50. Patterson, S. W., Piper, H., and Starling, E. H. (1914) The regulation of the heart beat. J. Physiol. 48, 465–513.Google Scholar
  51. Peachey, L. D. (1965) The sarcoplasmic reticulum and transverse tubles of the frog sartorius. J. Cell Biol. 25, 209–231.PubMedCrossRefGoogle Scholar
  52. Pietrabissa, R., Montevecchi, F. M., and Fumero, R. (1991) Mechanical characterization of a model of a multicomponent cardiac fibre. J. Biomed. Eng. 13, 407–414.Google Scholar
  53. Pinto, J. G. and Fung, Y. C. (1973) Mechanical properties of the heart muscle in the passive state. J. Biomech. 6 596–616.Google Scholar
  54. Pinto, J. G. and Fung, Y. C. (1973) Mechanical properties of stimulated papillary muscle in quick-release experiments. J. Biomech. 6 617–630.Google Scholar
  55. Pinto, J. G. and Patitucci, P. (1977) Creep in cardiac muscle. Am. J. Physiol. 232, H553 — H563.PubMedGoogle Scholar
  56. Pinto, J. G. (1987) A constitutive description of contracting papillary muscle and its implications to the dynamics of the intact heart. J. Biomech. Eng. 109, 181–191.PubMedCrossRefGoogle Scholar
  57. Pinto, J. G. and Boe, A. (1991) A method to characterize the passive elasticity incontracting muscle bundles. J. Biomech. Eng. 113, 72–78.PubMedCrossRefGoogle Scholar
  58. Pollack, G. H., Huntsman, L. L., and Verdugo, P. (1972) Circulation Res. 31, 569–579.PubMedCrossRefGoogle Scholar
  59. Robinson, T. F. (1983) The physiological relationship between connective tissue and contractile elements in heart muscle. The Einstein Q. 1, 121–127.Google Scholar
  60. Robinson, T. F., Cohen-Gould, L., and Factor, S. M. (1983) Skeletal framework of mammalian heart muscle. Lab. Invest. 49, 482–498.PubMedGoogle Scholar
  61. Ross, Jr., J., Covell, J. W., Sonnenblick, E. H., and Braunwald, E. (1966) Contractile state of the heart. Circulation Res. 18, 149–163.CrossRefGoogle Scholar
  62. Schmid-Schönbein, G. W., Skalak, R. C., Engelson, E. T., and Zweifach, B. W. (1986) Microvascular network anatomy in rat skeletal muscle. In Microvascular Network: Experimental and Theoretical Studies, A. S. Popel and P. C. Johnson (eds.) Karger, Basel, pp. 38–51.Google Scholar
  63. Schmid-Schönbein, G. W., Skalak, T. C., and Sutton, D. W. (1989) Bioengineering analysis of blood flow in resting skeletal muscle. In Microvascular Mechanics, J.-S. Lee and T. C. Skalak (eds.) Springer-Verlag, New York, pp. 65–99.CrossRefGoogle Scholar
  64. Sommer, J. R. and Johnson, E. A. (1979) Ultrastructure of cardiac muscle. In Handbook of Physiology, Sec. 2, The Cardiovascular System, Vol. 1: The Heart. American Physiological Society, Bethesda, MD, Chap. 5, pp. 113–186.Google Scholar
  65. Sonnenblick, E. H. (1964) Series elastic and contractile elements in heart muscle: Changes in muscle length. Am. J. Physiol. 207, 1330–1338.PubMedGoogle Scholar
  66. Sonnenblick, E. H., Ross, J. Jr., Covell, J. W., Spotnitz, H. M., and Spiro, D. (1967) Ultrastructure of the heart in systole and diastole: Changes in sarcomere length. Circulation Res. 21, 423–431.PubMedCrossRefGoogle Scholar
  67. Taber, L. A. (1991) On a nonlinear theory for muscle shells: Part I: Theoretical Development. Part II: Applicaton to the Beating Left Ventricle. J. Biomech. Eng. 113, 56–62.PubMedCrossRefGoogle Scholar
  68. Ter Keurs, H. E. D. J., Rijnsburger, W. H., van Heuningen, R., and Nagelsmit, M. (1980) Tension development and sarcomere length in rat cardiac trabecular. Circulation Res. 46, 703–714.PubMedCrossRefGoogle Scholar
  69. Ter Keurs, H. E. D. J., and Tyberg, J. V. (eds.) (1987) Mechanics of the Circulation, Martininus Nijhoff, Pub.Google Scholar
  70. Waldman, L. K. (1991) Multidimensional measurement of regional strains in the intact heart. In Theory of Heart, Glass et al. (eds.) Springer-Verlag, New York, pp. 145–174.CrossRefGoogle Scholar
  71. Waldman, L. K., Fung, Y. C., and Covell, J. W. (1985) Transmural myocardial deformation in the canine left ventricle: Normal in vivo three-dimensional finite strains. Circulation Res. 57, 152–163.PubMedCrossRefGoogle Scholar
  72. Waldman, L. K., Nosan, D., Villarreal, F. J., and Covell, J. W. (1988) Relation between transmural deformaton and local myofiber direction in canine left ventricle. Circulation Res. 63, 550–652.PubMedCrossRefGoogle Scholar
  73. Warwick, R. and Williams, P. L. (eds.) Gray’s Anatomy. 35th British Edition. W. B. Saunders, Philadelphia.Google Scholar
  74. Whalen, W. J., Nair, P., and Ganfield, R. A. (1973) Measurements of oxygen tension in tissues with a micro oxygen electrode. Microvasc. Res. 5, 254–262.PubMedCrossRefGoogle Scholar
  75. Yin, F. C. P. (1981) Ventricular wall stress. Circulation Res. 49, 829–842.PubMedCrossRefGoogle Scholar
  76. Yin, F. C. P., Strumpf, R. K., Chew, P. H., and Zeger, S. L. (1987) Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J. Biomech. 20, 577–589.PubMedCrossRefGoogle Scholar
  77. Zahalak, G. I. (1986) A comparison of the mechanical behavior of the cat coleus muscle with a distribution-moment model. J. Biomech. Eng. 108, 131–140.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Yuan-Cheng Fung
    • 1
  1. 1.Department of BioengineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations