Advertisement

Variable Structure, Bilinear and Intelligent Control with Power System Application

  • R. R. Mohler
  • Y. Wang
  • R. R. Zakrzewski
  • V. Rajkumar
Chapter
Part of the Progress in Systems and Control Theory book series (PSCT, volume 12)

Abstract

A brief background on variable-structure and bilinear systems relates this research to the first U.S.-Italy seminar on this topic. Sliding-mode control of a flexible ac transmission system (FACTS) is analyzed and shown to be quite effective for a simplified single-machine infinite-but model (SMIB). For cases where system complexities may cause robustness problems, a bilinear self-tuning control and a neural-network based control are introduced.

Keywords

Power System Recursive Little Square Bilinear System Bilinear Model Variable Structure Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    RA. DeCarlo, S.H. Zak, and G.P. Matthews, Variable structure control of nonlinear multivariable systems: A tutorial, Proc. IEEE 76 (1988), 212–232.CrossRefGoogle Scholar
  2. [2]
    S.V. Emelyanov, Theory of variable structure systems, Science Press, Moscow, 1970.Google Scholar
  3. [3]
    R.R. Mohler, Optimal control of nuclear reactor processes, Los Alamos Sci. Lab. Rept. LA-3257-MS, Los Alamos, NM, 1965.Google Scholar
  4. [4]
    R.R. Mohler and C.N. Shen, Optimal control of nuclear reactors, Academic Press, New York, 1970.Google Scholar
  5. [5]
    R.R. Mohler and R.E. Rink, Control with a multiplicative mode, J. Basic Engr. (ASME Trans.) 91 (1969), 201–206.CrossRefGoogle Scholar
  6. [6]
    R.E. Rink and R.R. Mohler, Completely controllable bilinear systems, SIAM J. Control & Optimiz. 6 (1968), 477–486.CrossRefGoogle Scholar
  7. [7]
    R.R. Mohler, Bilinear control processes, Academic Press, New York, 1973.Google Scholar
  8. [8]
    C. Bruni, G. DiPillo, and G. Kouh, Bilinear systems: An appealing class of nearly linear systems in theory and application, IEEE Trans. Autom. Control AC 19 (1974), 334–348.CrossRefGoogle Scholar
  9. [9]
    R.R. Mohler and A. Ruberti, eds., Theory and applications of variable structure systems, Academic Press, New York, 1972.Google Scholar
  10. [10]
    A. Ruberti and R.R. Mohler, eds., Variable structure systems with application to biology and economics, Springer-Verlag, New York, 1975.Google Scholar
  11. [11]
    R.R. Mohler and A. Ruberti, eds., Recent developments on variable structure systems, biology and economics, Springer-Verlag, New York, 1978.Google Scholar
  12. [12]
    R.R. Mohler, Nonlinear systems: Vol. II Application to bilinear control, Prentice-Hall, Englewood Cliffs, NJ, 1991.Google Scholar
  13. [13]
    DA. Pierre, Perspectives on adaptive control of power systems, IEEE Trans. PS 2 (1987), 387–396.Google Scholar
  14. [14]
    DJ. Trudnowski, DA. Pierre, J.R. Smith, and R. Adys, Coordination of multiple adaptive PSS units using a decentralized control scheme,IEEE Summer Power Meeting, San Diego, 1991 (to appear in Trans. PS).Google Scholar
  15. [15]
    Y. Wang, R.R. Mohler, R. Spée, and W. Mittelstadt, Variable structure controllers for power system transient stability,IEEE Summer Power Meeting, San Diego, 1991 (to appear in Trans. PS).Google Scholar
  16. [16]
    G.C. Goodwin and KS. Sin, Adaptive filtering prediction and control, Prentice-Hall, Englewood Cliffs, NJ, 1984.Google Scholar
  17. [17]
    KS. Narendra and K. Parthasarathy, Identification and control of dynamical systems using neural networks, IEEE Trans. Neural Networks NN 1 (1990), 4–27.CrossRefGoogle Scholar
  18. [18]
    K Hornik, M. Stinchcombe, and H. White, Universal approximations of an unknown mapping and its derivatives using multilayer feedforward networks, Neural Networks 3 (1990), 551–60.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • R. R. Mohler
  • Y. Wang
  • R. R. Zakrzewski
  • V. Rajkumar

There are no affiliations available

Personalised recommendations