Xenopus Oocytes as an Expression System for Ion Channels

  • Alan L. Goldin


Xenopus oocytes have become one of the most commonly used systems in which to express and study ion channels and neural receptors. Gurdon et al. (1971) first demonstrated that Xenopus oocytes can be used to express exogenous mRNA species by injecting reticulocyte RNA into the cytoplasm and studying the synthesis of hemoglobin using biochemical techniques. Miledi and co-workers then demonstrated that functional ion channels and receptors could be expressed by injecting rat brain RNA and using a voltage clamp to measure sodium channel and nicotinic acetylcholine receptor (nAChR) activity (Barnard et al., 1982; Miledi et al., 1982; Gundersen et al., 1984). Many investigators have since used Xenopus oocytes to study the expression and translation of a large number of molecules [for reviews see Gurdon and Wickens (1983), Colman (1984), Soreq (1985), Snutch (1988), and Dascal (1987)].


Sodium Channel Xenopus Oocyte Follicle Cell Tissue Culture Dish Guanidine Hydrochloride 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auffray, C., and Rougeon, F. 1980. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Ear. J. Biochem., 107: 303–314.CrossRefGoogle Scholar
  2. Auld, V. J., Goldin, A. L., Krafte, D. S., Marshall, J., Dunn, J. M., Catterall, W. A., Lester, H. A., Davidson, N., and Dunn, R. J. 1988. A rat brain Na+ channel a subunit with novel gating properties. Neuron, 1: 449–461.PubMedCrossRefGoogle Scholar
  3. Auld, V. J., Goldin, A. L., Krafte, D. S., Catterall, W. A., Lester, H. A., Davidson, N., and Dunn, R. J. 1990. A neutral amino acid change in segment IIS4 dramatically alters the gating properties of the voltage-dependent sodium channel. Proc. Natl. Acad. Sci. USA, 87: 323–327.PubMedCrossRefGoogle Scholar
  4. Barnard, E. A., Miledi, R., and Sumikawa, K. 1982. Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes. Proc. R. Soc. Lond., 215: 241–246.PubMedCrossRefGoogle Scholar
  5. Berkowitz, B. A., Bevins, C. L.. and Zasloff. M. A. 1990. Magainins: A new family of membrane-active host defense peptides. Biochem. Pharmacol., 39: 625–629.PubMedCrossRefGoogle Scholar
  6. Buller, A. L., and White, M. M. 1990. Altered patterns of N-linked glycosylation of the Torpedo acetylcholine receptor expressed in Xenopus oocytes. J. Membr. Biol., 115: 179–189.PubMedCrossRefGoogle Scholar
  7. Cathala, G., Savouret, J.-F., Mendez, B.. West, B. L., Karin, M., Martial, J. A., and Baxter, J. D. 1983. A method for isolation of intact, translationally active ribonucleic acid. DNA, 2: 329–335.Google Scholar
  8. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., and Rutter, W. J. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry, 18: 5294–5299.PubMedCrossRefGoogle Scholar
  9. Cicirelli, M. F., and Smith, L. D. 1985. Cyclic AMP levels during the maturation of Xenopus oocytes. Dev. Biol., 108: 254–258.PubMedCrossRefGoogle Scholar
  10. Colman, A. 1984. Translation of eukaryotic messenger RNA in Xenopus oocytes. In: Transcription and Translation-A Practical Approach, pp. 271–302. Ed. by Hames, B. D., and Higgins, S. J. IRL Press, Oxford.Google Scholar
  11. Contreras, R., Cheroutre, H., and Fiers, W. 1981. A simple apparatus for injection of nanoliter quantities into Xenopus laevis oocytes. Anal. Biochem., 113:185–187.PubMedCrossRefGoogle Scholar
  12. Dascal, N. 1987. The use of Xenopus oocytes for the study of ion channels. CRC Crit. Rev. Biochem., 22: 317–387.CrossRefGoogle Scholar
  13. Dumont, J. N. 1972. Oogenesis in Xenopus laevis (Daudin). Stages of oocyte development in laboratory maintained animals. J. Morphol., 136: 153–180.PubMedCrossRefGoogle Scholar
  14. Eppig, J. J., and Dumont, J. N. 1976. Defined nutrient medium for the in vitro maintenance of Xenopus laevis oocytes. In Vitro, 12: 418–427.PubMedCrossRefGoogle Scholar
  15. Fargin, A., Raymond, J. R., Regan, J. W., Cotecchia, S., Lefkowitz, R. J., and Caron, M. G. 1989. Effector coupling mechanisms of the cloned 5-HT I A receptor. J. Biol. Chem., 264: 14848–14852.PubMedGoogle Scholar
  16. Frech, G. C., VanDongen, A. M. J., Schuster, G., Brown, A. M., and Joho, R. H. 1989. A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. Nature, 340: 642–645.PubMedCrossRefGoogle Scholar
  17. Gundersen, C. B., Miledi, R., and Parker, I. 1983. Voltage-operated channels induced by foreign messenger RNA in Xenopus oocytes. Proc. R. Soc. Lond. B, 220: 131–140.PubMedCrossRefGoogle Scholar
  18. Gundersen, C. B., Miledi, R., and Parker, I. 1984. Messenger RNA from human brain induces drug-and voltage-operated channels in Xenopus oocytes. Nature, 308: 421–424.PubMedCrossRefGoogle Scholar
  19. Gurdon, J. B., and Wickens, M. P. 1983. The use of Xenopus oocytes for the expression of cloned genes. Meth. Enzymol., 101: 370–387.PubMedCrossRefGoogle Scholar
  20. Gurdon, J. B., Lane, C. D., Woodland, H. R., and Marbaix, G. 1971. Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature, 233: 177–182.PubMedCrossRefGoogle Scholar
  21. Hamburger, V. 1960. A Manual of Experimental Embryology. University of Chicago Press, Chicago.Google Scholar
  22. Hartmann, H. A., Kirsch, G. E., Drewe, J. A., Taglialatela, M., Joho, R. H., and Brown, A. M. 1991. Exchange of conduction pathways between two related K+ channels. Science, 251: 942–944.PubMedCrossRefGoogle Scholar
  23. Hediger, M. A., Coady, M. J., Ikeda, T. S., and Wright, E. M. 1987. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature, 330: 379–381.PubMedCrossRefGoogle Scholar
  24. Hollman, M., O’Shea-Greenfield, A., Rogers, S. W., and Heinemann, S. 1989. Cloning by functional expression of a member of the glutamate receptor family. Nature, 342: 643–648.CrossRefGoogle Scholar
  25. Jentsch, T. J., Steinmeyer, K., and Schwarz, G. 1990. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature, 348: 510–514.PubMedCrossRefGoogle Scholar
  26. Julius, D., MacDermott, A. B., Axel, R., and Jessell, T. M. 1988. Molecular characterization of a functional cDNA encoding the serotonin lc receptor. Science, 241: 558–564.PubMedCrossRefGoogle Scholar
  27. Kavanaugh, M. P., Varnum, M. D., Osborne, P. B., Christie, M. J., Busch, A. E., Adelman, J. P., and North, R. A. 1991. Interaction between tetraethylammonium and amino acid residues in the pore of cloned voltage-dependent potassium channels. J. Biol. Chem., 266: 7583–7587.PubMedGoogle Scholar
  28. Kobilka, B. K., Frielle, T., Collins, S., Yang-Feng, T., Kobilka, T. S., Francke, U., Lefkowitz, R. J., and Caron, M. G. 1987. An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature, 329: 75–79.PubMedCrossRefGoogle Scholar
  29. Kobilka, B. K., Kobilka, T. S., Daniel, K., Regan, J. W., Caron, M. G., and Lefkowitz, R. J. 1988. Chimeric a2-, l2-adrenergic receptors: Delineation of domains involved in effector coupling and ligand binding specificity. Science, 240: 1310–1316.PubMedCrossRefGoogle Scholar
  30. Krafte, D. S., and Lester, H. A. 1989. Expression of functional sodium channels in stage II-III Xenopus oocytes. J. Neurosci. Meth., 26: 211–215.CrossRefGoogle Scholar
  31. Krafte, D. S., Volberg, W. A., Dillon, K., and Ezrin, A. M. 1991. Expression of cardiac Na channels with appropriate physiological and pharmacological properties in Xenopus oocytes. Proc. Natl. Acad. Sci. USA, 88: 4071–4074.PubMedCrossRefGoogle Scholar
  32. Krieg, P. A. 1990. Improved synthesis of full-length RNA probe at reduced incubation temperatures. Nucleic Acids Res., 18: 64–63.CrossRefGoogle Scholar
  33. Krieg, P. A., and Melton, D. A. 1984. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res., 12: 7057–7070.PubMedCrossRefGoogle Scholar
  34. Kusano, K., Miledi, R.. and Stinnakre, J. 1982. Cholinergic and catecholaminergic receptors in the Xenopus oocyte membrane. J. Phvsiol., 328: 143–170.Google Scholar
  35. Laskey, R. A. 1970. The use of antibiotics in the preparation of amphibian cell cultures from highly contaminated material. J. Cell Sci., 7: 653–659.PubMedGoogle Scholar
  36. Leonard, J. P., Nargeot, J., Snutch, T. P., Davidson, N., and Lester, H. A. 1987. Ca channels induced in Xenopus oocytes by rat brain mRNA. J. Neurosci., 7: 875–881.PubMedGoogle Scholar
  37. Lübbert, H., Hoffman, B. J., Snutch, T. P., VanDyke, T., Levine, A. J., Hartig, P. R., Lester, H. A., and Davidson, N. 1987. CDNA cloning of a serotonin 5-HT,c receptor by electrophysiological assays of mRNA-injected Xenopus oocytes. Proc. Natl. Acad. Sci. USA, 84: 4332–4336.CrossRefGoogle Scholar
  38. MacKinnon, R., and Yellen, G. 1990. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science, 250: 276–279.PubMedCrossRefGoogle Scholar
  39. Masu, Y., Nakayama, K., Tamaki, H., Harada, Y., Kuno, M., and Nakanishi, S. 1987. CDNA cloning of bovine substance-K receptor through oocyte expression system. Nature, 329: 836–838.PubMedCrossRefGoogle Scholar
  40. Methfessel, C., Witzemann, V., Takahashi, T., Mishina, M., Numa, S., and Sakmann, B. 1986. Patch clamp measurements on Xenopus laevis oocytes: Currents through endogenous channels and implanted acetylcholine receptor and sodium channels. P/liigers Arch., 407: 577–588.CrossRefGoogle Scholar
  41. Miledi, R., and Woodward, R. M. 1989. Effects of defolliculation on membrane current responses of Xenopus oocytes. J. Phrsiol., 416: 601–621.Google Scholar
  42. Miledi, R., Parker, I., and Sumikawa, K. 1982. Properties of acetylcholine receptors translated by cat muscle mRNA in Xenopus oocytes. EMBO J., 1: 1307–1312.PubMedGoogle Scholar
  43. Moorman, J. R., Kirsch, G. E., VanDongen, A. M. J., Joho, R. H., and Brown, A. M. 1990. Fast and slow gating of sodium channels encoded by a single mRNA. Neuron, 4: 243–252.PubMedCrossRefGoogle Scholar
  44. Papazian, D. M., Timpe, L. C., Jan, Y. N., and Jan, L. Y. 1991. Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature, 349: 305–310.PubMedCrossRefGoogle Scholar
  45. Rudy, B., and Iverson, L. E., Eds. 1991. Methods in Enzymology. Ion Channels. Academic Press, San Diego, California.Google Scholar
  46. Sakmann, B., and Neher, E., Eds. 1983. Single-Channel Recording. Plenum Press, New York.Google Scholar
  47. Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  48. Schmidt, J. W., Rossie, S., and Catterall, W. A. 1985. A large intracellular pool of inactive Na channel a subunits in developing rat brain. Proc. Natl. Acad. Sci. USA, 82: 4847–4851.PubMedCrossRefGoogle Scholar
  49. Snutch, T. P. 1988. The use of Xenopus oocytes to probe synaptic communication. Trends Neurosci., 11: 250–256.PubMedCrossRefGoogle Scholar
  50. Soreq, H. 1985. The biosynthesis of biologically active proteins in mRNA-microinjected Xenopus oocytes. CRC Crit. Rev. Biochem., 18: 199–237.PubMedCrossRefGoogle Scholar
  51. Straub, R. E., Frech, G. C., Joho, R. H., and Gershengorn, M. C. 1990. Expression cloning of a cDNA encoding the mouse pituitary thyrotropin-releasing hormone receptor. Proc. Natl. Acad. Sci. USA, 87: 9514–9518.PubMedCrossRefGoogle Scholar
  52. Stühmer, W., Methfessel, C., Sakmann, B., Noda, M., and Numa, S. 1987. Patch clamp characterization of sodium channels expressed from rat brain eDNA. Eur. Biophvs. J., 14: 131–138.Google Scholar
  53. Stühmer, W., Conti, F., Suzuki, H., Wang, X., Noda, M., Yahagi, N., Kubo, H., and Numa, S. 1989. Structural parts involved in activation and inactivation of the sodium channel. Nature, 339: 597–603.PubMedCrossRefGoogle Scholar
  54. Takumi, T., Ohkubo, H., and Nakanishi, S. 1988. Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science, 242: 1042–1045.PubMedCrossRefGoogle Scholar
  55. Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T., and Numa, S. 1987. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature, 328: 313–318.PubMedCrossRefGoogle Scholar
  56. Thornhill, W. B., and Levinson, S. R. 1986. Biosynthesis of electroplax sodium channels. Ann. N. Y. Acad. Sci., 479: 356–363.PubMedCrossRefGoogle Scholar
  57. Thornhill, W. B., and Levinson, S. R. 1987. Biosynthesis of electroplax sodium channels in Electrophorus electrocytes and Xenopus oocytes. Biochemistry, 26: 4381–4388.PubMedCrossRefGoogle Scholar
  58. Trimmer, J. S., Cooperman, S. S., Tomiko, S. A., Zhou, J., Crean, S. M., Boyle, M. B., Kallen, R. G., Sheng, Z., Barchi, R. L., Sigworth, F. J., Goodman, R. H., Agnew, W. S., and Mandel, G. 1989. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron, 3: 3349.CrossRefGoogle Scholar
  59. Wallace, R. A., and Misulovin, Z. 1978. Long-term growth and differentiation of Xenopus oocytes in a defined medium. Proc. Natl. Acad. Sci. USA, 75: 5534–5538.PubMedCrossRefGoogle Scholar
  60. Wallace, R. A., Jared, D. W., Dumont, J. N., and Sega, M. W. 1973. Protein incorporation by isolated amphibian oocytes. Ill. Optimum incubation conditions. J. Exp. Zool., 184: 321–334.PubMedCrossRefGoogle Scholar
  61. Wallace, R. A., Misulovin, Z., Jared, D. W., and Wiley, H. S. 1978. Development of a culture medium for growing Xenopus laevis oocytes. Gamete Res., 1: 269–280.CrossRefGoogle Scholar
  62. Yang, X.-C., and Sachs, F. 1990. Characterization of stretch-activated ion channels in Xenopus oocytes. J. Phesiol., 431: 103–122.Google Scholar
  63. Yellen, G., Jurman, M. E., Abramson, T., and MacKinnon, R. 1991. Mutations affecting internal TEA blockade identify the probably pore-forming region of a K’ channel. Science, 251: 939–942.PubMedCrossRefGoogle Scholar
  64. Yool, A. J., and Schwarz, T. L. 1991. Alteration of ionic selectivity of a K’ channel by mutation of the H5 region. Nature, 349: 700–704.PubMedCrossRefGoogle Scholar
  65. Zasloff, M. 1987. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sei. USA, 84: 5449–5453.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Alan L. Goldin
    • 1
  1. 1.Department of Microbiology and Molecular GeneticsUniversity of California at IrvineIrvineUSA

Personalised recommendations