Advertisement

Introduction to Finite Fields and Bases

  • Ian F. Blake
  • XuHong Gao
  • Ronald C. Mullin
  • Scott A. Vanstone
  • Tomik Yaghoobian
Chapter
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 199)

Abstract

This introductory chapter contains some basic results on bases for finite fields that will be of interest or use throughout the book. The concentration is on the existence of certain types of bases, their duals and their enumeration. There has been considerable activity in this area in the past decade and while many of the questions are resolved, a few of the important ones remain open. The presentation here tries to complement that of Lidl and Niederreiter [21] although there is some unavoidable overlap. For a more extensive treatment of the topics covered in this chapter, we recommend the recent book by D. Jungnickel [15]. For the remainder of this section some basic properties of the trace and norm functions are recalled.

Keywords

Finite Field Normal Basis Dual Basis Primitive Element Polynomial Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Berlekamp, “Bit-serial Reed-Solomon encoders” , IEEE Trans. Info. Th., 28 (1982), 869–874.MATHCrossRefGoogle Scholar
  2. [2]
    T. Beth and W. Geiselmann, “Selbstduale Normalbasen über Gf(q)”, Arch. Math., 55 (1990), 44–48.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    T. Beth, W. Geiselmann and D. Jungnickel, “A note on orthogonal circulant matrices over finite fields” , preprint, 1992.Google Scholar
  4. [4]
    D. Blessenohl and K. Johnsen, “Eine Verschärfung des Satzes von der Normalbasis”, J. Algebra, 103 (1986), 141–159.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    N.H. Bshouty and G. Seroussi, “Generalizations of the normal basis theorem of finite fields” , SIAM J. Disc. Math., 3 (1990), 330–337.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    K. Byrd and T. Vaughan, “Counting and constructing orthogonal circulants” , J. of Combinatorial Theory, A 24 (1978), 34–49.Google Scholar
  7. [7]
    L. Carlitz, “Primitive roots in a finite field”, Trans. Amer. Math. Soc., 73 (1952), 373–382.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    S. Cohen, “Primitive elements and polynomials with arbitrary trace”, Discrete Math., 83 (1990), 1–7.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    H. Davenport, “Bases for finite fields”, J. London Math. Soc., 43 (1968), 21–39.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    W. Geiselmann and D. Gollmann, “Symmetry and duality in normal basis multiplication” , AAECC-6, Lecture Notes in Computer Science, 357 (1989), Springer-Verlag, 230–238.CrossRefGoogle Scholar
  11. [11]
    D. Gollmann, Algorithmenentwurf in der Kryptographie, Habilitationsschrift, FB Informatik der Universität Karlsruhe, 1990.Google Scholar
  12. [12]
    J.W.P. Hirschfeld, Projective Geometries over Finite Fields, Clarendon Press, Oxford, 1979.MATHGoogle Scholar
  13. [13]
    I. Imamura “On self-complementary bases of GF (qn) over GF (q)” , Trans. IECE Japan (Section E), 66 (1983), 717–721.Google Scholar
  14. [14]
    K. Imamura and M. Morii, “Two classes of finite fields which have no self-complementary normal bases”, IEEE Int’l Symp. Inform. Theory, Brighton, EnglAnd, June, 1985.Google Scholar
  15. [15]
    D. Jungnickel, Finite Fields: Structure and Arithmetics, Bibliographisches Institut, Mannheim, 1993.MATHGoogle Scholar
  16. [16]
    D. Jungnickel, “Trace-orthogonal normal bases”, Discrete Applied Math., to appear.Google Scholar
  17. [17]
    D. Jungnickel, A. Menezes and S. Vanstone, “On the number of self-dual bases of GF (q n ) over GF (q)” , Proc. Amer. Math. Soc., 109 (1990), 23–29.MathSciNetMATHGoogle Scholar
  18. [18]
    A. Lempel and G. Seroussi, “Explicit formulas for self-complementary normal bases in certain finite fields”, IEEE Trans. Info. Th., 37 (1991), 1220–1222.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    A. Lempel and M.J. Weinberger, “Self-complementary normal bases in finite fields”, SIAM J. Disc. Math., 1 (1988), 193–198.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    H.W. Lenstra and R.J. Schoof, “Primitive normal bases for finite fields”, Math. Comp., 48 (1987), 217–231.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, 1987.Google Scholar
  22. [22]
    F.J. Macwilliams, “Orthogonal matrices over finite fields”, Amer. Math. Monthly, 76 (1969), 152–164.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    F.J. Macwilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-HollAnd, Amsterdam, 1977.MATHGoogle Scholar
  24. [24]
    A. Menezes, Representations in Finite Fields, M.Math. thesis, Department of Combinatorics and Optimization, University of Waterloo, 1989.Google Scholar
  25. [25]
    O. Moreno, “On primitive elements of trace equal to 1 in Gf(2m)*”, Discrete Math., 41 (1982), 53–56.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    M. Morii, M. Kasahara and D. Whiting, “Efficient bit-serial multiplication and the discrete-time Wiener-Hopf equation over finite fields”, IEEE Trans. Info. Th., 35 (1989), 1177–1183.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    G. Seroussi and A. Lempel, “Factorization of symmetric matrices and trace-orthogonal bases in finite fields”, SIAM J. Comput., 9 (1980), 758–767.MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    S.A. Stepanov and I.E. Shparlinski, “On the construction of a primitive normal basis in a finite field”, Math. USSR Sbornik, 67 (1990), 527–533.MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    D. Stinson, “On bit-serial multiplication and dual bases in Gf(2m)”, IEEE Trans. Info. Th., 37 (1991), 1733–1736.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    C. Wang, “An algorithm to design finite field multipliers using a self-dual normal basis”, IEEE Trans. Comput., 38 (1989), 1457–1460.CrossRefGoogle Scholar
  31. [31]
    M. Wang and I. Blake, “Bit-serial multiplication in finite fields”, SIAM J. Disc. Math., 3 (1990), 140–148.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Ian F. Blake
    • 1
  • XuHong Gao
    • 1
  • Ronald C. Mullin
    • 1
  • Scott A. Vanstone
    • 1
  • Tomik Yaghoobian
    • 1
  1. 1.University of WaterlooCanada

Personalised recommendations