Ceramic matrix materials

  • K. K. Chawla


In this chapter we briefly review the basic characteristics of ceramics (crystalline and noncrystalline), followed by a description of some conventional and nonconventional processing techniques for glass and ceramics. Finally, we take a look at the properties of some important ceramic matrix materials, i.e. glass, silicon carbide, silicon nitride, alumina, glass-ceramics, sialons, intermetallics and carbon. This will be but a cursory review of a very large field, but it should provide the reader with some relevant information on important ceramic matrix materials. For more details, the reader should refer to some of the Suggested Reading at the end of the chapter.


Silicon Carbide Boron Nitride Silicon Nitride Boron Carbide Glassy Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Washburn, M.E. and Coblenz, W.S. (1988) Am. Cer. Soc. Bull., 67, 356.Google Scholar
  2. 2.
    Moulson, A.J. (1979) J. Mater. Sci., 14, 1017.CrossRefGoogle Scholar
  3. 3.
    Hench, L. and Ulrich, D.R. (eds), (1984) Ultrastructure Processing of Ceramics, Glasses and Ceramics, John Wiley, New York.Google Scholar
  4. 4.
    Zarzcyki, J., Prassas, M. and Phalippou, J. (1982) J. Mater. Sci., 17, 3371.CrossRefGoogle Scholar
  5. 5.
    Zarzycki, J. (1984) in Glass: Science and Technology, Vol. 2,Academic Press New York, pp. 209–49.Google Scholar
  6. 6.
    Sakka, S. (1982) in Treatise on Materials Sci. and Tech., Vol. 22 (eds M. Tomozawa and R.H. Doremus), Academic Press, New York, pp. 129–67.Google Scholar
  7. 7.
    Sutton, W.H., Brooks, M.H. and Chabinsky, I.J. (eds) (1988) Microwave Processing of Materials, MRS Symposium 124, Mater. Res. Soc., Pittsburgh, PA.Google Scholar
  8. 8.
    Munir, Z.A. and Anselmi-Tamburini, U. (1989) Mater. Sci. Reports,277.Google Scholar
  9. 9.
    Prochaska, S. (1974) in Ceramics For High Performance Applications (eds J.J. Burke, A.E. Gorum and R.N. Katz), Brook Hill, Chestnut Hill, MA, pp. 239–52.Google Scholar
  10. 10.
    Leatherman, G.L. and Katz, R.N. (1989) Superalloys, Supercomposites and Superceramics, Academic Press, Boston, p. 673.Google Scholar
  11. 11.
    Messier D.R. and Croft, W.J. (1982) Silicon nitride, in Preparation and Properties of Solid Stage Materials, Marcel Dekker, New York, Vol. 7, p. 131.Google Scholar
  12. 12.
    Somiya, S., Davis, R.F. and Pask, J.A. (eds) (1990) Mullite and Mullite Matrix Composites,Am. Ceram. Soc., Westerville, Ohio.Google Scholar
  13. 13.
    Lipp, A., Schwetz, K.A. and Hunold, K. (1989) J. Eur. Ceramic Soc., 5.Google Scholar
  14. 14.
    Thevenot, F. (1990) J. Euro. Ceramic Soc., 6, 205.CrossRefGoogle Scholar
  15. 15.
    Jack, K.H. (1986) Sialons: a study in materials development, in Non-Oxide Technical and Engineering Ceramics, Elsevier Applied Science London, p. 1.Google Scholar
  16. 16.
    Westbrook, J.H. (ed.) (1960) Mechanical Properties of Intermetallic Compounds, John Wiley, New York, p. 1.Google Scholar
  17. 17.
    Villers, P. and Calvert, L.D. (eds) (1985) Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM, Metals Park, OH, vols 1, 2, 3.Google Scholar
  18. 18.
    Liu, C.T. (1987) Int. Metal Rev., 29, 168.CrossRefGoogle Scholar
  19. 19.
    Stoloff, N.S. (1984) Int. Metals Rev., 29, 123.Google Scholar
  20. 20.
    Meschter, P.J. and Schwartz, D.S. (1989) Silicide-matrix materials for high temp. applications, J. Met., Nov. 52.Google Scholar
  21. 21.
    Vasudevan, A.K. and Petrovic, J.J. (eds) (1992) High Temperature Structural Silicides, Elsevier, Amsterdam.Google Scholar
  22. 22.
    Langdon, T.G. (1975) in Deformation of Ceramic Materials, Plenum Press, New York, p. 101.Google Scholar

Suggested Reading

  1. Brinker, C.J. and Scherer, G.W. (1990) The Sol—Gel Science, Academic Press, New York.Google Scholar
  2. Colomban, P. (1989) Gel technology in ceramics, glass-ceramics and ceramic-ceramic composites. Ceramics International 15, 23–50.CrossRefGoogle Scholar
  3. Jones, R.W. (1989) Fundamental Principles of Sol—Gel Technology, The Institute of Metals, London.Google Scholar
  4. Kingery, W.D., Bowen, H.K. and Uhlmann, D.R. (1976) Introduction to Ceramics, 2nd edn, John Wiley, New York.Google Scholar
  5. Klein, L.C. (ed.) (1990) Sol—Gel Technology, Noyes Pub., Park Ridge, NJ.Google Scholar
  6. McColm, I.J. and Black, N.J. (1988) High-Performance Ceramics, Chapman & Hall, New York.Google Scholar
  7. McMillan, P.W. (1979) Glass Ceramics, Academic Press, London.Google Scholar
  8. Roy, R. (1987) Ceramics by the solution—sol—gel route. Science, 238, 1664.Google Scholar
  9. Reed, J.S. (1988) Introduction to the Principles of Ceramic Processing, John Wiley, New York.Google Scholar
  10. Scholze, H. (1991) Glass, Springer-Verlag, New York.CrossRefGoogle Scholar
  11. Strnad, Z. (1986) Glass Ceramic Materials, Elsevier, Amsterdam.Google Scholar
  12. Thadhani, N.N. (1993) Shock-induced chemical reactions and synthesis of materials. Prog. Mater. Sci., 37, 117.CrossRefGoogle Scholar

Copyright information

© K. K. Chawla 1993

Authors and Affiliations

  • K. K. Chawla
    • 1
  1. 1.Department of Materials and Metallurgical EngineeringNew Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations