Advertisement

Codes From Algebraic Geometry

  • Ian F. Blake
  • XuHong Gao
  • Ronald C. Mullin
  • Scott A. Vanstone
  • Tomik Yaghoobian
Chapter
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 199)

Abstract

Codes obtained from algebraic curves have attracted much attention from mathematicians and engineers alike since the remarkable work of Tsfasman et al. [17] who showed that the longstAnding Gilbert-Varshamov lower bound can be exceeded for alphabet sizes larger than 49. The Gilbert-Varshamov bound, established in 1952, is a lower bound on the information rate of good codes. This lower bound was not improved until 1982 with the discovery of good algebraic geometric codes. These codes are obtained from modular curves [17], but consideration of these curves is beyond the scope of this book. van Lint and Springer [21] later derived the same results as Tsfasman et al., but by using less complicated concepts from algebraic geometry. Recall that a linear code with parameters [n, k, d] q is a linear subspace of F q n of dimension k and minimum distance d.

Keywords

Elliptic Curve Elliptic Curf Linear Code Algebraic Curf Parity Check Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley, Reading, Mass., 1983.MATHGoogle Scholar
  2. [2]
    Y. Driencourt, “Some properties of elliptic codes over a field of characteristic 2”, Proceedings of AAECC-3, Lecture Notes in Computer Science, 229 (1985), 185–193.Google Scholar
  3. [3]
    Y. Driencourt and J.F. Michon, “Elliptic codes over a field of characteristic 2”, J. of Pure and Applied Algebra, 45 (1987), 15–39.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    V. Goppa, Geometry and Codes, Kluwer Academic Publishers, Dordrecht, 1988.MATHCrossRefGoogle Scholar
  5. [5]
    J. Justesen, K.J. Larsen, H.E. Jensen, A. Havemose and T. Hoholdt, “Construction and decoding of algebraic geometric codes”, IEEE Trans. Info. Th., 35, (1989), 811–821.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    G.L. Katsman and M.A. Tsfasman, “Spectra of algebraic-geometric codes”, Problems of Information Transmission, 23 (1988), 262–275.Google Scholar
  7. [7]
    D. Le Brig And, “Decoding of codes on hyperelliptic curves”, Eurocode ’90, Lecture Notes in Computer Science, 514 (1991), 126–134.Google Scholar
  8. [8]
    F.J. Macwilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-HollAnd, Amsterdam, 1977.MATHGoogle Scholar
  9. [9]
    J.F. Michon, “Codes and curves”, Lecture Notes in Computer Science, 357 (1989), 22–30.MathSciNetCrossRefGoogle Scholar
  10. [10]
    C. Moreno, Algebraic Curves over Finite Fields, Cambridge University Press, 1991.Google Scholar
  11. [11]
    R. Pellikaan, “On a decoding algorithm for codes on maximal curves”, IEEE Trans. Info. Th., 35 (1989), 1228–1232.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    D. Rotillon and J.A. Thiong Ly, “Decoding of codes on the Klein Quartic”, Eurocode ’90, Lecture Notes in Computer Science, 514 (1991), 135–149.MathSciNetCrossRefGoogle Scholar
  13. [13]
    A.N. Skorobogatov and S.G. Vladut, “On the decoding of algebraicgeometric codes”, IEEE Trans. Info. Th., 36 (1990), 1051–1060.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    H. Stichtenoth, “A note on Hermitian codes over GF(q 2 )”, IEEE Trans. Info. Th., 34 (1988), 1345–1348.MathSciNetCrossRefGoogle Scholar
  15. [15]
    H.J. Tiers Ma, “Remarks on codes from Hermitian Curves”, IEEE Trans. Info. Th., 33 (1987), 605–609.MathSciNetCrossRefGoogle Scholar
  16. [16]
    M.A. Tsfasman and S.G. Vladut, Algebraic-Geometric Codes, Kluwer Academic Publishers, Dordrecht, 1991.MATHCrossRefGoogle Scholar
  17. [17]
    M.A. Tsfasman, S.G. Vladut and Th. Zink, “On Goppa codes which are better than the Varshamov-Gilbert bound”, Math. Nachr., 109 (1982), 21–28.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    J.H. Van Lint, Introduction to Coding Theory, Springer-Verlag, New York, 1982.MATHCrossRefGoogle Scholar
  19. [19]
    J.H. Van Lint, “Algebraic geometric codes”, Coding Theory and Design Theory, Part 1, Springer-Verlag, New York, 1990, 137–162.Google Scholar
  20. [20]
    J.H. Van Lint and G. Van Der Geer, Introduction to Coding Theory and Algebraic Geometry, Dmv Seminar, BAnd 12, Birkhäuser Verlag, 1988.MATHCrossRefGoogle Scholar
  21. [21]
    J.H. Van Lint and T.A. Springer, “Generalized Reed-Solomon codes from algebraic geometry”, IEEE Trans. Info. Th., 33 (1987), 305–309.MATHCrossRefGoogle Scholar
  22. [22]
    T. Yaghoobian and I. Blake, “Hermitian codes as generalized Reed-Solomon codes”, Designs, Codes, and Cryptography, 2 (1992), 5–17.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Ian F. Blake
    • 1
  • XuHong Gao
    • 1
  • Ronald C. Mullin
    • 1
  • Scott A. Vanstone
    • 1
  • Tomik Yaghoobian
    • 1
  1. 1.University of WaterlooCanada

Personalised recommendations