Purification and Pharmacological Analysis of the Omega-Conotoxin GVIA Receptor from Rat Brain

  • Maureen W. McEnery


The excitation of neurons is coupled to the secretion of neurotransmitters by a discrete sequence of events involving the transduction of an electrical signal, in the form of the action potential propagating along the axon, into an increase in calcium at the nerve terminal (Sakmann, 1992). Numerous excellent reports address the importance of calcium as the intracellular chemical messenger and elucidate the specific steps in the release of neurotransmitters (Augustine et al., 1987; Smith and Augustine, 1988; Zimmermann, 1990; Llinas et al., 1992). These steps are outlined briefly as follows:


Calcium Channel Synaptic Vesicle Calcium Channel Antagonist Cium Channel Spider Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, T., and Saisu, H. 1987. Identification of the receptor for w-conotoxin in brain. J. Biol. Chem., 262: 9877–9882.PubMedGoogle Scholar
  2. Adams, B. G., Tanabe, T., Mikami, A., Numa, S., and Beam, K. G. 1990. Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature, 346: 569–572.PubMedCrossRefGoogle Scholar
  3. Adams, M. E., Bindokas, V. P., Hasegawa, L., and Venema, V. J. 1990. w-Agatoxins: Novel calcium channel antagonists of two subtypes from funnel web spider (.9gelenopsis aperta) venom. J. Biol. Chem., 265: 861–867.Google Scholar
  4. Ahlijanian, M. K., Westenbroek, R. E., and Catterall. W. A. 1990. Subunit structure and localization of dihydropyridine-sensitive calcium channels in mammalian brain, spinal cord, and retina. Neuron, 4: 819–832.PubMedCrossRefGoogle Scholar
  5. Ahlijanian, M. K., Striessnig, J., and Catterall, W. A. 1991. Phosphorylation of an a l -like subunit of an wconotoxin-sensitive brain calcium channel by cAMP-dependent protein kinase and protein kinase C. J. Biol. Chem., 266: 20192–20197.PubMedGoogle Scholar
  6. Ahmad, S. N., and Miljanich, G. P. 1988. The calcium channel antagonist, w-conotoxin, and electric organ nerve terminals: Binding and inhibition of neurotransmitter release and calcium influx. Brain Res., 453: 247–256.PubMedCrossRefGoogle Scholar
  7. Anderson, C., MacKinnon, R., Smith, C., and Miller, C. 1988. Charybdotoxin block of single Ca’-activated K’ channels. J. Gen. Physiol., 91: 317–333.PubMedCrossRefGoogle Scholar
  8. Artalejo, C. R., Perlman, R. L., and Fox, A. P. 1992. w-Conotoxin GVIA blocks a Capcurrent in bovine chromaffin cells that is not of the “classic” N type. Neuron, 8: 85–95.Google Scholar
  9. Augustine, G. J., Charlton, M. P., and Smith, S. S. 1987. Calcium action in synaptic transmitter release. Annu. Rev. Neurosci., 10: 633–693.PubMedCrossRefGoogle Scholar
  10. Bacski, B. J., and Friedman, P. A. 1990. Activation of latent Ca“ channels in renal epithelial cells by parathyroid hormone. Nature, 347: 388–391.CrossRefGoogle Scholar
  11. Barhanin, J. A., Schmid, A., and Lazdunski, M. 1988. Properties of structure and interaction of the receptor for w-conotoxin, a polypeptide active on Ca’ channels. Biochem. Biophys. Res. Commun., 150:1051–1062.PubMedCrossRefGoogle Scholar
  12. Bean, B. P. 1984. Nitrendipine block of cardiac calcium channels: High affinity binding to the inactivated state. Proc. Natl. Acad. Sci. USA, 81: 6388–6392.PubMedCrossRefGoogle Scholar
  13. Bean, B. P. 1989a. Classes of calcium channels in verebrate cells. Annu. Rev. Phvsiol., 51: 367–384.CrossRefGoogle Scholar
  14. Bean, B. P. 1989b. Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage-dependence. Nature, 340:153–156.PubMedCrossRefGoogle Scholar
  15. Beech, D. J., Bernheim, L., and Hille, B. 1992. Pertussis toxin and voltage dependence distinguish multiple pathways modulating calcium channels of rat sympathetic neurons. Neuron, 8: 97–106.PubMedCrossRefGoogle Scholar
  16. Bennett, M. K., Calakos, N., Kreiner, T., and Scheller, R. H. 1992a. Synaptic vesicle membrane proteins interact to form a multimeric complex. J. Cell Biol., 116: 761–775.PubMedCrossRefGoogle Scholar
  17. Bennett, M. K., Calakos, N., and Scheller, R. H. 1992b. Syntaxin: A synaptic protein implicated in docking of synaptic vesicles at presynatic active zones. Science, 257: 255–259.PubMedCrossRefGoogle Scholar
  18. Boland, L. M., Mintz, I. M., Adams, M. E., and Bean, B. P. 1992. Inhibition of N-type calcium channel in bullfrog sympathetic neurons by transmitters and toxins. Biophys. J., 61: A249.Google Scholar
  19. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 116: 48–52.Google Scholar
  20. Brose, N., Petrenko, A. G., Südhof, T. C., and Jahn, R. 1992. Synaptotagmin: A calcium sensor on the synaptic vesicle surface. Science, 256: 1021–1025.PubMedCrossRefGoogle Scholar
  21. Bruns, R. F., Lawson-Wendling, K., and Pugsley, T. A. 1983. A rapid filtration assay for soluble receptors using polyethylenimine-treated filters. Anal. Biochem., 132: 74–81.PubMedCrossRefGoogle Scholar
  22. Campbell, K. P., Leung, A. T., and Sharp, A. H. 1988. The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci., 11: 425–430.PubMedCrossRefGoogle Scholar
  23. Carbone, E., and Lux, H. D. 1988. w-Conotoxin blockade distinguished Ca from Na permeable states in neuronal calcium channels. Flingers Arch.,413:14–22.Google Scholar
  24. Catterall, W. A. 1991. Functional subunit structure of voltage-gated calcium channels. Science, 253: 1499–1500.PubMedCrossRefGoogle Scholar
  25. Chang, C. F., Gutierrez, L. M., Mundina-Weilenmann, E., and Hosey, M. M. 1991. Dihydropyridinesensitive calcium channel from skeletal muscle. II. Functional effects of differential phosphorylation of channel subunits. J. Biol. Chem., 266: 16395–16400.PubMedGoogle Scholar
  26. Chersky, B. D., Sugimori, M., and Llinas, R. R. 1991. Properties of calcium channels isolated with spider toxin, FTX. Ann. N. Y. Acad. Sci., 635: 80–89.CrossRefGoogle Scholar
  27. Cohen, M. W., Jones, O. T., and Angelides, K. J. 1991. Distribution of Ca’ channels on frog motor nerve terminals revealed by fluorescent w-conotoxin. J. Neurosci., 11: 1032–1039.PubMedGoogle Scholar
  28. Cooper, C. L., Vandaele, S., Barhanin, J., Fosset, M., Lazdunski, M., and Hosey, M. M. 1987. Purification and characterization of the dihydropyridine-sensitive voltage-dependent calcium channel from cardiac tissue. J. Biol. Chem., 262: 509–512.PubMedGoogle Scholar
  29. Cox, D. H., and Dunlap, K. 1992. Pharmacological discrimination of N-type from L-type calcium current and its selective modulation by transmitters. J. Neurosci., 12: 906–914.Google Scholar
  30. Cruz, L. S., and Olivera, B. M. 1986. Calcium channel antagonists: w-Conotoxin GVIA defines a new high affinity site. J. Biol. Chem., 261: 6230–6233.PubMedGoogle Scholar
  31. Cruz, L. J., Johnson, D. S., and Olivera, B. M. 1987. Characterization of the w-conotoxin target: Evidence for tissue-specific heterogeneity in calcium channel types. Biochemistry, 26: 820–824.PubMedCrossRefGoogle Scholar
  32. Cuatrecasas, P. 1974. Membrane receptors. Annu. Rev. Biochem. 43: 169–214.PubMedCrossRefGoogle Scholar
  33. Curtis, B. M., and Catterall, W. A. 1984. Purification of the calcium antagonist receptor of the voltagesensitive calcium channel from skeletal transverse tubules. Biochemistry, 23:21 13–21 17.Google Scholar
  34. De Jongh, K. S., Warner, C., and Catterall, W. A. 1990. Subunits of purified calcium channels. J. Biol.Chem., 265: 14738–14741.PubMedGoogle Scholar
  35. Dolphin, A. C. 1990. G Protein modulation of calcium currents in neurons. Annu. Rev. Physiol., 52: 243–255.PubMedCrossRefGoogle Scholar
  36. Doyle, V. M., Buhler, F. R., and Burgisser, E. 1984. Inappropriate correction for radioactive decay in fully iodinated adrenergic radioligands. Eur. J. Biochem., 99: 353–356.Google Scholar
  37. Dubel, S. J., Starr, T. V. B., Hell, J., Ahlijanian, M. K., Enyeart, J. J., Catterall, W. A., and Snutch, T. P. 1992. Molecular cloning of the alpha,-subunit of an omega-conotoxin-sensitive calcium channel. Proc. Natl. Acad. Sei. USA, 89: 5058–5062.CrossRefGoogle Scholar
  38. Ellis, S. B., Williams, M. E., Ways, N. R., Brenner, R., Sharp, A. H., Leung, A. T., Campbell, K. P., McKenna, E., Koch, W. J., Hui, A., Schwartz, A., and Harpold, M. M. 1988. Sequence and expression of mRNAs encoding the a, and a 2 subunits for a dihydropyridine-sensitive calcium channel. Science, 241: 1661–1664.PubMedCrossRefGoogle Scholar
  39. Feigenbaum, P., Garcia, M. L., and Kaczorowski, G. J. 1988. Evidence for distinct sites coupled to high affinity w-conotoxin receptors in rat brain synaptic plasma membrane vesicles. Biochem. Biophys. Res. Commun., 154: 298–305.PubMedCrossRefGoogle Scholar
  40. Fox, A. P., Nowycky, M. C., and Tsien, R. W. 1987. Kinetic and pharmacologic properties distinguishing three types of calcium currents in chick sensory neurons. J. Physiol. 394: 149–172.PubMedGoogle Scholar
  41. Furth, A. J. 1980. Removing unbound detergent from hydrophobic proteins. Anal. Biochem. 109: 207–215.PubMedCrossRefGoogle Scholar
  42. Garcia-Calvo, M., Vazquez, J., Smith, M., Kaczorowski, G. J., and Garcia, M. L. 1991. Characterization of the solublized charybdotoxin receptor from bovine aortic smooth muscle. Biochemistry, 30: 11157–11164.PubMedCrossRefGoogle Scholar
  43. Glossmann, H., and Striessnig, J. 1988. Structure and pharmacology of voltage-dependent calcium channels. 1S1 Atlas Sei.: Pharmacol., 2: 202–208.Google Scholar
  44. Glossmann, H., and Striessnig, J. 1990. Molecular properties of calcium channels. Rev. Physiol. Biochem. Pharmacol., 114:1–105.PubMedCrossRefGoogle Scholar
  45. Glossmann, H., Striessnig, J., Hymel, L., and Schindler, H. 1988a. Purification and reconstitution of calcium channel drug-receptor sites. Ann. N. Y. Acad. Sei., 522: 150–161.CrossRefGoogle Scholar
  46. Glossmann, H., Striessnig, J., Hymel, L., Zernig, G., Knaus, H. G., and Schindler, H. 1988b. The structure of the calcium channel: Photoaffinity labelling and tissue distribution. In: The Calciurn Channel: Structure, Function and Implications, pp. 168–192. Ed. by Morad, M., Naylor, W., Kazda, S., and Schramm, M. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  47. Gorbunoff, M. 1984. The interaction of proteins with hydroxyapatite. Anal. Biochem., 136: 425–432.PubMedCrossRefGoogle Scholar
  48. Gornwall, A. G., Bardawill, C. J., and David, M. M. 1949. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem., 177: 751–766.Google Scholar
  49. Gray, W. R., Olivera, B. M., and Cruz, L. J. 1988. Peptide toxins from venomous Conus snails. Annu. Rev. Biochem., 57: 665–700.PubMedCrossRefGoogle Scholar
  50. Guggino, S. E., Wagner, J. A., Snowman, A. M., Hester, L. D., Sacktor, B., and Snyder, S. H. 1988. Phenylalkylamine-sensitive calcium channels in osteoblast-like osteosarcoma cells. J. Biol. Chem., 263: 10155–10161.PubMedGoogle Scholar
  51. Guggino, S. E., Lajeunesse, D., Wagner, J. A., and Snyder, S. H. 1989. Bone remodeling signaled by a dihydropyridine-and PAA-sensitive calcium channel. Proc. Natl. Acad. Sei. USA, 86: 2957–2960.CrossRefGoogle Scholar
  52. Guillory, R. J., Rayner, M. D., and D’Arrigo, J. S. 1977. Covalent labeling of the tetrodotoxin receptor in excitable membranes. Science, 196: 883–885.PubMedCrossRefGoogle Scholar
  53. Gundersen, C. B., and Umbach, J. A. 1992. Suppression cloning of the cDNA for a candidate subunit of a presynaptic calcium channel. Neuron, 9: 527–537.PubMedCrossRefGoogle Scholar
  54. Halpern, A., and Stocklin, G. 1977. Chemical and biological consequences of ß-decay. Radial. Environ. Biophys., 87: 167–183.CrossRefGoogle Scholar
  55. Hamilton, S. L., Codina, J., Hawkes. M. J., Yatani, A., Sawada, T., Strickland, F. M., Froehner, S. C., Speigel, A. M., Toro, L., Stefani, E., Birnbaumer, L., and Brown. A. M. 1991. Evidence for direct interaction of Gsa with the Ca’ channel of skeletal muscle. J. Biol. Chem., 266: 19528–19535.Google Scholar
  56. Hayakawa, N., Morita, T., Yamaguchi, T., Mitsui, H., Mori. K. J., Saisu, H., and Abe, T. 1990. The high affinity receptor for w-conotoxin represents calcium channels different from those sensitive to dihydropyridines in mammalian brain. Biochem. Biophvs. Res. Commun., 173: 483–490.Google Scholar
  57. Hess, P. 1990. Calcium channels in vertebrate cells. Annu. Rev. Neurosci., 13: 337–356.PubMedCrossRefGoogle Scholar
  58. Hess, P., Landsman, B., and Tsien, R. W. 1986. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in guinea pig ventricular heart cells. J. Gen. Phvsiol., 88: 293–319.CrossRefGoogle Scholar
  59. Heuser, J. E.. Reese, T. S., and Landis, D. M. 1974. Functional changes in frog neuromuscular junction studied with freeze-fracture. J. Neurocetol., 3: 109–131.Google Scholar
  60. Hille, B. 1975. The receptor for tetrodotoxin and saxitoxin: A structural hypothesis. Biophps. J., 15: 615–619.CrossRefGoogle Scholar
  61. Hirning, L. D., Fox, A. P., McClesky, E. W., Olivera, B. M., Thayer. S. A., Miller, R. J., and Tsien, R. W. 1988. Dominant role of N-type Ca’-’ channels in evoked release of norepinephrine from sympathetic neurons. Science, 239: 57–61.Google Scholar
  62. Hofmann, F., Nastainczyk. W., Rohrkasten, A., Schneider, T., and Seiber, M. 1987. Regulation of the L-type calcium channel. Trends Pharmacol. Sei., 8: 393–398.CrossRefGoogle Scholar
  63. Home, W. A., Hawrot, E., and Tsien, R. W. 1991. w-Conotoxin GVIA receptors of Discoprge electric organ. J. Biol. Chem., 266: 13719–13725.Google Scholar
  64. Hui, A., Ellinor, P. T., Krizanova, O., Wang. J.-J., Diebold, R. J., and Schwartz, A. 1991. Molecular cloning of multiple subtypes of a novel rat brain isoform of the 0 1 subnit of the voltage-dependent calcium channel. Neuron, 7: 35–44.Google Scholar
  65. Jahn, H., Nastainczyk, W., Rohrkasten, A., Schneider, T.. and Hofmann, F. 1988. Site-specific phosphorylation of the purified receptor for calcium channel blockers by cAMP- and cGMP-dependent protein kinases, protein kinase C, calmodulin-dependent protein kinase II and casein kinase I1. Eur. J. Biochem., 178: 535–542.PubMedCrossRefGoogle Scholar
  66. Jarabak, J., Seeds, A. E., and Talalay, P. 1966. Cold inactivation of 1713-hydroxysteroid dehydrogenase. Biochemistry, 5: 1275–1279.CrossRefGoogle Scholar
  67. Jay, S. D., Ellis, S. B., McCue, A. F., Williams, M. E., Vednick, T. S., Harpold, M. M., and Campbell, K. P. 1990. Primary structure of the y subunit of the dihydropyridine-sensitive calcium channel from skeletal muscle. Science, 248: 490–492.PubMedCrossRefGoogle Scholar
  68. Jay, S. D., Sharp, A. H., Kahl, S. D., Vedvick, T. S., Harpold, M. M., and Campbell, K. P. 1991. Structural characterization of the dihydropyridine-sensitive calcium channel o2-subunit and the associated t peptides. J. Biol. Chem., 266: 3287–3293.PubMedGoogle Scholar
  69. Jones, O. T., Kunze, D. L., and Angelides, K. J. 1989. Localization and mobility of w-conotoxin-sensitive Ca’ channels in hippocampal CAI neurons. Science, 244: 1189–1193.PubMedCrossRefGoogle Scholar
  70. Karlin, A. 1974. The acetylcholine receptor: A progress report. Ligie Sei., 14: 1385–1415.CrossRefGoogle Scholar
  71. Kasai. H. 1991. Tonic inhibition and rebound facilitation of a neuronal calcium channel by a GTP-binding protein. Proc. Natl. Acad. Sci. USA, 88: 8855–8859.PubMedCrossRefGoogle Scholar
  72. Katz, B., and Miledi. R. 1965. The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. Proc. R. Soc. Lond. Biol., 161: 483–495.PubMedCrossRefGoogle Scholar
  73. Kerr. L. M., Filloux, F., Olivera, B. M., Jackson, H., and Wamsley, J. K. 1988. Autoradiographie localization of calcium channels with [’2SI]w-conotoxin in rat brains. Eur. J. Pharmacol., 146: 181–183.PubMedCrossRefGoogle Scholar
  74. Kim, H.-L., Kim, H., Lee. P., King, R. G., and Chin, H. 1992. Rat brain expresses an alternatively spliced form of the dihydropyridine-sensitive L-type calcium channel 0 2 subunit. Proc. Natl. Acad. Sci. USA, 89: 3251–3255.PubMedCrossRefGoogle Scholar
  75. Knaus, H.-G., Striessnig, J., Koza, A., and Glossmann, H. 1987. Neurotoxic aminoglycoside antibiotics are potent inhibitors of [’251]-omega-conotoxin GVIA binding to guinea pig cerebral membranes. NaunvnSchmiedeberg’s Arch. Pharmacol., 336: 583–586.Google Scholar
  76. Knaus, H.-G., Scheffauer, F., Romanin, C., Schindler, H.-G., and Glossmann, H. 1990. Heparin binds with high affinity to voltage-dependent L-type Ca’ channels. J. Biol. Chem., 265: 11156–11166.Google Scholar
  77. Knaus, H.-G., Moshammer, T., Friedrich, K., Kang, H. C., Haugland, R. P., and Glossmann, H. 1992a. In vivo labeling of L-type Ca’ channels by fluorescent dihydropyridines: Evidence for a functional, extracellular heparin-binding site. Proc. Natl. Acad. Sci. USA, 89: 3586–3590.Google Scholar
  78. Knaus, P., Marqueze-Pouey, B., Schere, H., and Betz, H. 1990. Synaptoporin, a novel putative channel protein of synaptic vesicles. Neuron, 5: 453–462.PubMedCrossRefGoogle Scholar
  79. Lai, Y., Seagar, M. J., Takahashi, M., and Catterall, W. A. 1990. Cyclic AMP-dependent phosphorylation of two size forms of a, subunits of L-type calcium channel in rat skeletal muscle cells. J. Biol. Chem., 265: 20839–20848.PubMedGoogle Scholar
  80. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature, 227: 680–685.PubMedCrossRefGoogle Scholar
  81. Leung, A. T., Imagawa, T., and Campbell, K. P. 1987. Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent Ca’ channel from rabbit skeletal muscle. J. Biol. Chem., 262: 7943–7946.PubMedGoogle Scholar
  82. Leveque, C., Hoshino, T., David, P., Shoni-Kasai, Y., Leys, K., Omori, A., Lang, B., El Far, O., Sato, K., Martin-Moutot, N., Newsom-Davis, J., Takahashi, M., and Seagar, M. J. 1992. The synaptic vesicle protein synaptotagmin associates with calcium channels and is a putative Lambert-Eaton myasthenic syndromé antigen. Proc. Natl. Acad. Sei. USA, 89: 3625–3629.CrossRefGoogle Scholar
  83. Lin, J.-W., Rudy, B., and Llinas, R. 1990. Funnel-web spider venom and a toxin fraction block calcium channel expressed from rat brain mRNA in Xenopus oocytes. Proc. Natl. Acad. Sci. USA, 87: 4538–4542.PubMedCrossRefGoogle Scholar
  84. Llinas, R., Sugimori, M., Lin, J.-W., and Chersky, B. 1989. Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FIX) from funnel-web spider poison. Proc. Natl. Acad. Sci. USA, 86: 1689–1693.PubMedCrossRefGoogle Scholar
  85. Llinas, R., Sugimori, M., and Silver, R. B. 1992. Microdomains of high calcium concentration in a presynaptic terminal. Science, 256: 677–679.PubMedCrossRefGoogle Scholar
  86. Loring, R. H., Jones, S. W., Matthews-Bellinger, J., and Salpeter, M. 1982. ‘251-a-bungarotoxin: Effect of radiodecomposition on specific activity. J. Biol. Chem., 257: 1418–1423.Google Scholar
  87. MacKinnon, R., and Miller, C. 1989. Mutant potassium channels with altered binding of charybdotoxin, a pore-blocking inhibitor. Science, 245: 1382–1385.PubMedCrossRefGoogle Scholar
  88. Maeda, N., Wada, K., Yuzaki, M., and Mikoshiba, K. 1989. Autoradiographic visualization of a calcium channel antagonist, [12511w-conotoxin GVIA, binding site in the brains of normal and cerebellar mutant mice (pcd and weaver). Brain Res., 489: 21–30.PubMedCrossRefGoogle Scholar
  89. Marqueze, B., Martin-Moutot, N., Leveque, C., and Courand, F. 1988. Characterization of the w-conotoxin- binding molecule in rat brain synaptosomes and cultured neurons. Mol. Pharmacol., 34: 87–90.PubMedGoogle Scholar
  90. McCleskey, E. W., Fox, A. P., Feldman, D. H., Cruz, L. J., Olivera, B. M., Tsien, R. W., and Yoshikami, D. 1987. w-Conotoxin: Direct and persistent blockade of specific types of calcium channels in neurons and not muscle. Proc. Natl. Acad. Sci. USA, 84: 4327–4331.Google Scholar
  91. McEnery, M. W., Buhle, E. L., Aebi, U., and Pedersen, P. L. 1984. Proton ATPase of rat liver mitochondria. J. Biol. Chem., 249: 4642–4651.Google Scholar
  92. McEnery, M. W., Snowman, A. M., Sharp, A. H., and Snyder, S. H. 1989. Conotoxin receptor of rat brain synaptosomes: Partial purification and characterization. Biophys. J., 57: 516a.Google Scholar
  93. McEnery, M. W., Snowman, A. M., Sharp, A. H., Adams, M. E., and Snyder, S. H. 1991a. Purified wconotoxin GVIA receptor of rat brain resembles a dihydropyridine-sensitive L-type calcium channel. Proc. Natl. Acad. Sci. USA, 88: 11095–11099.PubMedCrossRefGoogle Scholar
  94. McEnery, M. W., Snowman, A. M., and Snyder, S. H. 199 lb. Evidence for subtypes of the w-conotoxin receptor: Identification of the properties intrinsic to the high-affinity receptor. Ann. N. Y. Acad. Sci. 635: 435–438.Google Scholar
  95. McEnery, M. W., Snowman, A. M., Sharp, A. H., Venema, V. J., Adams, M. E., and Snyder, S. H. 1992. Purification of the omega-conotoxin GVIA receptor from rat forebrain: Structural similarity to the dihydropyridine-sensitive L-type calcium channel. Biophys. J., 61: A419.Google Scholar
  96. McEnery, M. W.. Snowman, A. M., Seagar, M. J., Copeland, T., and Takahashi, M. 1993. Immunological characterization of the proteins associated with the purified omega-conotoxin GVIA receptor. Ann. N. Y. Acad. Sci.,in press.Google Scholar
  97. Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y., Takeshima, H., Narumiya, S., and Numa, S. 1989. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature, 340: 230–233.PubMedCrossRefGoogle Scholar
  98. Miljanich, G., Gohil, K., Kristipati, R., Woppman, A., Bowersox, S., Tarczy-Hornoch, K., Nadasdi, L., Fox, J., Bell, J., and Ramachandran, J. 1991. Novel w-conopeptides reveal calcium channel subtypes: Binding. Soc. Neurosci. Abstr., 17: 1161.Google Scholar
  99. Miller, C. 1990. Diffusion-controlled binding of a peptide neurotoxin to its K’ channel receptor. Biochemistry, 29: 5320–5325.PubMedCrossRefGoogle Scholar
  100. Miller, R. J. 1987. Multiple calcium channels and neuronal function. Science, 235:46–52. Miller, R. J. 1992. Voltage-sensitive Cap’ channels. J. Biol. Chem., 267: 1403–1406.Google Scholar
  101. Mintz. I., Venema, V. J., Adams, M. E., and Bean, B. P. 1991. Inhibition of N- and L-type Ca’ channels by spider venom toxin w-AgalIIA. Proc. Natl. Acad. Sci. USA, 88: 6628–6631.PubMedCrossRefGoogle Scholar
  102. Mintz. I. M.. Venema, V. J., Swiderek, K. M., Lee, T. D., Bean, B. P., and Adams, M. E. 1992. P-type calcium channel blocked by the spider toxin w-AgaIVA. Nature, 355: 827–829.Google Scholar
  103. Mori, Y., Friedrich, T., Kim, M.-S., Mikami, A., Nakai, J., Ruth, P., Bosse, E., Hofmann, F., Flockerzi, V., Furuichi, T., Mikoshiba, K., Imoto, K., Tanabe, T., and Numa, S. 1991. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature, 350: 398–402.PubMedCrossRefGoogle Scholar
  104. Morita, T., Mori, H., Sakimura, K., Mishina, M., Sekine, Y., Tsugita, A., Odani, S., Horikawa, H. P. M., Saisu, H., and Abe, T. 1991. Identification of a 35 kDa protein associated with CTXR. Biochim. Biophys. Res. Commun., 181: 59–66.CrossRefGoogle Scholar
  105. Müller. K. 1981. Structural dimorphism of bile salts/lecithin mixed micelles. Biochemistry, 20: 414–420.Google Scholar
  106. Nakayama, H., Taki, M., Striessnig, J., Glossmann, H., Catterall, W. A., and Kanaoka, Y. 1991. Identification of 1,4-dihydropyridine binding regions within the a, subunit of skeletal muscle Ca’ chanels by photoaffinity labeling with diazepine. Proc. Natl. Acad. Sei. USA, 88: 9203–9207.CrossRefGoogle Scholar
  107. Narahashi, T. 1974. Chemicals as tools in the study of excitable membranes. Physiol. Rev., 54: 813–889.PubMedCrossRefGoogle Scholar
  108. Nastainczyk, W., Röhrkasten, A., Seiber, M., Rudolph, C., Schächtele, C., Marme, D., and Hofmann, F. 1987. Phosphorylation of the purified receptor for calcium channel blockers by cAMP kinase and protein kinase C. Eur. J. Biochem., 169: 137–142.PubMedCrossRefGoogle Scholar
  109. Noda, M., Suzuki, H., Numa, S., and Stühmer, W. 1989. A single point mutation confers tetrodotoxin and saxitoxin insensitivity on the sodium channel II. FEBS Lett.. 259: 213–216.Google Scholar
  110. Nowycky, M. C., Fox, A. P., and Tsien, R. W. 1985. Three types of neuronal channels with difference calcium sensitivity. Nature, 316: 440–443.PubMedCrossRefGoogle Scholar
  111. Nunoki, K., Florio, V., and Catterall, W. A. 1989. Activation of purified calcium channels by stoichiometric protein phosphorylation. Proc. Natl. Acad. Sei. USA, 86: 6816–6820.CrossRefGoogle Scholar
  112. Olivera, B. M., McIntosh, J. M., Cruz, L. J., Luque, F. A., and Gray, W. R. 1984. Purification and sequence of a presynatic peptide from Conus geographus venom. Biochemistry, 23: 5087–5090.PubMedCrossRefGoogle Scholar
  113. Olivera, B. M., Cruz, L. J., de Santos, V., LeCheminant, G. W., Griffin, D., Zeikus, R., McIntosh. J. M., Galyean, R., Vargas, J., Gray, W. R., and Rivier, J. 1987. Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using w-conotoxin from Conus magus venom. Biochemistry, 26: 2086–2090.Google Scholar
  114. Olivera, B. M., Rivier, J., Clark, C., Ramilo, C. A., Corpuz, G. P., Abogadie, F. C., Mena, E. E., Woodward, S. R., Hillyard, D. R., and Cruz, L. J. 1990. Diversity of Conus neuropeptides. Science, 249: 257–263.PubMedCrossRefGoogle Scholar
  115. Olivera, B. M., Rivier, J., Scott, J. K., Hillyard, D. R., and Cruz, L. J. 199la. Conotoxins. J. Biol. Chem., 266: 22067–22070.Google Scholar
  116. Olivera, B. M., Imperial, J. S., Cruz, L. J., Binbokas, V. P., Venema, V. J., and Adams, M. E. 1991b. Calcium channel-targeted polypeptide toxins. Ann. N. Y. Acad. Sei., 635: 114–122.CrossRefGoogle Scholar
  117. Oyama, Y., Tsuda, Y., Sakakibaba, S., and Akaike, N. 1987. Synthetic w-conotoxin: A potent calcium blocking neurotoxin. Brain Res., 424: 58–64.PubMedCrossRefGoogle Scholar
  118. Perez-Reyes, E., Castellano, A., Kim, H. S., Bertrand, P., Baggstrom, E., Lacerda, A. E.. Wei, X., and Birnbaumer, L. 1992. Cloning an expression of a cardiac/brain beta subunit of the L-type calcium channel. J. Biol. Chem., 267: 1792–1797.Google Scholar
  119. Petrenko, A. G., Perin, M. S., Davletov, B. A.. Usharyov, Y. A., Geppert, M., and Sudhof, T. C. 1991. Binding of synaptotagmin to the a-latrotoxin receptor implicated both in synaptic vesicle exocytosis. Nature, 353: 65–68.Google Scholar
  120. Plummer, M. R., and Hess, P. 1991. Reversible uncoupling of inactivation in N-type calcium channels. Nature, 351: 657–659.PubMedCrossRefGoogle Scholar
  121. Plummer, M. R., Logothetic, D. E., and Hesse, P. 1989. Elemental properties and pharmacological sensitivities of calcium channels in mammalian neurons. Neuron, 2: 1453–1463.PubMedCrossRefGoogle Scholar
  122. Plummer, M. R., Rittenhouse, A., Kanevsky, M., and Hesse, P. 1991. Neurotransmitter modulation of calcium channels in rat sympathetic neurons. J. Neurosci., 11: 2339–2348.PubMedGoogle Scholar
  123. Pragnell, M., Sakamoto, J., Jay, S. D., and Campbell, K. P. 1991. Cloning and tissue-specific expression of the brain calcium channel 0-subunit. FEBS Leu., 291: 253–258.CrossRefGoogle Scholar
  124. Pumplin, D. W., Reese, T. S., and Llinas, R. 1981. Are the presynaptic membrane particles the the calcium channels? Proc. Natl. Acad. Sci. USA, 78: 7210–7213.PubMedCrossRefGoogle Scholar
  125. Racker, E. 1977. Perspectives and limitations of resolution-reconstitution experiments. J. Supramol. Struct., 6: 215–228.PubMedCrossRefGoogle Scholar
  126. Racker, E., Violand, B., O’Neal, S., Alfonzo, M., and Telford, J. 1979. Reconstitution, a way of biochemical research; some new approaches to membrane-bound enzymes. Arch. Biochem. Biophis., 198: 470–477.CrossRefGoogle Scholar
  127. Regulla, S., Schneider, T., Nastainczyk, W., Meyer, H. E., and Hofmann, F. 1991. Identification of the site of interaction of the dihydropyridine channel blockers nitrendipine and azidopine with the calcium channel alpha, subunit. EMBO J., 10: 45–49.PubMedGoogle Scholar
  128. Rehm, H., and Lazdunski, M. 1988. Purification and subunit structure of a putative Ki-channel protein indeifiied by its binding properties for dendrotoxin I. Proc. Natl. Acad. Sci. USA, 85: 4919–4923.PubMedCrossRefGoogle Scholar
  129. Reynolds, I. J., Wagner, J. A., Snyder, S. H., Thayer, S. A.. Olivera, B. M., and Miller, R. J. 1986. Brain voltage-sensitive calcium channel subtypes differentiated by w-conotoxin fraction GVIA. Proc. Natl. Acad. Sci. USA, 83: 8804–8807.Google Scholar
  130. Rios, E., and Brum, G. 1987. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature, 325: 717–720.PubMedCrossRefGoogle Scholar
  131. Rios, E., and Pizarro, G. 1991. Voltage sensor of excitation-contraction coupling in skeletal muscle. Phys. Rev., 71: 849–908.Google Scholar
  132. Rivier, J.. Gaylean, R., Gray, W. R., Azimi-Zonooz, A., McIntosh, J. M., Cruz, L. J., and Olivera, B. M. 1987. Neuronal calcium channel inhibitors. J. Biol. Chem., 262: 1194–1198.Google Scholar
  133. Rivnay, B., Fox, J., Newcomb, R., Gohil, F., Cain. S., Palma, A., Adriaenssens, P., Nadasdi, L., Miljanich, G., Bell, J., and Ramachandran, J. 1991. Novel w-conopeptides reveal calcium channel subtypes: Transmitter release. Soc. Neurosci. Abstr., 17: 1161.Google Scholar
  134. Rosenberg, R. L., Isaacson, J. S., and Tsien, R. W. 1989. Solubilization, partial purification, and properties of w-conotoxin receptors associated with voltage-dependent calcium channel from rat brain synaptosomes. Ann. N. Y. Acad. Sci., 560: 39–52.PubMedCrossRefGoogle Scholar
  135. Ruth, P., Röhrkasten, A., Biel, M., Bosse, E., Meyer, H. E., and Hofmann, F. 1989. Primary sequence of the 13 subunit of the DHP-sensitive calcium channel from skeletal muscle. Science, 245: 1115–1118.PubMedCrossRefGoogle Scholar
  136. Saisu, H., Ibaraki, K., Yamagushi, T., Sekine, Y., and Abe, T. 1991. Monoclonal antibodies immunoprecipitating w-conotoxin-sensitive calcium channel molecules recognize two novel proteins localized in the nervous system. Biochem. Biophys. Res. Commun., 181: 59–66.PubMedCrossRefGoogle Scholar
  137. Sakamoto, J., and Campbell. K. P. 199la. A monoclonal antibody to the ß subunit of the skeletal muscle dihydropyridine receptor immunoprecipitates the brain w-conotoxin GVIA receptor. J. Biol. Chem., 266: 18914–18919.Google Scholar
  138. Sakamoto, J., and Campbell, K. P. 199 lb. Isolation and biochemical characterization of the rabbit brain wconotoxin GVIA receptor. Physiologist, 34: 109.Google Scholar
  139. Sakmann, B. 1992. Elemental steps in synaptic transmission revealed by currents through single ion channels. Neuron, 8: 613–629.PubMedCrossRefGoogle Scholar
  140. Schmidt. J. 1984. The impact of radiodecay on’25ITyr-54-a-bungarotoxin. J. Biol. Chem., 259: 1160–1166.PubMedGoogle Scholar
  141. Schultz, G., Rosenthal, W., Hescheler, J., and Trautwein, W. 1990. Role of G proteins in calcium channel modulation. Annu. Rev. Physiol., 52: 275–292.PubMedCrossRefGoogle Scholar
  142. Scott, R. H., Dolphin, A. C., Bindokas, V. P., and Adams, M. E. 1990. Inhibition of neuronal Cat’ channel current by the funnel web spider toxin w-AgaIA. Mol. Pharmacol., 38: 711–718.PubMedGoogle Scholar
  143. Segel, I. H. 1975. Enrpme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State En_vme Systems. Wiley, New York.Google Scholar
  144. Seino, S., Chen, L., Seino, M., Blondell, O., Takeda, J., Johnson, J. H., and Bell, G. I. 1992. Cloning of the a, subunit of a voltage-dependent calcium channel expressed in pancreatic ß cells. Proc. Natl. Acad. Sei. USA, 89: 584–588.CrossRefGoogle Scholar
  145. Sharp, A. H., and Campbell, K. P. 1989. Characterization of the I,4-dihydropyridine receptor using subunit specific polyclonal antibodies. J. Biol. Chem., 264: 2816–2825.PubMedGoogle Scholar
  146. Sharp, A. H., Imagawa, T., Leung, A. T., and Campbell, K. P. 1987. Identification and characterization of the dihydropyridine-binding subunit of the skeletal muscle dihydropyridine receptor. J. Biol. Chem., 262: 12309–12315.PubMedGoogle Scholar
  147. Sieber, M., Nastinczyk, W., Zubor, V., Wernet, W., and Hofmann, F. 1987. The 165-kDa peptide of the purified skeletal muscle dihydropyride receptor contains the known regulatory sites of the calcium channel. Eur. J. Biochem., 167: 117–122.PubMedCrossRefGoogle Scholar
  148. Sikorski, A. F., and Goodman, S. R. 1991. The effect of synapsin 1 phosphorylation upon binding of synaptic vesicle to spectrin. Brain Res., 27: 195–198.Google Scholar
  149. Singer, D., Beil, M., Lotan, 1., Flockerzi, V., Hofmann, F., and Dascal, N. 1991. The roles of the subunits in the function of the calcium channel. Science, 253: 1553–1557.Google Scholar
  150. Smith, S. J., and Augustine, G. J. 1988. Calcium ions, active zones, and synaptic transmitter release. Trends Neurosci., 11: 458–464.PubMedCrossRefGoogle Scholar
  151. Snutch, T. P., Leonard, J. P.. Gilbert, M. M., Lester, H. A., and Davidson, N. 1990. Rat brain expreses a heterologous family of calcium channels. Proc. Natl. Acad. Sci. USA, 87: 3391–3395.CrossRefGoogle Scholar
  152. Snutch, T. P., Tomlinson, W. J., Leonard, J. P., and Gilbert, M. M. 1991. Distinct calcium channels are generated by alternate splicing and are differentially expressed in the mammalian CNS. Neuron, 7: 45–57.PubMedCrossRefGoogle Scholar
  153. Snyder, 1984. Drug and neurotransmitter receptors in the brain. Science, 224: 23–31.CrossRefGoogle Scholar
  154. Stanley, E. F., and Cox, C. 1991. Calcium channels in the presynaptic nerve terminal of the chick ciliary ganglion giant synapse. Ann. N. Y. Acad. Sei., 635: 70–79.CrossRefGoogle Scholar
  155. Starr, T. V. B., Prystay, W., and Snutch, T. P. 1991. Primary structure of a calcium channel that is highly expressed in rat cerebellum. Proc. Natl. Acad. Sci. USA, 88: 5621–5625.PubMedCrossRefGoogle Scholar
  156. Striessnig, J., Knaus, H.-G., Gabner, M., Moosburger, K., Seitz, W., Lietz, H., and Glossmann, H. 1987. Photoaffinity labeling of the phenylalkylamine receptor of the skeletal muscle transverse-tubule calcium channel. FEBS Lett., 212: 247–253.PubMedCrossRefGoogle Scholar
  157. Striessnig, J., Glossmann, H., and Catterall, W. A. I990a. Identification of a phenylalkylamine binding region within the a, subunit of skeletal muscle Ca’ channels. Proc. Natl. Acad. Sci. USA, 87: 9108–9112.Google Scholar
  158. Striessnig, J., Scheffauer, F., Mitterdorfer, J., Schirmer, M., and Glossmann, H. 1990b. Identification of the benzothiazepine-binding polypeptide of skeletal muscle calcium channels with (+)-cis-azidodiltiazem and anti-ligand antibodies. J. Biol. Chem., 265: 363–370.PubMedGoogle Scholar
  159. Striessnig, J., Murphy, B. J., and Catterall, W. A. 1991. Dihydropyridine receptor of L-type Ca“ channels: Identification of binding domains for [3H](+)-PN200–110 and [3H]azidopine with the a, subunit. Proc. Natl. Acad. Sei. USA, 88: 10769–10773.CrossRefGoogle Scholar
  160. Stumpo, R. J., Pullan, L. M., and Salama, A. I. 1991. The inhibition of [125I]w-conotoxin GVIA binding to neuronal membranes by neomycin may be mediated by a GTP-binding protein. Mol. Pharmacol., 206: 155–158.Google Scholar
  161. Suszkiw, J. B., Murawsky, M. M., and Fortner, R. C. 1987. Heterogeneity of presynaptic calcium channels revealed by species differences in the sensitivity to synaptosomal 45Ca entry to w-conotoxin. Biochem. Biophys. Res. Commun., 145: 1283–1286.PubMedCrossRefGoogle Scholar
  162. Takahashi, M., Seagar, M. J., Jones, J. F., Reber, B. F. X., and Catterall, W. A. 1987. Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc. Natl. Acad. Sci. USA, 84: 5478–5482.PubMedCrossRefGoogle Scholar
  163. Takahashi, M., Arimatsu, Y., Fujita, S., Fujimoto, Y., Kondo, S., Hama, T., and Miyamoto, E. 1991. Protein kinase C and Ca3+/calmodulin-dependent protein kinase II phosphorylate a novel 58-kDa protein in synaptic vesicles. Brain Res., 551: 279–292.PubMedCrossRefGoogle Scholar
  164. Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V.. Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose. T., and Numa, S. 1987. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature, 328: 313–328.Google Scholar
  165. Tanabe, T., Beam, K. G., Adams, B. A., Niidome, T., and Numa, S. 1990. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature, 346: 567–569.PubMedCrossRefGoogle Scholar
  166. Tarelli, F. T., Passafaro, M., Clementi, F., and Sher, E. 1991. Presynaptic localization of w-conotoxin-sensitive calcium channel at the frog neuromuscular junction. Brain Res., 547:331–334.Google Scholar
  167. Taussig, R., Sanchez, S., Rifo, M., Gilman, A. G., and Belardetti, F. 1992. Inhibition of the w-conotoxin-sensitive calcium current by distinct G-proteins. Neuron, 8:799–809.Google Scholar
  168. Terlau, H., Heinemann, S. H., Stuhmer, W., Pusch, M., Conti, F., Imoto, K., and Numa, S. 1991. Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett., 293: 93–96.PubMedCrossRefGoogle Scholar
  169. Terman, B. I., Riek, R. P., Grodski, A., Hess, H.-J., and Graham, R. M. 1990. Identification and structural characterization of a,-adrenergic receptor subtypes. Mol. Pharmacol., 37:526–534.Google Scholar
  170. Thomas, L., Hartung, K., Langosch, D., Rehm, H., Bamber, E., Franke, W. W., and Betz, H. 1988. Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science, 242: 1050–1053.PubMedCrossRefGoogle Scholar
  171. Tsien, R. W., Lipscombe, D., Madison, D. V., Bloy, K. R., and Fox, A. P. 1988. Multiple types of neuronal calcium channels and their selective modulation. Trends in Neurosci., 11: 431–438.CrossRefGoogle Scholar
  172. Tsien, R. W., Ellinor, P. T., and Home, W. A. 1991. Molecular diversity of voltage-dependent Cap` channels. Trends Neurosci., 12: 349–354.Google Scholar
  173. Tsubokawa, M., Kiraly, C., Woopmann, A., Liu, N., Miljanich, G. P., and Ramachandran, J. 1991. Unique structure of the purified w-conopeptide receptor from electric ray electric organ terminals. Soc. Neurosci. Abstr., 17: 1161.Google Scholar
  174. Umbach, J. A., and Gundersen, C. B. 1987. Expression of an omega-conotoxin-sensitive calcium channel in Xenopus oocytes injected with mRNA from Torpedo electric lobe. Proc. Natl. Acad. Sci. USA, 86: 5464–5468.CrossRefGoogle Scholar
  175. Umbach, J. A., and Gundersen, C. B. 1991. Expression cloning of a cDNA fragment for a candidate presynaptic calcium channel. Ann. N. Y. Acad. Sci., 635: 443–445.PubMedCrossRefGoogle Scholar
  176. Valtorta, F., Benfenati, F., and Greengard, P. 1992. Structure and function of the synapsins. J. Biol. Chem., 267:7195–7198.Google Scholar
  177. Varadi, G., Lory, P., Schultz, D., Varadi, M., and Schwartz, A. 1991. Acceleration of activation and inactivation by the 0-subunit of the skeletal muscle calcium channel. Nature, 352: 159–162.PubMedCrossRefGoogle Scholar
  178. Vazquez, J., Feigenbaum, P., King, V. F., Kaczorowski, G. J., and Garcia, M. L. 1990. Characterization of high affinity binding sites for charybdotoxin in synaptic plasma membranes from rat brain. J. Biol. Chem., 265: 15564–15571.PubMedGoogle Scholar
  179. Venema, V. J., Swiderek, K. M., Lee, T. D., Hathaway, G. M., and Adams, M. E. 1992. Antagonism of synaptosomal calcium channels by subtypes of w-agatoxins. J. Biol. Chem., 267: 2610–2615.PubMedGoogle Scholar
  180. Volknandt, W., Schlafer, M., Bonzelius, F., and Zimmermann, H. 1990. Svp25, a synaptic vesicle membrane glycoprotein from Torpedo electric organ that binds calcium and forms a homo-oligomeric complex. EMBO J., 9: 2465–2470.PubMedGoogle Scholar
  181. Wagner, J. A., Snowman, A. M., Biswas, A., Olivera, B. M., and Snyder, S. H. 1988. w-Conotoxin GVIA binding to a high-affinity receptor in brain: Characterization, calcium sensitivity, and solubilization. J. Neurosci., 8: 3354–3359.Google Scholar
  182. Werth, J. L., Hirning, L. D., and Thayer, S. A. 1991. w-Conotoxin exerts functionally distinct low and high affinity effects in the neuronal cell line NG108–15. Mol. Pharmacol., 40: 742–749.Google Scholar
  183. Westenbroek, R. E., Ahlijanian, M. K., and Catterall, W. A. 1990. Clustering of L-type Ca“ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature, 347:281–284.Google Scholar
  184. Williams, M. E., Feldman. D. H., McCue, A. F., Brenner, R., Velicelebi, G., Ellis, S. B., and Harpold, M. M. 1992a. Structure and functional expression of a,, a 2 and ß subunits of a novel human neuronal calcium channel subtype. Neuron, 8:71–84.Google Scholar
  185. Williams, M. E., Brust, P. F., Feldman, D. H., Patthi, S., Simerson, S., Maroufi, A., McCue, A. F., Velicelebi, G., Ellis, S. B., and Harpold, M. M. 1992b. Structure and functional expression of an omega-conotixinsensitive human N-type calcium channel. Science, 257: 389–395.PubMedCrossRefGoogle Scholar
  186. Wong, S. K., Slaughter, A. E., Ruoho, A. E., and Ross, E. M. 1988. The catecholamine binding site of the beta-adrenergic receptor is formed by juxtaposed membrane-spanning domains. J. Biol. Chem., 263: 7925–7928.PubMedGoogle Scholar
  187. Wray, W., Boulikas, T., Wray, V. P., and Hancock, R. 1981. Silver staining of proteins in polyacrylamide gels. Anal. Biochem., 118: 197–203.PubMedCrossRefGoogle Scholar
  188. Yamaguchi, T., Saisu, H., Mitsui, H., and Abe, T. 1988. Solubilization of the w-conotoxin receptor associated with voltage-sensitive calcium channels from bovine brain. J. Biol. Chem., 263: 9491–9498.PubMedGoogle Scholar
  189. Yeager, R. E., Yoshikami, D., Rivier, J., Cruz, L. J., and Miljanich, G. P. 1987. Transmitter release from presynaptic terminals of electric organ: Inhibition by the calcium channel antagonist omega (“onus toxin. J. Neurosci., 7: 2390–2396.PubMedGoogle Scholar
  190. Yoshida, A., Takahashi, M., Fujimoto, Y., Takisawa, H., and Nakamura, T. 1990. Molecular characteristics of 1,4-dihydropyridine-sensitive calcium channel of chick heart and skeletal muscle. J. Biochem., 107: 608–612.PubMedGoogle Scholar
  191. Yoshida, A., Ohno, C., Omori, A., Kuwahara, R., Ito, T., and Takahashi, M. 1992. HPC-I is associated with synaptotagmin and w-CTX receptor. J. Biol. Chem., 267: 24925–24928.PubMedGoogle Scholar
  192. Yuan, S. H., Arnold, W., and Jorgensen, A. O. 1991. Biogenesis of transverse tubules and triads: Immunolocalization of the 1,4-dihydropyride receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ. J. Cell Biol., 112: 289–301.CrossRefGoogle Scholar
  193. Zimmermann, H. 1990. Neurotransmiter release. FEBS Lett., 268: 394–399.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Maureen W. McEnery
    • 1
  1. 1.Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations