Advertisement

Ceramic reinforcements

  • K. K. Chawla

Abstract

Reinforcements can be produced in the form of continuous fiber, short fiber, whisker or particle. Continuous ceramic fibers are very attractive for reinforcing ceramic materials. They combine rather high strength and elastic modulus with high-temperature capability and a general freedom from environmental attack, making them attractive as reinforcements in high-temperature structural materials. It is convenient to divide the ceramic reinforcements into oxide and nonoxide categories. Table 3.1 lists some important ceramic reinforcement materials available in different forms. Tables 3.2 and 3.3 give the chemical composition of some commercially available oxide and nonoxide reinforcements, respectively. Except for silica-based glass fiber and carbon fibers, which have many producers and trade names, we provide the trade names as well as manufacturers of the newer ceramic fibers.

Keywords

Carbon Fiber Metallic Glass Rice Hull Chemical Vapor Deposition Process Ceramic Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dresher, W.H. (1969) J. Metals, 21 (April), 17.Google Scholar
  2. 2.
    Loewenstein, K.L. (1983) The Manufacturing Technology of Continuous Glass Fibers, 2nd edn., Elsevier, New York.Google Scholar
  3. 3.
    Parkyn, B. (ed.) (1970) Glass Reinforced Plastics, Butterworth, London.Google Scholar
  4. 4.
    Lowrie, R.E. (1967) in Modern Composite Materials, Addison-Wesley, Reading, Mass., 1971 p. 270.Google Scholar
  5. 5.
    Proctor, B.A. (1971) Composites, 2, 85.CrossRefGoogle Scholar
  6. 6.
    Sakka, S. (1982) in Treatise on Materials Sci. and Tech., Vol. 22 (eds M. Tomozawa and R.H. Doremus), Academic Press, New York, pp. 129–67.Google Scholar
  7. 7.
    Sakka, S. (1985) Am. Ceram. Bull., 64 (11), 1463.Google Scholar
  8. 8.
    Weintraub, E. (1911) J. Ind. Eng. Chem., 3, 299.CrossRefGoogle Scholar
  9. 9.
    Talley, C.P. (1959) J. Appl. Phys., 30, 1114.CrossRefGoogle Scholar
  10. 10.
    van Maaren, A.C., Schob, O. and Westerveld, W. (1975) Philips Tech. Rev., 35, 125.Google Scholar
  11. 11.
    Krukonis, V. (1977) in Boron and Refractory Borides, Springer Verlag, Berlin, p. 517.Google Scholar
  12. 12.
    Vega-Boggio, J. and Vingsbo, O. (1978) in 1978 Int. Conf Composite Materials, ICCM/2, TMS-AIME, New York, p. 909.Google Scholar
  13. 13.
    Wawner, F.W. (1967) in Modern Composite Materials, Addison-Wesley, Reading, Mass., p. 244.Google Scholar
  14. 14.
    DiCarlo, J.A. (1985) J. Metals, 37 (June), 44.Google Scholar
  15. 15.
    Wallenberger, F.T. and Nordine, P.C. (1992) Materials Letters, 14, 198.CrossRefGoogle Scholar
  16. 16.
    Kelly, B.T. (1981) Physics of Graphite, Applied Science Publishers, London.Google Scholar
  17. 17.
    Watt, W. (1970) Proc. Roy. Soc., A319, 5.Google Scholar
  18. 18.
    Diefendorf, R.J. and Tokarsky, E. (1975) Polymer Eng. & Sci., 15, 150.CrossRefGoogle Scholar
  19. 19.
    Singer, L.S. (1979) in Ultra-High Modulus Polymers, Applied Science Publishers, Essex, England, p. 251.Google Scholar
  20. 20.
    Ezekiel, H.N. and Spain, R.G. (1967) J. Polymer Sci. C., 19, 271.Google Scholar
  21. 21.
    Watt, W. and Johnson, W. (1969) App. Polymer Symposium, 9, 215.Google Scholar
  22. 22.
    Johnson, D.J. and Tyson, C.N. (1969) Brit. J. Appl. Phys., 2, 787.Google Scholar
  23. 23.
    Perret, R. and Ruland, W. (1970) J. Appl. Cryst., 3, 525.CrossRefGoogle Scholar
  24. 24.
    Bennett, S.C. and Johnson, D.J. (1978) in 5th Int. Carbon and Graphite Conf., Soc. Chem. Ind., London, p, 377.Google Scholar
  25. 25.
    Bennett, S.C. and Johnson, D.J. (1979) Carbon, 17, 25.CrossRefGoogle Scholar
  26. 26.
    Inal, O.T., Leca, N. and Keller, L. (1980) Phys. Stat. Sol., 62, 681.CrossRefGoogle Scholar
  27. 27.
    Reynolds, W.N. and Sharp, J.V. (1974) Carbon, 12, 103.CrossRefGoogle Scholar
  28. 28.
    Fourdeux, A., Perret, R. and Ruland, W. (1971) in Carbon Fibres: Their Composites and Applications, The Plastics Institute, London, p. 57.Google Scholar
  29. 29.
    Riggs, J.P. (1985) in Encyclopedia of Polymer Science & Engineering, 2nd edn., Vol. 2, John Wiley, New York, p. 640.Google Scholar
  30. 30.
    Singer, L. (1981) Fuel, 60, 839 41.Google Scholar
  31. 31.
    Bennett, S.C., Johnson, D.J. and Johnson, W. (1983) J. Mater. Sci., 18, 3337.CrossRefGoogle Scholar
  32. 32.
    Deurbergue, A. and Oberlin, A. (1991) Carbon, 29, 621.CrossRefGoogle Scholar
  33. 33.
    Baker, R.T.K. and Harris, P.S. (1978) in Chemistry and Physics of Carbon, Vol. 14, Marcel Dekker, New York, p. 83.Google Scholar
  34. 34.
    Dresselhaus, M.S., Dresselhaus, G., Sugihara, K. et al. (1988) Graphite Fibers and Filaments, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  35. 35.
    Tibbetts, G.G., Endo, M. and Beetz, Jr., C.P. (1981) SAMPE J., 30, 22.Google Scholar
  36. 36.
    Dhingra, A.K. (1980) Phil. Trans. R. Soc. London, A294, 411.CrossRefGoogle Scholar
  37. 37.
    Romine, J.C. (1987) Cer. Eng. Sci. Proc., 8, 755.CrossRefGoogle Scholar
  38. 38.
    Nourbakhsh, S., Liang, F.L. and Margolin, H. (1989) J. Materials Sci. Letters, 8 1252.CrossRefGoogle Scholar
  39. 39.
    Wilson, D.M. (1990) in Proc. 14th Conf. on Metal Matrix, Carbon, and Ceramic Matrix Composites, Cocoa Beach, FL, Jan 17–19 1990, NASA Conference Publication 3097 Part 1, pp. 105–17.Google Scholar
  40. 40.
    Kumagai, M. and Messing, G.L. (1985) J. Am. Ceram. Soc., 68 (1985) 500.CrossRefGoogle Scholar
  41. 41.
    Suwa, Y., Roy, R. and Komarneni, S. (1985) J. Am. Ceram. Soc., 68, 238.CrossRefGoogle Scholar
  42. 42.
    McArdle, J.L. and Messing, G.L. (1988) Adv. Ceram. Mater., 3, 387.Google Scholar
  43. 43.
    Chawla, K.K. (1983) J. Metals,(March), 35.Google Scholar
  44. 44.
    Sowman, H.G. (1988) in Sol-Gel Technology, Noyes Pub., Park Ridge, NJ, p. 162.Google Scholar
  45. 45.
    Birchall, J.D., Bradbury, J.A.A. and Dinwoodie, J. (1985) in Strong Fibres, Handbook of Composites, Vol. 1, North-Holland, Amsterdam, p. 115.Google Scholar
  46. 46.
    Saitow, Y. Iwanaga, K., Itou, S. et al. (1992) Proc. of the SAMPE annual meeting.Google Scholar
  47. 47.
    LaBelle, H.E. and Mlaysky, A.I. (1967) Nature, 216, 574.CrossRefGoogle Scholar
  48. 48.
    LaBelle, H.E. (1971) Mater. Res. Bull., 6, 581.CrossRefGoogle Scholar
  49. 49.
    Pollack, J.T.A. (1972) J. Mater. Sci., 7, 787.CrossRefGoogle Scholar
  50. 50.
    Hurley, G.F. and Pollack, J.T.A. (1972) Met. Trans., 7, 397.Google Scholar
  51. 51.
    Gasson, D.G. and Cockayne, B. (1970) J. Mater. Sci., 5, 100.CrossRefGoogle Scholar
  52. 52.
    Haggerty, J.S. (1972) NASA-CR-120948, May.Google Scholar
  53. 53.
    Wallenberger, F.T., Weston, N.E., Motzfeldt, K. and Swartzfager, D.G. (1992) J. Am. Ceram. Soc., 75, 629.CrossRefGoogle Scholar
  54. 54.
    DeBolt, H.E., Krukonis, V.J. and Wawner, F.E. (1974) in Silicon Carbide 1973, Univ. of S. Carolina Press, Columbia, SC, p. 168.Google Scholar
  55. 55.
    Lara-Curzio, E., Thermomechanical characterization of silicon carbide fibers at elevated temperatures. Rensselaer Poly. Inst. NY, August 1992, PhD thesis.Google Scholar
  56. 56.
    Lara-Curzio, E. (1993) Composites Sci. & Tech., 46, 265.CrossRefGoogle Scholar
  57. 57.
    Yajima, S., Okamura, K., Hayashi, J. and Omori, M. (1976) J. Am. Ceram. Soc., 59, 324.CrossRefGoogle Scholar
  58. 58.
    Yajima, S. (1980) Phil. Trans. R. Soc. London, A294, 419.CrossRefGoogle Scholar
  59. 59.
    Wax, S.G. (1985) Am. Ceram. Soc. Bull., 64, 1096.Google Scholar
  60. 60.
    Simon, G. and Bunsell, A.R. (1984) J. Mater. Sci., 19, 3649.CrossRefGoogle Scholar
  61. 61.
    Laffon, C., Flank, A.M., Lagarde, P. et al. (1989) J. Mater. Sci., 24, 1503.CrossRefGoogle Scholar
  62. 62.
    Yamamura, T., Ishirkawa, T., Shibuya, M. et al. (1988) J. Mater. Sci., 23, 2589.Google Scholar
  63. 63.
    Lin, W. and Yang, J-M. (1991) J. Mater. Sci., 26, 4116.CrossRefGoogle Scholar
  64. 64.
    LeGrow, G.E., Lim, T.F., Lipowitz, J. and Reoach, R.S. (1987) Am. Ceram. Soc. Bull., 66, 363.Google Scholar
  65. 65.
    Milewski, J.V., Sandstrom, J.L. and Brown, W.S. (1973) in Silicon Carbide -1973, University of South Carolina Press, Columbia, SC, p. 634.Google Scholar
  66. 66.
    Lee, J-G. and Cutler, I.B. (1975) Am. Ceram. Soc. Bull., 54, 195.Google Scholar
  67. 67.
    Milewski, J.V., Gac, F.D., Petrovic, J.J. and Skaggs, S.R. (1985) J. Mater. Sci., 20, 1160.CrossRefGoogle Scholar
  68. 68.
    Petrovic, J.J., Milewski, J.V., Rohr, D.L. and Gac, F.D. (1985) J. Mater. Sci., 20, 1167.CrossRefGoogle Scholar
  69. 69.
    Hollar, Jr., W.E. and Kim, J.J. (1991) Ceram. Eng. Sci. Proc., 12, 979.CrossRefGoogle Scholar
  70. 70.
    Wills, R.R., Mankle, R.A. and Mukherjee, S.P. (1983) Am. Ceram. Soc. Bull., 62, 904.Google Scholar
  71. 71.
    Economy, J. and Lin, R. (1977) in Boron and Refractory Borides, Springer Verlag, New York, p. 552.Google Scholar
  72. 72.
    Lindemanis, A. (1983) in Emergent Process Methods for High Technology Ceramics, Plenum Press, New York.Google Scholar
  73. 73.
    Smith, W.D. (1977) in Boron and Refractory Borides, Springer-Verlag, Berlin, p. 541.Google Scholar
  74. 74.
    Anantharaman, T.R. (ed.) (1984) Metallic Glasses, Trans. Tech. Pub., Aedermannsdorf, Switzerland, p. 1.Google Scholar
  75. 75.
    Pysher, D.J., Goretta, K.C., Hodder, Jr., R.S. and Tressler, R.E. (1989) J. Am. Ceram. Soc., 72, 284.CrossRefGoogle Scholar
  76. 76.
    Okamura, K. and Seguchi, T. (1992) J. Inorganic and Organometallic Polymers, 2, 171.CrossRefGoogle Scholar
  77. 77.
    Mah, T., Hecht, N.L., McCullum, D.E. et al. (1984) J. Mater. Sci., 19, 1191.CrossRefGoogle Scholar
  78. 78.
    Lipowitz, J., Rabe, J.A. and Frevel, L.K. (1990) J. Mater. Sci., 25, 2118.CrossRefGoogle Scholar
  79. 79.
    Rosen, B.W. (1965) in Fiber Composite Materials, ASM, Metals Park, OH, p. 58.Google Scholar
  80. 80.
    Wagner, H.D. (1989) in Application of Fracture Mechanics to Composite Materials, Elsevier, Amsterdam, p. 39.Google Scholar

Suggested Reading

  1. 1.
    Bunsell, A.R. (ed.), (1988) Fibre Reinforcements for Composite Materials, Elsevier, Amsterdam.Google Scholar
  2. 2.
    Dresselhaus, M.S., Dresselhaus, G., Sugihara, K. et al. (1988) Graphite Fibers and Filaments, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  3. 3.
    Fitzer, E. (1985) Carbon Fibres and Their Composites, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  4. 4.
    Watt, W. and Perov, B.V. (eds) (1985) Strong Fibres, (Vol. 1 in the series Handbook of Composites), North-Holland, Amsterdam.Google Scholar
  5. 5.
    Wynne, K.J. and Rice, R.W. (1984) Ann. Rev. Mater. Sci., 14, 297.CrossRefGoogle Scholar

Copyright information

© K. K. Chawla 1993

Authors and Affiliations

  • K. K. Chawla
    • 1
  1. 1.Department of Materials and Metallurgical EngineeringNew Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations