Reconstitution of Muscle Calcium Channel Function in Bilayer Membranes

From the First Steps to Results
  • Dieter J. Pelzer
  • Terence F. McDonald
  • Siegried Pelzer


Ion channels are membrane proteins that are used by the cell as signal transducers and as a pathway for the rapid entry of some regulatory compounds such as calcium ions. The behavior of a single channel can be monitored because, when open, the channel passes ~106 ions/sec. This is enough current to measure electrically using patch-clamp techniques (Hamill et al., 1981; Sakmann and Neher, 1984). With standard voltage-clamp techniques (Hille, 1984), it was essentially impossible to measure the small currents generated by the opening of single channels because the signal is too small in comparison to the noise generated by the rest of the system. Patch-clamp recordings are made from very small membrane areas; this improves the signal-to-noise ratio and therefore makes it possible to measure the small single-channel currents.


Skeletal Muscle Calcium Channel Bilayer Membrane Planar Lipid Bilayer Rabbit Skeletal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, B. A., Tanabe, T., Mikami, A., Numa, S., and Beam, K. G. 1990. Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature, 346: 569572.Google Scholar
  2. Adamson, A. W. 1976. Physical Chemistry of Surfaces. Wiley, New York.Google Scholar
  3. Affolter, H., and Coronado, R. 1985. Agonists Bay-K8644 and CGP-28392 open calcium channels reconstituted from skeletal muscle transverse tubules. Biophys. J., 48: 341–347.PubMedCrossRefGoogle Scholar
  4. Affolter, H., and Coronado, R. 1986. Sidedness of reconstituted calcium channels from muscle transverse tubules as determined by D600 and D890 blockade. Biophys. J., 49: 767–771.PubMedCrossRefGoogle Scholar
  5. Akabas, M. H., Cohen, F. S., and Finkelstein, A. 1984. Separation of the osmotically driven fusion event from vesicle-planar membrane attachment in a model system for exocytosis. J. Cell Biol., 98: 1063–1071.PubMedCrossRefGoogle Scholar
  6. Almers, W., and McCleskey, E. W. 1984. Non-selective conductance in calcium channels of frog muscle: Calcium selectivity in a single-file pore. J. Physiol., 353: 585–608.PubMedGoogle Scholar
  7. Almers, W., Fink, R., and Palade, P. T. 1981. Calcium depletion in frog muscle tubules: The decline of calcium current under maintained depolarization. J. Physiol., 312: 177–207.PubMedGoogle Scholar
  8. Alvarez, O. 1986. How to set up a bilayer system. In: Ion Channel Reconstitution, pp. 115–130. Ed. by Miller, C. Plenum Press, New York.Google Scholar
  9. Armstrong, C. L., and Bezanilla, F. 1977. Inactivation of the sodium channel. II. Gating current experiments. J. Gen. Physiol., 70: 567–590.PubMedCrossRefGoogle Scholar
  10. Arreola, J., Calvo, J., Garcia, M. C., and Sanchez, J. A. 1987. Modulation of calcium channels of twitch skeletal muscle fibres of the frog by adrenaline and cyclic adenosine monophosphate. J. Physiol., 393: 307–330.PubMedGoogle Scholar
  11. Ashley, R. H., Montgomery, R. A. P., and Williams, A. J. 1986. Incorporation of several calcium channels from sheep and rabbit heart into planar lipid bilayers. J. Physiol., 381: 115 P.Google Scholar
  12. Bangham, A. D., Standish, M. M., and Watkins, J. C. 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 13: 238–252.PubMedCrossRefGoogle Scholar
  13. Barhanin, J., Coppola, T., Schmid, A., Borsotto, M., and Lazdunski, M. 1987. The calcium channel antagonists receptor from rabbit skeletal muscle. Reconstitution after purification and subunit characterization. Eur. J. Biochem., 164: 525–531.PubMedCrossRefGoogle Scholar
  14. Barrett, J. N., Magleby, K. L., and Pallotta, B. S. 1982. Properties of single calcium-activated potassium channels in cultured rat muscle. J. Physiol., 331: 211–230.PubMedGoogle Scholar
  15. Beam, K. G., and Knudson, C. M. 1988. Calcium currents in embryonic and neonatal mammalian skeletal muscle. J. Gen. Physiol., 91: 781–798.PubMedCrossRefGoogle Scholar
  16. Bean, B. P. 1989. Classes of calcium channels in vertebrate cells. Annu. Rev. Physiol., 51: 367–384.PubMedCrossRefGoogle Scholar
  17. Benham, C. D., Hess, P., and Tsien, R. W. 1987. Two types of calcium channels in single smooth muscle cells from rabbit ear artery studied with whole-cell and single-channel recordings. Circ. Res., 61(Suppl.I):1–10-I-16.Google Scholar
  18. Beyer, T., Gjörstrupp, P. and Ravens, U. 1985. Comparing the cardiac effects of the dihydropyridinederivative H 160/51 with those of the “Ca-agonist” Bay K8644. Naunyn-Schmiedeberg’s Arch. Pharmacol. 330, Suppl.: R34.Google Scholar
  19. Biel, M., Ruth, P., Bosse, E., Hullin, R., Stühmer, W., Flockerzi, V., and Hofmann, F. 1990. Primary structure and functional expression of a high voltage activated calcium channel from rabbit lung. FEBS Lett., 269: 409–412.PubMedCrossRefGoogle Scholar
  20. Boheim, G., Hanke, W., Methfessel, C., Eibl, H., Kaupp, U. B., Maelicke, A., and Schultz, J. E. 1982. Membrane reconstitution below lipid phase transition temperature. In: Transport in Biomembranes: Model Systems and Reconstitution, pp. 87–98. Ed. by Antolini, R., Gliozzi, A., and Gorio, A. Raven Press, New York.Google Scholar
  21. Borsotto, M., Barhanin, J., Norman, R. I., and Lazdunski, M. 1984. Purification of the dihydropyridine receptor of the voltage-dependent Ca’ channel from skeletal muscle transverse tubules using (+) [3H] PN 200–110. Biochem. Biophys. Res. Commun., 122: 1357–1366.PubMedCrossRefGoogle Scholar
  22. Bosse, E., Regulla, S., Biel, M., Ruth, P., Meyer, H. E., Flockerzi, V., and Hofmann, F. 1990. The cDNA and deduced amino acid sequence of the gamma subunit of the L-type calcium channel from rabbit skeletal muscle. FEBS Lea., 267: 153–156.CrossRefGoogle Scholar
  23. Bossu, J. L., Fagni, L., and Feltz, A. 1989. Voltage-activated calcium channels in rat Purkinje cells maintained in culture. Pflügers Arch., 414: 92–94.PubMedCrossRefGoogle Scholar
  24. Brown, A. M. Kunze, D. L., and Yatani, A. 1984. The agonist effect of dihydropyridines on Ca channels. Nature. 311: 570–572.Google Scholar
  25. Brown, A. M., Kunze, D. L., and Lux, H. D. 1986a. Single calcium channels and their inactivation. Membr. Biochem., 6: 73–81.PubMedCrossRefGoogle Scholar
  26. Brown, A. M., Kunze, D. L., and Yatani, A. 1986b. Dual effects of dihydropyridines on whole cell and unitary calcium currents in single ventricular cells of guinea-pig. J. Physiol., 379: 495–514.PubMedGoogle Scholar
  27. Brum, G., Flockerzi, V., Hofmann, F., Osterrieder, W., and Trautwein, W. 1983. Injection of catalytic subunit of cAMP-dependent protein kinase into isolated cardiac myocytes. Pflügers Arch., 398: 147154.Google Scholar
  28. Campbell, K. P., Leung, A. T., and Sharp, A. H. 1988a. The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci., 11: 425–430.PubMedCrossRefGoogle Scholar
  29. Campbell, K. P., Leung, A. T., Sharp, A. H., Imagawa, T., and Kahl, S. D. 1988b. Ca’ channel antibodies: Subunit-specific antibodies as probes for structure and function. In: The Calcium Channel: Structure, Function and Implications, pp. 586–600. Ed. by Morad, M., Nayler, W., Kazda, S., and Schramm, M. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  30. Catterall, W. A. 1988. Structure and function of voltage-sensitive ion channels. Science, 242: 50–61.PubMedCrossRefGoogle Scholar
  31. Cavalié, A., Ochi, R., Pelzer, D., and Trautwein, W. 1983. Elementary currents through Ca’ channels in guinea pig myocytes. Pfliigers Arch., 398: 284–297.CrossRefGoogle Scholar
  32. Cavalié, A., Pelzer, D., and Trautwein, W. 1986. Fast and slow gating behaviour of single calcium channels in cardiac cells. Relation to activation and inactivation of calcium-channel current. Pflügers Arch., 406: 241–258.PubMedCrossRefGoogle Scholar
  33. Cavalié, A., Flockerzi, V., Hofmann, F., Pelzer, D., and Trautwein, W. 1987. Two types of calcium channels from rabbit fast skeletal muscle transverse tubules in lipid bilayers: differences in conductance gating behavior and chemical modulation. J. Physiol. 390: 82.Google Scholar
  34. Chad, J. E., and Eckert, R. 1986. An enzymatic mechanism for calcium current inactivation in dialysed Helix neurones. J. Physiol., 378: 31–51.PubMedGoogle Scholar
  35. Chad, J., Eckert, R., and Ewald, D. 1984. Kinetics of calcium-dependent inactivation of calcium current in voltage-clamped neurones of Aplysia californica. J. Physiol., 347: 279–300.Google Scholar
  36. Chang, F. C., and Hosey, M. M. 1988. Dihydropyridine and phenylalkylamine receptors associated with cardiac and skeletal muscle calcium channels are structurally different. J. Biol. Chem., 263: 18929–18937.PubMedGoogle Scholar
  37. Cognard, C., Lazdunski, M., and Romey, G. 1986. Different types of Cat’ channels in mammalian skeletal muscle cells in culture. Proc. Natl. Acad. Sci. USA, 83: 517–521.PubMedCrossRefGoogle Scholar
  38. Cohen, F. S. 1986. Fusion of liposomes to planar bilayers. In: Ion Channel Reconstitution, pp. 131–138. Ed. by Miller, C. Plenum Press, New York.Google Scholar
  39. Cohen, F. S., Zimmerberg, J., and Finkelstein, A. 1980. Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. J. Gen. Physiol., 75: 251–270.PubMedCrossRefGoogle Scholar
  40. Cohen, F. S., Akabas, M. H., and Finkelstein, A. 1982. Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane. Science, 217: 458–460.PubMedCrossRefGoogle Scholar
  41. Cohen, F. S., Akabas, M. H., Zimmerberg, J., and Finkelstein, A. 1984. Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes. J. Cell Biol., 98: 1054–1062.PubMedCrossRefGoogle Scholar
  42. Cooper, C. L., Vandaele, S., Barhanin, J., Fosset, M., Lazdunski, M., and Hosey, M. M. 1987. Purification and characterization of the dihydropyridine-sensitive voltage-dependent calcium channel from cardiac tissue. J. Biol. Chem., 262: 509–512.PubMedGoogle Scholar
  43. Coronado, R. 1985. Effect of divalent cations on the assembly of neutral and charged phospholipid bilayers in patch-recording pipettes. Biophys. J., 47: 851–857.PubMedCrossRefGoogle Scholar
  44. Coronado, R. 1987. Planar bilayer reconstitution of calcium channels: Lipid effects on single-channel kinetics. Circ. Res., 61(Suppl. I):I-46-I-52.Google Scholar
  45. Coronado, R., and Affolter, H. 1986. Insulation of the conduction pathway of muscle transverse tubule calcium channels from the surface charge of bilayer phospholipid. J. Gen. Physiol., 87: 933–953.PubMedCrossRefGoogle Scholar
  46. Coronado, R., and Latorre, R. 1983. Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophys. J., 43: 231–236.PubMedCrossRefGoogle Scholar
  47. Coronado, R., and Smith, J. S. 1987. Monovalent ion current through single calcium channels of skeletal muscle transverse tubules. Biophys. J., 51: 497–502.PubMedCrossRefGoogle Scholar
  48. Cota, G., and Stefani, E. 1989. Voltage-dependent inactivation of slow calcium channels in intact twitch muscle fibers of the frog. J. Gen. Physiol., 94: 937–951.PubMedCrossRefGoogle Scholar
  49. Cota, G., Siri, L. N., and Stefani, E. 1984. Calcium channel inactivation in frog (Rana pipiens and Rana moctezuma) skeletal muscle fibres. J. Physiol., 354: 99–108.PubMedGoogle Scholar
  50. Curtis, B. M., and Catterall, W. A. 1983. Solubilization of the calcium antagonist receptor from rat brain. J. Biol. Chem., 258: 7280–7283.PubMedGoogle Scholar
  51. Curtis, B. M., and Catterall, W. A. 1984. Purification of the calcium antagonist receptor of the voltage- sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry, 23: 2113–2118.PubMedCrossRefGoogle Scholar
  52. Curtis, B. M., and Cattrall, W. A. 1985. Phosphorylation of the calcium antagonist receptor of the voltage-sensitive calcium channel by cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA, 82: 2528–2532.PubMedCrossRefGoogle Scholar
  53. Curtis, B. M., and Catterall, W. A. 1986. Reconstitution of the voltage-sensitive calcium channel purified from skeletal muscle transverse tubules. Biochemistry, 25: 3077–3083.PubMedCrossRefGoogle Scholar
  54. DeJongh, K. S., Merrick, D. K., and Catterall, W. A. 1989. Subunits of purified calcium channels: A 212kDa form of a i and partial amino acid sequence of a phosphorylation site of an independent,3 subunit. Proc. Natl. Acad. Sci. USA, 86: 8585–8589.CrossRefGoogle Scholar
  55. De Jongh, K. S., Warner, C., and Catterall, W. A. 1990. Subunits of purified calcium channels. o2 and 5 are encoded by the same gene. J. Biol. Chem., 265: 14738–14741.PubMedGoogle Scholar
  56. Eckert, R., and Chad, J. E. 1984. Inactivation of Ca channels. Prog. Biophys. Mol. Biol. 44: 215–267.PubMedCrossRefGoogle Scholar
  57. Ehrlich, B. E. 1992. Incorporation of ion channels in planar lipid bilayers: How to make bilayers work for you. In: The Heart and Cardiovascular System, Scientific Foundations, 2nd ed., pp. 551–560. Ed. by Fozzard, H. A., Haber, E., Jennings, R. B., Katz, A. M., and Morgan, H. E. Raven Press, New York.Google Scholar
  58. Ehrlich, B. E., Schen, C. R., Garcia, M. L., and Kaczorowski, G. J. 1986. Incorporation of calcium channels from cardiac sarcolemmal membrane vesicles into planar lipid bilayers. Proc. Natl. Acad. Sci. USA, 83: 193–197.PubMedCrossRefGoogle Scholar
  59. Ellis, S. B., Williams, M. E., Ways, N. R., Brenner, R., Sharp, A. H., Leung, A. T., Campbell, K. P., McKenna, E., Koch, W. J., Hui, A., Schwartz, A., and Harpold, M. M. 1988. Sequence and expression of mRNAs encoding the a, and 02 subunits of a DHP-sensitive calcium channel. Science, 241: 1661–1664.PubMedCrossRefGoogle Scholar
  60. Eytan, G. 1982. Use of liposomes for reconstitution of biological functions. Biochim. Biophys. Acta, 694: 185–202.PubMedCrossRefGoogle Scholar
  61. Ferry, D. R., Rombusch, M., Goll, A., and Glossmann, H. 1984. Photoaffinity labelling of Ca’ channels with [3H]azidopine. FEBS Leu., 169: 112–118.CrossRefGoogle Scholar
  62. Ferry, D. R., Goll, A., and Glossmann, H. 1987. Photoaffinity labelling of the cardiac calcium channel. (-)-[3H]Azidopine labels a 165 kDa polypeptide, and evidence against a [3H]-1,4-dihydropyridineisothiocyanate being a calcium-channel-specific affinity ligand. Biochem. J., 243: 127–135.PubMedGoogle Scholar
  63. Finkelstein, A., and Andersen, O. S. 1981. The gramicidin A channel: A review of its permeability char- acteristics with special reference to the single-file aspect of transport. J. Membr. Biol., 59: 155–171.PubMedCrossRefGoogle Scholar
  64. Fitzpatrick, L. A., and Chin, H. 1988. Inhibition of parathyroid hormone secretion by calcium: The role of calcium channels. In: The Calcium Channel: Structure, Function and Implications, pp. 418–430. Ed. by Morad, M., Nayler, W., Kazda, S., and Schramm, M. Springer-Verlag, Berlin.Google Scholar
  65. Fitzpatrick, L. A., Chin, H., Nirenberg, M., and Aurbach, G. D. 1988. Antibodies to an a subunit of skeletal muscle calcium channels regulate parathyroid cell secretion. Proc. Natl. Acad. Sci. USA, 85: 2115–2119.PubMedCrossRefGoogle Scholar
  66. Flockerzi, V., Oeken, H.-J., Hofmann, F., Pelzer, D., Cavalié, A., and Trautwein, W. 1986a. Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel. Nature, 323: 66–68.PubMedCrossRefGoogle Scholar
  67. Flockerzi, V., Oeken, H.-J., and Hofmann, F. 1986b. Purification of a functional receptor for calcium-channel blockers from rabbit skeletal-muscle microsomes. Fur. J. Biochem., 161: 217–224.Google Scholar
  68. Francini, F., and Stefani, E. 1989. Decay of the slow calcium current in twitch muscle fibers of the frog is influenced by intracellular EGTA. J. Gen. Physiol., 94: 953–969.PubMedCrossRefGoogle Scholar
  69. Galizzi, J.-P., Borsotto, M., Barhanin, J., Fosset, M., and Lazdunski, M. 1986. Characterization and photoaffinity labeling of receptor sites for the Ca’ channel inhibitors d-cis-diltiazem, (±)-bepridil, desmethoxyverapamil, and (+)-PN 200–110 in skeletal muscle transverse tubule membranes. J. Biol. Chem., 261: 1393–1397.PubMedGoogle Scholar
  70. Gamboa-Aldeco, R., Garcia, J., and Stefani, E. 1989. Effect of GTP-gamma-S on charge movement and calcium current from frog and rat skeletal muscle. Biophys. J., 55:9la.Google Scholar
  71. Garcia, J., Gamboa-Aldeco, R., and Stefani, E. 1990. Charge movement and calcium currents in skeletal muscle fibers are enhanced by GTPgammaS. Pflügers Arch., 417: 114–116.PubMedCrossRefGoogle Scholar
  72. Gjörstrupp, P., Harding, H., Isaksson, R., and Westerlund, C. 1986. The enantiomers of the dihydropyridine derivative H160/51 show opposite effects of stimulation and inhibition. Eur. J. Pharmacol. 122: 357–361.CrossRefGoogle Scholar
  73. Glossmann, H., and Ferry, D. R. 1983. Solubilization and partial purification of putative calcium channels labelled with [3H]-nimodipine. Naunyn-Schmiedeberg’s Arch. Pharmacol., 323: 279–291.PubMedCrossRefGoogle Scholar
  74. Glossmann, H., and Striessnig, J. 1988. Calcium channels. Vitam. Horm. 44: 155–328.PubMedCrossRefGoogle Scholar
  75. Glossmann, H., and Striessnig, J. 1990. Molecular properties of calcium channels. Rev. Physiol. Biochem. Pharmacol., 114: 1–105.PubMedCrossRefGoogle Scholar
  76. Grove, A., Tomich, J. M., and Montal, M. 1991. A molecular blueprint for the pore-forming structure of voltage-gated calcium channels. Proc. Natl. Acad. Sci. USA, 88: 6418–6422.PubMedCrossRefGoogle Scholar
  77. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfliigers Arch., 391: 85–100.CrossRefGoogle Scholar
  78. Hamilton, S. L., Yatani, A., Brush, K., Schwartz, A., and Brown, A. M. 1987. A comparison between the binding and electrophysiological effects of dihydropyridines on cardiac membranes. Mol. Pharmacol., 31: 221–231.PubMedGoogle Scholar
  79. Hamilton, S. L., Codina, J., Hawkes, M. J., Yatani, A., Sawada, T., Strickland, F. M., Froehner, S. C., Spiegel, A. M., Toro, L., Stefani, E., Birnbaumer, L., and Brown, A. M. 1991. Evidence for direct interaction of Gsa with the Ca’ channel of skeletal muscle. J. Biol. Chem., 266: 19528–19535.PubMedGoogle Scholar
  80. Hanke, W. 1986. Incorporation of ion channels by fusion. In: Ion Channel Reconstitution, pp. 141–153, Ed. by Miller, C. Plenum Press, New York.Google Scholar
  81. Hanke, W., Eibl, H., and Boheim, G. 1981. A new method for membrane reconstitution: Fusion of protein containing vesicles with planar lipid bilayers below lipid phase transition temperature. Biophvs. Struct. Mech., 7: 131–137.CrossRefGoogle Scholar
  82. Hanke, W., Methfessel, C., Wilmsen, H. U., and Boheim, G. 1984. Ion channel reconstitution into planar lipid bilayers on glass pipettes. Biochem. Bioeng. J., 12: 329–339.CrossRefGoogle Scholar
  83. Hartzell, H. C., Méry, P-F., Fischmeister, R., and Szabo, G. 1991. Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation. Nature, 351: 573–576.PubMedCrossRefGoogle Scholar
  84. Hescheler, J., Pelzer, D., Trube, G., and Trautwein, W. 1982. Does the organic calcium channel blocker D600 act from inside or outside on the cardiac cell membrane? Pflügers Arch., 393: 287–291.PubMedCrossRefGoogle Scholar
  85. Hess, P., and Tsien, R. W. 1984. Mechanism of ion permeation through calcium channels. Nature, 309: 453–456.PubMedCrossRefGoogle Scholar
  86. Hess, P., Lansman, J. B., and Tsien, R. W. 1984. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature, 311: 538–544.PubMedCrossRefGoogle Scholar
  87. Hess, P., Lansman, J. B., and Tsien, R. W. 1986. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J. Gen. Physiol., 88: 293–319.PubMedCrossRefGoogle Scholar
  88. Hille, B. 1984. Ionic Channels of Excitable Membranes. Sinauer, Sunderland, Massachusetts.Google Scholar
  89. Hoch, D. H., Romero-Mira, M., Ehrlich, B. E., Finkelstein, A., DasGupta, B. R., and Simpson, L. L. 1985. Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: Relevance to translocation of proteins across membranes. Proc. Natl. Acad. Sci. USA, 82: 1692–1696.PubMedCrossRefGoogle Scholar
  90. Hof, R. P., Ruegg, U. T., Hof, A., and Vogel, A. 1985. Stereoselectivity at the calcium channel: opposite action of the enantiomers of a 1,4-dihydropyridine. J. Cardiovasc. Pharmacol. 7: 689–693.PubMedCrossRefGoogle Scholar
  91. Hofmann, F., Flockerzi, V., Nastainczyk, W., Ruth, P., and Schneider, T. 1990. The molecular structure and regulation of muscular calcium channels. Curr. Top. Cell. Regtd., 31: 223–239.Google Scholar
  92. Home, W. A., Weiland, G. A., and Oswald, R. E. 1986. Solubilization and hydrodynamic characterization of the dihydropyridine receptor from rat ventricular muscle. J. Biol. Chem., 261: 3588–3594.Google Scholar
  93. Home, W. A., Abdel-Ghany, M., Racker, E., Weiland, G. A., Oswald, R. E., and Cerione, R. A. 1988. Functional reconstitution of skeletal muscle Cap’ channels: Separation of regulatory and channel components. Proc. Natl. Acad. Sci. USA, 85: 3718–3722.CrossRefGoogle Scholar
  94. Hosey, M. M., Borsotto, M., and Lazdunski, M. 1986. Phosphorylation and dephosphorylation of dihydropyridine-sensitive voltage-dependent Ca’ channel in skeletal muscle membranes by cAMPand Ca’-dependent processes. Proc. Natl. Acad. Sci. USA, 83: 3733–3737.PubMedCrossRefGoogle Scholar
  95. Hosey, M. M., Barhanin, J., Schmid, A., Vandaele, S., Ptasienski, J., O’Callahan, C., Cooper, C., and Lazdunski, M. 1987. Photoaffinity labelling and phosphorylation of a 165 kilodalton peptide associated with dihydropyridine and phenylalkylamine-sensitive calcium channels. Biochem. Biophys. Res. Commun., 147: 1137–1145.PubMedCrossRefGoogle Scholar
  96. Hoshi, T., Zagotta, W. N., and Aldrich, R. W. 1990. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science, 250: 533–538.PubMedCrossRefGoogle Scholar
  97. Huang, C. H. 1969. Studies on phosphatidylcholine vesicles: Formation and physical characteristics. Biochemistry, 8: 341–352.CrossRefGoogle Scholar
  98. Huganir, R. L., Schell, M. A., and Racker, E. 1979. Reconstitution of purified acetylcholine receptor from Torpedo californica. FEBS Lett., 108: 155–160.CrossRefGoogle Scholar
  99. Hymel, L., SYriessnig, J., Glossmann, ll-, and Schindler, H. 1988. Purified skeletal muscle 1,4-dihydropyridine receptor forms phosphorylation-dependent oligomeric calcium channels in planar bilayers. Proc. Natl. Acad. Sci. USA, 85: 4290–4294.Google Scholar
  100. Imagawa, T., Leung, A. T., and Campbell, K. P. 1987. Phosphorylation of the 1,4-dihydropyridine receptor of the voltage-dependent Ca’ channel by an intrinsic protein kinase in isolated triads from rabbit skeletal muscle. J. Biol. Chem., 262: 8333–8339.PubMedGoogle Scholar
  101. Imoto, Y., Yatani, A., Reeves, J. P., Codina, J., Birnbaumer, L., and Brown, A. M. 1988. a-Subunit of Gs directly activates cardiac calcium channels in lipid bilayers. Am. J. Physiol., 255 (Heart Circ. Physiol. 24 ): H722 - H728.Google Scholar
  102. Inoue, Y., Xiong, Z., Kitamura, K., and Kuriyama, H. 1989. Modulation produced by nifedipine of the unitary Ba current of dispersed smooth muscle cells of the rabbit ileum. Pflügers Arch., 414: 534–542.PubMedCrossRefGoogle Scholar
  103. Isenberg, G., and Klöckner, U. 1982. Calcium currents of isolated bovine ventricular myocytes are fast and of large amplitude. Pflügers Arch., 395: 30–41.PubMedCrossRefGoogle Scholar
  104. Isenberg, G., and Klöckner, U. 1985. Elementary currents through single Ca channels in smooth muscle cells isolated from bovine coronary arteries. Effects of nifedipine and Bay K 8644. Pflügers Arch., 403: R23.Google Scholar
  105. Jahn, H., Nastainczyk, W., Röhrkasten, A., Schneider, T., and Hofmann, F. 1988. Site-specific phosphorylation of the purified receptor for calcium-channel blockers by cAMP- and cGMP-dependent protein kinases, protein kinase C, calmodulin-dependent protein kinase II and casein kinase II. Eur. J. Biochem., 178: 535–542.PubMedCrossRefGoogle Scholar
  106. Josephson, I. R., Sanchez-Chapula, J., and Brown, A. M. 1984. A comparison of calcium currents in rat and guinea pig single ventricular cells. Cire. Res., 54: 144–156.CrossRefGoogle Scholar
  107. Kagawa, Y., and Racker, E. 1971. Partial resolution of the enzyme catalyzing oxidative phosphorylation. J. Biol. Chem., 216: 5477–5487.Google Scholar
  108. Kameyama, A., and Nakayama, T. 1988. Calcium efflux through cardiac calcium channels reconstituted into liposomes-Flux measurement with fura-2. Biochem. Biophys. Res. Commun., 154: 1067–1074.PubMedCrossRefGoogle Scholar
  109. Kameyama, M., Hofmann, F., and Trautwein, W. 1985. On the mechanism of /3-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflügers Arch., 405: 285–293.PubMedCrossRefGoogle Scholar
  110. Kamp, T. J., Sanguinetti, M. C., and Miller, R. J. 1984. Voltage-and use-dependent modulation of cardiac calcium channels by the dihydropyridine (+)-202–791. Circ. Res. 64: 338–351.CrossRefGoogle Scholar
  111. Kamp, T. J., Miller, R. J.. and Sanguinetti, M. C. 1985. Stimulation rate modulates effects of the dihydropyridine GGP 28 392 on cardiac calcium-dependent action potentials. Br. J. Pharmacol. 85: 523–528.PubMedCrossRefGoogle Scholar
  112. Kass, R. S., and Arena, J. P. 1989. Influence of pHo on calcium channel block by amlodipine, a charged dihydropyridine compound. Implications for location of the dihydropyridine receptor. J. Gen. Physiol., 93: 1109–1127.PubMedCrossRefGoogle Scholar
  113. Kass, R. S., Arena, J. P., and Chin, S. 1991. Block of L-type calcium channels by charged dihydropyridines: Sensitivity to side of application and calcium. J. Gen. Physiol., 98: 63–75.PubMedCrossRefGoogle Scholar
  114. Kawashima, Y., and Ochi, R. 1988. Voltage-dependent decrease in the availability of single calcium channels by nitrendipine in guinea-pig ventricular cells. J. Physiol., 402: 219–235.PubMedGoogle Scholar
  115. Keller, B. U., Hedrich, R., Vaz, W. L. C., and Criado, M. 1988. Single channel recordings of reconstituted ion channel proteins: An improved technique. Pflügers Arch., 411: 94–100.PubMedCrossRefGoogle Scholar
  116. Kim, H. S., Wei, X., Ruth, P., Perez-Reyes, E., F1otkerzi, V., Hofmann, F., and Birnbaumer, L. 1990. Studies on the structural requirements for the activity of the skeletal muscle dihydropyridine receptor/ slow Cat’ channel. Allosteric regulation of dihydropyridine binding in the absence of 02 and ß components of the purified protein complex. J. Biol. Chem., 265: 11858–11863.PubMedGoogle Scholar
  117. Kokubun, S., and Reuter, H. 1984. Dihydropyridine derivatives prolong the open state of Ca channels in cultured cardiac cells. Proc. Natl. Acad. Sci. USA, 81: 4824–4827.PubMedCrossRefGoogle Scholar
  118. Korenbrot, J. I., and Hwang, S. B. 1980. Proton transport by bacteriorhodopsin in planar membranes assembled from air-water interface films. J. Gen. Physiol., 76: 649–682.PubMedCrossRefGoogle Scholar
  119. Lacerda, A. E., Kim, H. S., Ruth, P., Perez-Reyes, E., Flockerzi, V., Hofmann, F., Birnbaumer, L., and Brown, A. M. 1991. Normalization of current kinetics by interaction between the a, and ß subunits of the skeletal muscle dihydropyridine-sensitive Cap’ channel. Nature, 352: 527–530.PubMedCrossRefGoogle Scholar
  120. Lai, Y., Seagar, M. J., Takahashi, M., and Catterall, W. A. 1990. Cyclic AMP-dependent phosphorylation of two size forms of a, subunits of L-type calcium channels in rat skeletal muscle cells. J. Biol. Chem., 265: 20839–20848.PubMedGoogle Scholar
  121. Lansman, J. B., Hess, P., and Tsien, R. W. 1986. Blockade of current through single calcium channels by Cd’, Mg’, and Ca’. Voltage and concentration dependence of calcium entry into the pore. J. Gen. Physiol., 88: 321–347.PubMedCrossRefGoogle Scholar
  122. LeBlanc, N., and Hume, J. R. 1989. D 600 block of L-type Ca’ channel in vascular smooth muscle cells: Comparison with permanently charged derivative, D 890. Am. J. Physiol., 257 (Cell Physiol. 26 ): C689 - C695.Google Scholar
  123. Lee, K. S., and Tsien, R. W. 1982. Reversal of current through calcium channels in dialysed single heart cells. Nature, 297: 498–501.PubMedCrossRefGoogle Scholar
  124. Lee, K. S., and Tsien, R. W. 1984. High selectivity of calcium channels in single dialysed heart cells of the guinea-pig. J. Physiol., 354: 253–272.PubMedGoogle Scholar
  125. Leung, A. T., Imagawa, T., and Campbell, K. P. 1987. Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent Ca’ channel from rabbit skeletal muscle. Evidence for two distinct high molecular weight subunits. J. Biol. Chem., 262: 7943–7946.PubMedGoogle Scholar
  126. Leung, A. T., Imagawa, T., Block, B., Franzini-Armstrong, C., and Campbell, K. P. 1988. Biochemical and ultrastructural characterization of the 1,4-dihydropyridine receptor from rabbit skeletal muscle. Evidence for a 52,000-Da subunit. J. Biol. Chem., 263: 994–1001.PubMedGoogle Scholar
  127. Lindstrom, J., Anholt, R., Einarson, B., Engel, A., Osame, M., and Montai, M. 1980. Purification of acetylcholine receptors, reconstitution into lipid vesicles, study of agonist-induced cation channel regulation. J. Biol. Chem., 255: 8340–8350.PubMedGoogle Scholar
  128. Llinâs, R., Sugimori, M., Lin, J.-W., and Cherksey, B. 1989. Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc. Natl. Acad. Sci. USA, 86: 1689–1693.PubMedCrossRefGoogle Scholar
  129. Lotan, I., Goelet, P., Gigi, A., and Dascal, N. 1989. Specific block of calcium channel expression by a fragment of dihydropyridine receptor cDNA. Science, 243: 666–669.PubMedCrossRefGoogle Scholar
  130. Loutzenhiser, R., Ruegg, U. T., Hof, A., and Hof, R. P. 1984. Studies on the mechanism of action of the vasoconstrictive dihydropyridine, CGP 28392. Eur. J. Pharmacol. 105: 229–237.PubMedCrossRefGoogle Scholar
  131. Ma, J., and Coronado, R. 1988. Heterogeneity of conductance states in calcium channels of skeletal muscle. Biophys. J., 53: 387–395.PubMedCrossRefGoogle Scholar
  132. Ma, J., Mundina-Weilenmann, C., Hosey, M. M., and Rios, E. 1991. Dihydropyridine-sensitive skeletal muscle Ca channels in polarized planar bilayers. 1. Kinetics and voltage dependence of gating. Biophvs. J., 60: 890–901.CrossRefGoogle Scholar
  133. Malouf, N. N., Coronado, R., McMahon, D., Meissner, G., and Gillespie, G. Y. 1987. Monoclonal antibody specific for the transverse tubular membrane of skeletal muscle activates the dihydropyridine-sensitive Ca’ channel. Proc. Natl. Acad. Sci. USA, 84: 5019–5023.PubMedCrossRefGoogle Scholar
  134. Mason, R. P., Gonye, G. E., Chester, D. W., and Herbette, L. G. 1989. Partitioning and location of Bay K 8644, 1,4-dihydropyridine calcium channel agonist, in model and biological membranes. Biophvs. J., 55: 769–778.CrossRefGoogle Scholar
  135. McCleskey, E. W., and Almers, W. 1985. The Ca channel in skeletal muscle is a large pore. Proc. Natl. Acad. Sci. USA, 82: 7149–7153.PubMedCrossRefGoogle Scholar
  136. McCleskey, E. W., Hess, P., and Tsien, R. W. 1985. Interaction of organic cations with the cardiac Ca channel. J. Gen. Physiol., 86: 22a.Google Scholar
  137. McDonald, T. F., Pelzer, D., and Trautwein, W. 1989. Dual action (stimulation, inhibition) of D600 on contractility and calcium channels in guinea-pig and cat heart cells. J. Physiol., 414: 569–586.PubMedGoogle Scholar
  138. McDonald, T. F., Pelzer, S., Trautwein, W., and Pelzer, D. 1993. The regulation and modulation of calcium channels in cardiac, skeletal and smooth muscle cells. Physiol. Rev. in press.Google Scholar
  139. Mejia-Alvarez, R., Fill, M., and Stefani, E. 1991. Voltage-dependent inactivation of T-tubular skeletal calcium channels in planar lipid bilayers. J. Gen. Physiol., 97: 393–412.PubMedCrossRefGoogle Scholar
  140. Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y., Takeshima, H., Narumiya, S., and Numa, S. 1989. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature, 340: 230–233.PubMedCrossRefGoogle Scholar
  141. Miller, C. 1978. Voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum: Steady-state electrical properties. J. Membr. Biol., 40: 1–23.PubMedGoogle Scholar
  142. Miller, C. 1983a. Integral membrane channels: Studies in model membranes. Physiol. Rev., 63: 1209–1242.PubMedGoogle Scholar
  143. Miller, C. 1983b. First steps in the reconstitution of ionic channel functions in model membranes. In: Current Methods in Cellular Neurobiology, Vol. 3, pp. 1–37. Ed. by Baker, J. L. Wiley, New York. Miller, C. 1984. Ion channels in liposomes. Annu. Rev. Physiol., 46: 549–558.Google Scholar
  144. Miller, C. 1986. Ion Channel Reconstitution. Plenum Press, New York.Google Scholar
  145. Miller, C., and Racker, E. 1976. Calcium-induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayers. J. Membr. Biol., 30: 283–300.PubMedCrossRefGoogle Scholar
  146. Miller, C., and Racker, E. 1979. Reconstitution of membrane transport functions. In: The Receptors: A Comprehensive Treatise, Vol. 1, pp. 1–31. Ed. by O’Brien, R. D. Plenum Press, New York.Google Scholar
  147. Miller, C., Aryan, P., Telford, J. N., and Racker, E. 1976. Calcium-induced fusion of proteoliposomes: Effect of transmembrane osmotic gradient. J. Membr. Biol., 30: 271–282.PubMedCrossRefGoogle Scholar
  148. Montai, M., and Mueller, P. 1972. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. USA, 69: 3561–3566.CrossRefGoogle Scholar
  149. Montal, M., Anholt, R., and Labarca, P. 1986. The reconstituted acetylcholine receptor. In: Ion Channel Reconstitution, pp. 157–196. Ed. by Miller, C. Plenum Press, New York.Google Scholar
  150. Morton, M. E., and Froehner, S. C. 1987. Monoclonal antibody identifies a 200-kDa subunit of the dihydropyridine-sensitive calcium channel. J. Biol. Chem., 262: 11904–11907.PubMedGoogle Scholar
  151. Morton, M. E., Caffrey, J. M., Brown, A. M., and Froehner, S. C. 1988. Monoclonal antibody to the a i -subunit of the dihydropyridine-binding complex inhibits calcium currents in BC3H I myocytes. J. Biol. Chem., 263: 613–616.PubMedGoogle Scholar
  152. Mueller, P., Rudin, D. O., Tien, H. T., and Wescott, W. C. 1962. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature, 194: 979–980.PubMedCrossRefGoogle Scholar
  153. Mueller, P., Rudin, D. O., Tien, H. T., and Wescott, W. C. 1963. Methods for the incorporation of single bimolecular lipid membranes in aqueous solutions. J. Phys. Chem., 67: 534–535.Google Scholar
  154. Mundina-Weilenmann, C., Ma, J., Rios, E., and Hosey, M. M. 1991a. Dihydropyridine-sensitive skeletal muscle Ca channels in polarized planar bilayers. 2: Effects of phosphorylation by cAMP-dependent protein kinase. Biophys. J., 60: 902–909.Google Scholar
  155. Mundina-Weilenmann, C., Chang, C. F., Gutierrez, L. M., and Hosey, M. M. 1991b. Demonstration of the phosphorylation of dihydropyridine-sensitive calcium channels in chick skeletal muscle and the resultant activation of the channels after reconstitution. J. Biol. Chem., 266: 4067–4073.PubMedGoogle Scholar
  156. Nakajima, T., Wu, S., Irisawa, H., and Giles, W. 1990. Mechanism of acetylcholine-induced inhibition of Ca current in bullfrog atrial myocytes. J. Gen. Physiol., 96: 865–885.Google Scholar
  157. Nastainczyk, W., Röhrkasten, A., Sieber, M., Rudolph, C., Schächtele, C., Marmé, D., and Hofmann, F. 1987. Phosphorylation of the purified receptor for calcium channel blockers by cAMP kinase and protein kinase C. Eur. J. Biochem., 169: 137–142.PubMedCrossRefGoogle Scholar
  158. Nastainczyk, W., Ludwig, A., and Hofmann, F. 1990. The dihydropyridine-sensitive calcium channel of the skeletal muscle: Biochemistry and structure. Gen. Physiol. Biophys., 9: 321–329.PubMedGoogle Scholar
  159. Nelson, N., Anholt, R., Lindstrom, J., and Montal, M. 1980. Reconstitution of purified acetylcholine receptors with functional ion channels in planar lipid bilayers. Proc. Natl. Acad. Sci. USA, 77: 3057–3061.PubMedCrossRefGoogle Scholar
  160. Nelson, M. T., Standen, N. B., Brayden, J. E., and Worley Ill, J. F. 1988. Noradrenaline contracts arteries by activating voltage-dependent calcium channels. Nature, 336: 382–385.Google Scholar
  161. Niles, W. D., Levis, R. A., and Cohen, F. S. 1988. Planar bilayer membranes made from phospholipid monolayers formed by a thinning process. Biophys. J., 53: 327–335.PubMedCrossRefGoogle Scholar
  162. Norman, R. I., Burgess, A. J., Allen, E., and Harrison, T. M. 1987. Monoclonal antibodies against the 1,4dihydropyridine receptor associated with voltage-sensitive Ca’ channels detect similar polypeptides from a variety of tissues and species. FEBS Leu., 212: 127–132.Google Scholar
  163. Nunoki, K., Florio, V., and Catterall, W. A. 1989. Activation of purified calcium channels by stoichiometric protein phosphorylation. Proc. Natl. Acad. Sci. USA, 86: 6816–6820.PubMedCrossRefGoogle Scholar
  164. Ochi, R., Hino, N., and Niimi, Y. 1984. Prolongation of calcium channel open time by the dihydropyridine derivative BAY K 8644 in cardiac myocytes. Proc. Jpn. Acad. 60: 153–156.Google Scholar
  165. Oike, M., Inoue, Y., Kitamura, K., and Kuriyama, H. 1990. Dual effects of FRC 8653, a novel dihydropyridine derivative, on the Ba’ current recorded from the rabbit basilai artery. Cire. Res., 67: 993–1006.CrossRefGoogle Scholar
  166. Osterrieder, W., Brum, G., Hescheler, J., Trautwein, W., Flockerzi, V., and Hofmann, F. 1982. Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Cat+ current. Nature, 298: 576–578.PubMedCrossRefGoogle Scholar
  167. Palade, P. T., and Almers, W. 1985. Slow calcium and potassium currents in frog skeletal muscle: Their relationship and pharmacologic properties. Pflügers Arch., 405: 91–101.PubMedCrossRefGoogle Scholar
  168. Parsons, T. D., Lagrutta, A., White, R. E., and Hartzell, H. C. 1991. Regulation of Ca’ current in frog ventricular cardiomyocytes by 5’-guanylylimidodiphosphate and acetylcholine. J. Physiol., 432: 593–620.Google Scholar
  169. Pattus, F., Desnuelle, P., and Verger, R. 1978. Spreading of liposomes at the air/water interface. Biochim. Biophvs. Acta, 507: 62–70.CrossRefGoogle Scholar
  170. Pelzer, D., Cavalié, A., and Trautwein, W. 1985. Guinea-pig ventricular myocytes treated with D600: Mechanism of calcium-channel blockade at the level of single channels. In: Recent Aspects in Calcium Antagonism, pp. 3–26. Ed. by Lichtlen, P. R. Schattauer, Stuttgart.Google Scholar
  171. Pelzer, D., Cavalié, A., McDonald, T. F., and Trautwein, W. 1986. Macroscopic and elementary currents through cardiac calcium channels. Frog. Zool., 33: 83–98.Google Scholar
  172. Pelzer, D., Grant, A. O., Cavalié, A., Pelzer, S., Sieber, M., Hofmann, F., and Trautwein, W. 1989. Calcium channels reconstituted from the skeletal muscle dihydropyridine receptor protein complex and its a, peptide subunit in lipid bilayers. Ann. N. Y. Acad. Sci., 560: 138–154.PubMedCrossRefGoogle Scholar
  173. Pelzer, D., Pelzer, S., and McDonald, T. F. 1990. Properties and regulation of calcium channels in muscle cells. Rev. Phvsiol. Biochem. Pharmacol., 114: 107–207.CrossRefGoogle Scholar
  174. Pelzer, S., Barhanin, J., Pauron, D., Trautwein, W., Lazdunski, M., and Pelzer, D. 1989. Diversity and novel pharmacological properties of Ca’ channels in Drosophila brain membranes, EMBO J., 8: 2365–2371.PubMedGoogle Scholar
  175. Pelzer, S., Shuba, Y. M., Asai, T., Codina, J., Birnbaumer, L., McDonald. T. F., and Pelzer, D. 1990. Membrane-delimited stimulation of heart cell calcium current by ß-adrenergic signal-transducing Gs protein. Am. J. Physiol., 259 (Heart Circ. Physiol. 28 ): H264 - H267.Google Scholar
  176. Pelzer, S., McDonald, T. F., and Pelzer, D. 1991. Channel control. Nature, 354: 363.CrossRefGoogle Scholar
  177. Perez-Reyes, E., Kim, H. S., Lacerda, A. E., Home, W., Wei, X., Rampe, D., Campbell, K. P., Brown, A. M., and Birnbaumer, L. 1989. Induction of calcium currents by the expression of the a,-subunit of the dihydropyridine receptor from skeletal muscle. Nature, 340: 233–236.PubMedCrossRefGoogle Scholar
  178. Perez-Reyes, E., Castellano, A., Kim, H. S., Bertrand, P., Baggstrom, E., Lacerda, A. E., Wei, X., and Birnbaumer, L. 1992. Cloning and expression of a cardiac/brain ß subunit of the L-type calcium channel. J. Biol. Chem., 267: 1792–1797.PubMedGoogle Scholar
  179. Pietrobon, D., Prod’hom, B., and Hess, P. 1988. Conformational changes associated with ion permeation in L-type calcium channels. Nature, 333: 373–376.PubMedCrossRefGoogle Scholar
  180. Porzig, H. 1990. Pharmacological modulation of voltage-dependent calcium channels in intact cells. Rev. Phvsiol. Biochem. Pharmacol., 114: 209–262.CrossRefGoogle Scholar
  181. Ravindren, A., Kwiecinski, H., Alvarez, O., Eisenman, G., and Moczwdiowski, E. 1992. Modeling ion permeation through batrachotoxin-modified Na’ channels from rat skeletal muscle with a multi-ion pore. Biophvs. J., 61: 494–508.CrossRefGoogle Scholar
  182. Regan, L. J. 1991. Voltage-dependent calcium currents in Purkinje cells from rat cerebellar vermis. J. Neurosci., 11: 2259–2269.PubMedGoogle Scholar
  183. Regan, L. J. Sah, D. W. Y., and Bean, B. P. 1991. Ca’ channels in rat central and peripheral neurons: High-threshold current resistant to dihydropyridine blockers and omega-conotoxin. Neuron, 6: 269–280.PubMedCrossRefGoogle Scholar
  184. Reuter, H., Stevens, C. F., Tsien, R. W., and Yellen, G. 1982. Properties of single calcium channels in cardiac cell culture. Nature. 297: 501–504.PubMedCrossRefGoogle Scholar
  185. Reuter, H., Porzig, H., Kokubun, S., and Prod’hom, B. 1985. 1,4-Dihydropyridines as tools in the study of Ca’ channels. Trends Neurosci., 8: 396–400.Google Scholar
  186. Rhodes, D. G., Sarmiento, J. G.. and Herbette, L. G. 1985. Kinetics of binding of membrane-active drugs to receptor sites. Diffusion-limited rates for a membrane bilayer approach of 1,4-dihydropyridine calcium channel antagonists to their active site. Mol. Pharmacol., 27: 612–623.PubMedGoogle Scholar
  187. Rosenberg, R. L., Hess, P., Reeves, J. P.. Smilowitz, H., and Tsien, R. W. 1986. Calcium channels in planar lipid bilayers: Insights into mechanisms of ion permeation and gating. Science, 231: 1564–1566.Google Scholar
  188. Rosenberg, R. L., Hess, P., and Tsien, R. W. 1988. Cardiac calcium channels in planar lipid bilayers. L-type channels and calcium-permeable channels open at negative membrane potentials. J. Gen. Phvsiol., 92: 27–54.CrossRefGoogle Scholar
  189. Ruth, P., Röhrkasten, A., Biel, M., Bosse, E., Regulla, S., Meyer, H. E., Flockerzi, V., and Hofmann, F. 1989. Primary structure of the ß subunit of the DHP-sensitive calcium channel from skeletal muscle. Science, 245: 1115–1118.PubMedCrossRefGoogle Scholar
  190. Sakmann, B., and Neher, E. 1984. Patch clamp techniques for studying ionic channels in excitable membranes. Annu. Rev. Phvsiol., 46: 455–472.CrossRefGoogle Scholar
  191. Sanchez, J. A., and Stefani, E. 1983. Kinetic properties of calcium channels of twitch muscle fibers of the frog. J. Phvsiol., 337: 1–17.Google Scholar
  192. Schindler, H. 1979. Autocatalytic transport of the peptide antibiotics suzukacillin and alamethicin across lipid membranes. FEBS Lett., 104: 157–160.PubMedCrossRefGoogle Scholar
  193. Schindler, H. 1980. Formation of planar bilayers from artificial or native membrane vesicles. FEBS Leu., 122: 77–79.CrossRefGoogle Scholar
  194. Schindler, H., and Rosenbusch, J. P. 1978. Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers. Proc. Natl. Acad. Sci. USA, 75: 3751–3755.PubMedCrossRefGoogle Scholar
  195. Schmid, A., Barhanin, J., Coppola, T., Borsotto, M., and Lazdunski, M. 1986. Immunochemical analysis of subunit structures of 1,4-dihydropyridine receptors associated with voltage-dependent Ca’ channels in skeletal, cardiac, and smooth muscles. Biochemistry, 25: 3492–3495.PubMedCrossRefGoogle Scholar
  196. Schneider, T., and Hofmann, F. 1988. The bovine cardiac receptor for calcium channel blockers is a 195kDa protein. Eur. J. Biochem., 174: 369–375.PubMedCrossRefGoogle Scholar
  197. Schramm, M., Thomas, G., Towart, R., and Franckowiak, G. 1983a. Activation of calcium channels by novel 1,4-dihydropyridine. A new mechanism for positive inotropics or smooth muscle stimulants. Arzneim. Forsch., 33: 1268–1272.Google Scholar
  198. Schramm, M., Thomas, G., Towart, R., and Franckowiak, G. 1983b. Novel dihydropyridines with positive inotropic action through activation of Ca’ channels. Nature., 303: 535–537.PubMedCrossRefGoogle Scholar
  199. Schuerholz, T., and Schindler, H. 1983. Formation of lipid-protein bilayers by micropipette guided contact of two monolayers. FEBS Lett., 152: 187–190.CrossRefGoogle Scholar
  200. Schwartz, L. M., McCleskey, E. M., and Almers, W. 1985. Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels. Nature., 314: 747–750.PubMedCrossRefGoogle Scholar
  201. Scott, R. H., and Dolphin, A. C. 1987. Activation of a G protein promotes agonist responses to calcium channel ligands. Nature, 330: 760–762.PubMedCrossRefGoogle Scholar
  202. Sharp, A. H., and Campbell, K. P. 1989. Characterization of the 1,4-dihydropyridine receptor using subunit- specific polyclonal antibodies. Evidence for 32,000-Da subunit. J. Biot. Chem., 264: 2816–2825.Google Scholar
  203. Sharp, A. H., Imagawa, T., Leung, A. T., and Campbell, K. P. 1987. Identification and characterization of the dihydropyridine-binding subunit of the skeletal muscle dihydropyridine receptor. J. Biot. Chem., 262: 12309–12315.Google Scholar
  204. Shuba, Y. M., Hesslinger, B., Trautwein, W., McDonald, T. F., and Pelzer, D. 1990a. A dual-pipette technique that permits rapid internal dialysis and membrane potential measurement in voltage-clamped cardiomyocytes. Pflügers Arch., 415: 767–773.PubMedCrossRefGoogle Scholar
  205. Shuba, Y. M., Hesslinger, B., Trautwein, W., McDonald, T. F., and Pelzer, D. 1990b. Whole-cell calcium current in guinea-pig ventricular myocytes dialysed with guanine nucleotides. J. Phvsiol., 424: 205–228.Google Scholar
  206. Sieber, M., Nastainczyk, W., Zubor, V., Wernet, W., and Hofmann, F. 1987. The 165-KDa peptide of the purified skeletal muscle dihydropyridine receptor contains the known regulatory sites of the calcium channel. Eur. J. Biochem., 167: 117–122.PubMedCrossRefGoogle Scholar
  207. Simard, J. M. 1991. Calcium channel currents in isolated smooth muscle cells from basilar artery of the guinea pig. Pftügers Arch., 417: 528–536.CrossRefGoogle Scholar
  208. Singer, D., Biel, M., Lotan, I., Flockerzi, V., Hofmann, F., and Dascal, N. 1991. The roles of the subunits in the function of the calcium channel. Science, 253: 1553–1557.PubMedCrossRefGoogle Scholar
  209. Smith, J. S., McKenna, E. J., Ma, J., Vilven, J., Vaghy, P. L., Schwartz, A., and Coronado, R. 1987. Calcium channel activity in a purified dihydropyridine-receptor preparation of a skeletal muscle. Biochemistry, 26: 7182–7188.PubMedCrossRefGoogle Scholar
  210. Somasundaram, B., Tregear, R. T., and Trentham, D. R. 1991. GTP gammaS causes contraction of skinned frog skeletal muscle via the DHP-sensitive Ca“ channels of sealed T-tubules. Pflügers Arch., 418: 137–143.PubMedCrossRefGoogle Scholar
  211. Standen, N. B., and Stanfield, P. R. 1982. A binding-site model for calcium channel inactivation that depends on calcium entry. Proc. R. Soc. Lond. B Biol. Sci., 217: 101–110.PubMedCrossRefGoogle Scholar
  212. Stefani, E., Toro, L., and Garcia, J. 1987. Alpha-and beta-adrenergic stimulation of fast and slow Ca“ channels in frog skeletal muscle. Biophys. J., 51: 425a.CrossRefGoogle Scholar
  213. Striessnig, J., Knaus, H.-G., Grabner, M., Moosburger, K., Seitz, W., Lietz, H., and Glossmann, H. 1987. Photoaffinity labelling of the phenylalkylamine receptor of the skeletal muscle transverse-tubule calcium channel. FEBS Lett., 212: 247–253.PubMedCrossRefGoogle Scholar
  214. Suarez-Isla, B. A., Wan, K., Lindstrom, J., and Montai, M. 1983. Single-channel recordings from purified acetylcholine receptors reconstituted in bilayers formed at the tip of patch pipets. Biochemistry, 22: 2319–2323.PubMedCrossRefGoogle Scholar
  215. Takahashi, M., and Catterall, W. A. 1987. Dihydropyridine-sensitive calcium channels in cardiac and skeletal muscle membranes: Studies with antibodies against the a subunits. Biochemistry, 26: 5518–5526.PubMedCrossRefGoogle Scholar
  216. Takahashi, M., Seagar, M. J., Jones, J. F., Reber, B. F. X., and Catterall, W. A. 1987. Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc. Natl. Acad. Sci. USA, 84: 54785482.Google Scholar
  217. Takenaka, T., and Maeno, H. 1982. A new vasoconstrictor 1,4-dihydropyridine, YC-170. Jpn. J. Pharmacol., 32: 139 P.CrossRefGoogle Scholar
  218. Takenaka, T., Inagaki, O., Terai, M., Asano, M., and Kubo, K., 1988. New 1,4-dihydropyridine with va-soconstrictor action through activation of Ca++ channels. J. Pharmacol. Exp. Ther., 244: 699–708.PubMedGoogle Scholar
  219. Talvenheimo, J. A., Worley Ill, J. F., and Nelson, M. T. 1987. Heterogeneity of calcium channels from a purified dihydropyridine receptor preparation. Biophys. J., 52: 891–899.PubMedCrossRefGoogle Scholar
  220. Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T., and Numa, S. 1987. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature, 328: 313–318.PubMedCrossRefGoogle Scholar
  221. Tanabe, T., Beam, K. G., Powell, J. A., and Numa, S. 1988. Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature, 336: 134–139.PubMedCrossRefGoogle Scholar
  222. Tanabe, T., Mikami, A., Numa, S., and Beam, K. G. 1990. Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA. Nature, 344: 45 1453.Google Scholar
  223. Tanabe, T., Adams, B. A., Numa, S., and Beam, K. G. 1991. Repeat I of the dihydropyridine receptor is critical in determining calcium channel activation kinetics. Nature, 352: 800–803.PubMedCrossRefGoogle Scholar
  224. Tanaka, J. C., Eccleston, J. F., and Barchi, R. L. 1983. Cation selectivity characteristics of the reconstituted voltage-dependent sodium channel purified from rat skeletal muscle sarcolemma. J. Biol. Chem., 258: 7519–7526.PubMedGoogle Scholar
  225. Tank, D. W., and Miller, C. 1983. Patch-clamped liposomes: Recording reconstituted ion channels. In: Single-Channel Recording, pp. 91–105. Ed. by Sakmann, B., and Neher, E. Plenum Press, New York.CrossRefGoogle Scholar
  226. Tank, D. W., Miller, C., and Webb, W. W. 1982. Isolated-patch recording from liposomes containing functionally reconstituted chloride channels from Torpedo electroplax. Proc. Natl. Acad. Sei. USA, 79: 7749–7753.CrossRefGoogle Scholar
  227. Toutant, M., Gabrion, J., Vandaele, S., Peraldi-Roux, S., Barhanin, J., Bockaert, J., and Rouot, B. 1990. Cellular distribution and biochemical characterization of G proteins in skeletal muscle: Comparative location with voltage-dependent calcium channels. EMBO J., 9: 363–369.PubMedGoogle Scholar
  228. Trautwein, W., and Pelzer, D. 1985. Voltage-dependent gating of single calcium channels in the cardiac cell membrane and its modulation by drugs. In: Calcium and Cell Physiology, pp. 53–93, Ed. by Marmé, D. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  229. Triggle, D. J., and Swamy, V. C. 1983. Calcium antagonists. Some chemical-pharmacologic aspects. Circ. Res., 52(Suppl. I):I-17-I-28.Google Scholar
  230. Truog, A. 1983. Annu. Meeting Fed. Amer. Soc. Exp. Biol., Chicago.Google Scholar
  231. Uehara, A., and Hume, J. R. 1985. Interactions of organic calcium channel antagonists with calcium channel in single frog atrial cells. J. Gen. Physiol., 85: 621–647.PubMedCrossRefGoogle Scholar
  232. Uyeda, N., Takenaka, T., Aoyama, K., Matsumoto, M., and Fujiyoshi, Y. 1987. Holes in a stearic acid monolayer observed by dark-field electron microscopy. Nature, 327: 319–321.CrossRefGoogle Scholar
  233. Vaghy, P. L., Williams, J. S., and Schwartz, A. 1987a. Receptor pharmacology of calcium entry blocking agents. Am. J. Cardiol., 59: 9A - 17A.PubMedCrossRefGoogle Scholar
  234. Vaghy, P. L., Striessnig, J., Miwa, K., Knaus, H.-G., Itagaki, K., McKenna, E., Glossmann, H., and Schwartz, A. 1987b. Identification of a novel 1,4-dihydropyridine-and phenylalkylamine-binding polypeptide in calcium channel preparations. J. Biol. Chem., 262: 14337–14342.PubMedGoogle Scholar
  235. Valdivia, H. H., and Coronado, R. 1990. Internal and external effects of dihydropyridines in the calcium of skeletal muscle. J. Gen. Physiol., 95: 1–27.PubMedCrossRefGoogle Scholar
  236. Varadi, G., Lory, P., Schultz, D., Varadi, M., and Schwartz, A. 1991. Acceleration of activation and inactivation by the ß subunit of the skeletal muscle calcium channel. Nature, 352: 159–162.PubMedCrossRefGoogle Scholar
  237. Vilven, J., and Coronado, R. 1988. Opening of dihydropyridine calcium channels in skeletal muscle membranes by inositol trisphosphate. Nature, 336: 587–589.PubMedCrossRefGoogle Scholar
  238. Vilven, J., Leung, A. T., Imagawa, T., Sharp, A. H., Campbell, K. P., and Coronado, R. 1988. Interaction of calcium channels of skeletal muscle with monoclonal antibodies specific for its dihydropyridine receptor. Biophys. J., 53: 556a.Google Scholar
  239. Waldbillig, R. C., and Szabo, G. 1979. Planar bilayer membranes from pure lipids. Biochim. Biophys. Acta, 557: 295–305.PubMedCrossRefGoogle Scholar
  240. Walsh, K. B., Begenisich, T. B., and Kass, R. S. 1989. 3-Adrenergic modulation of cardiac ion channels. Differential temperature sensitivity of potassium and calcium currents. J Gen. Phv. iol. 93:841–854.Google Scholar
  241. White, S. H. 1978. Formation of “solvent-free” black lipid bilayer membranes from glyceryl monooleate dispersed in squalene. Biophys. J., 23: 337–347.PubMedCrossRefGoogle Scholar
  242. White, S. H. 1986. The physical nature of planar lipid bilayer membranes. In: Ion Channel Reconstitution, pp. 3–35. Ed. by Miller, C. Plenum Press, New York.Google Scholar
  243. Williams, J. S., Grupp, I. L., Grupp, G., Vaghy, P. L., Dumont, L., and Schwartz, A. 1985. Profile of the oppositely acting enantiomers of the dihydropyridine 202–791 in cardiac preparations: receptor-binding electrophysiological, and pharmacological studies. Biochem. Biophys. Res. Commun. 131: 13–21.PubMedCrossRefGoogle Scholar
  244. Wonderlin, W. F., Finkel, A., and French, R. J. 1990. Optimizing planar lipid bilayer single-channel recordings for high resolution with rapid voltage steps. Biophys. J., 58: 289–297.Google Scholar
  245. Worley III, J. F., and Kotlikoff, M. I. 1990. Dihydropyridine-sensitive single calcium channel in airway smooth muscle cells. Am. J. Physiol., 259 (Lung Cell. Mol. Physiol. 3 ): L468 - L480.Google Scholar
  246. Worley III, J. F., Deitmer, J. W., and Nelson, M. T. 1986. Single nisoldipine-sensitive calcium channels in smooth muscle cells isolated from rabbit mesenteric artery. Proc. Natl. Acad. Sci. USA, 83: 5746–5750.PubMedCrossRefGoogle Scholar
  247. Wu, W. C. S., Moore, H. P. H., and Raftery, M. A. 1981. Quantitation of cation transport by reconstituted membrane vesicles containing purified acetylcholine receptor. Proc. Natl. Acad Sci. USA, 78: 775–779.PubMedCrossRefGoogle Scholar
  248. Yatani, A., and Brown, A. M. 1989. Rapid ß-adrenergic modulation of cardiac calcium channel currents by a fast G protein pathway. Science, 245: 71–74.PubMedCrossRefGoogle Scholar
  249. Yatani, A., and Brown, A. M. 1991. Channel control. Nature, 354: 363–364.CrossRefGoogle Scholar
  250. Yatani, A., Codina, J., Imoto, Y., Reeves, J. P., Birnbaumer, L., and Brown, A. M. 1987. A G protein directly regulates mammalian cardiac calcium channels. Science, 238: 1288–1292.PubMedCrossRefGoogle Scholar
  251. Yatani, A., Imoto, Y., Codina, J., Hamilton, S. L., Brown, A. M., and Birnbaumer, L. 1988. The stimulatory G protein of adenylyl cyclase, Gs, also stimulates dihydropyridine-sensitive Cat+ channels. Evidence for direct regulation independent of phosphorylation by cAMP-dependent protein kinase or stimulation by a dihydropyridine agonist. J. Biot. Chem., 263: 9887–9895.Google Scholar
  252. Yoshino, M., and Yabu, H. 1985. Single Ca channel currents in mammalian visceral smooth muscle cells. P/liigers Arch., 404: 285–286.CrossRefGoogle Scholar
  253. Zagotta, W. N., Hoshi, T., and Aldrich, R. W. 1990. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science, 250: 568–571.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Dieter J. Pelzer
    • 1
  • Terence F. McDonald
    • 1
  • Siegried Pelzer
    • 1
  1. 1.Department of Physiology and BiophysicsDalhousie UniversityHalifaxCanada

Personalised recommendations