The Prokaryotes pp 3200-3221 | Cite as

The Family Chromatiaceae

  • Norbert Pfennig
  • Hans G. Trüper


The Family Chromatiaceae (purple sulfur bacteria) comprises physiologically and genetically closely related species and genera (Fowler et al., 1984) that carry out anoxygenic photosynthesis. The most important and selective environmental factors in their aquatic habitats are anoxic conditions, the presence of hydrogen sulfide, and illumination. The only other groups of phototrophic bacteria that thrive under similar environmental conditions are the Ectothiorhodospiraceae (see Chapter 171) and the Chlorobiaceae (green sulfur bacteria; see Chapter 195). Because they live in the same types of habitats, some discussion of the Chlorobiaceae must be included in this chapter. However, since the Chlorobiaceae are not phylogenetically related to the other anoxygenic phototrophic bacteria (Stackebrandt et al., 1984), they are treated in a separate chapter, Chapter 195.


Photosynthetic Bacterium Purple Bacterium Phototrophic Bacterium Purple Sulfur Bacterium Reduce Sulfur Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anagnostides, K., and Overbeck. J. 1966. Methanoxydierer und hypolimnische Schwefelbakterien. Studien zur ökologischen Biocönotik der Gewässermikroorganismen. Berichte der Deutschen Botanischen Gesellschaft 79: 163–174.Google Scholar
  2. Baas Becking. L. G. M., and Wood, E. J. F. 1955. Biological processes in the estuarine environment I II Ecology of the sulfur cycle. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B 58: 160–181.Google Scholar
  3. Baas Becking. L. G. M. and Kaplan. I. R. 1956. Biological processes in the estuarine environment III Electrochemical considerations regarding the sulphur cycle. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B 59: 85–96.Google Scholar
  4. Bavendamm, W. 1924. Die farblosen und roten Schwefelbakterien des Süß-und Salzwassers, Jena: Gustav Fischer Verlag.Google Scholar
  5. Bharati, P. A. L., Baulaigue, R., and Matheron, R. 1982. Degradation of cellulose by mixed cultures of fermentative bacteria and anaerobic sulfur bacteria. Zentralb. Bakteriol. Hyg., I. Abt. Orig. C3: 466–474.Google Scholar
  6. Biebl, H., and Malik, K. A. 1976. Long term preservation of phototrophic bacteria. p. 31–33. In: Codd, G. A., Stewart, W. D. P. (ed.). Proceedings of the Second International Symposium on Photosynthetic Prokaryotes, Dundee.Google Scholar
  7. Biebl. H., and Pfennig, N. 1978. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Archives of Microbiology 117: 9–16.Google Scholar
  8. Biebl. H., and Pfennig. N. 1979. COZ fixation by anaerobic phototrophic bacteria in lakes, a review. Ergebnisse der Limnologie, special volume of Archiv für Hydrobiologie 12: 18–58.Google Scholar
  9. Bollinger, R., Zürrer, H., and Bachofen, R. 1985. Photo-production of molecular hydrogen from waste water of a sugar refinery by photosynthetic bacteria. Appl. Microbiol. Biotechnol. 23: 147–151.Google Scholar
  10. Bose. S. K. 1963. Media for anaerobic growth of photosynthetic bacteria, p. 501–519. In: Gest, H., San Pietro, A., Vernon, I. P. (ed.), Bacterial photosynthesis. Yellow Springs, Ohio: Antioch Press.Google Scholar
  11. Buder, J. 1915. Zur Kenntnis des Thiospirillum jenense und seiner Reaktion auf Lichtreize. Jahrbuch für wissenschaftliche Botanik 56: 529–584.Google Scholar
  12. Caldwell. D. E. and Tiedje. J. M. 1975. The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes. Canadian Journal of Microbiology 21: 377–385.Google Scholar
  13. Caumette, P. 1984. Distribution and characterization of phototrophic bacteria isolated from the water of Bietri Bay (Ebrie Lagoon, Ivory Coast). Canadian Journal of Microbiology 30: 273–284.Google Scholar
  14. Caumette, P. 1986. Phototrophic sulfur bacteria and sulfate-reducing bacteria causing red waters in a shallow brackish coastal lagoon (Prevost Lagoon, France). FEMS Microbiology Ecology 38: 113–124.Google Scholar
  15. Caumette, P., Baulaigue, R., and Matheron, R. 1988. Characterization of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from Mediterranean salinas (Salins de Giraud, France). System. Appl. Microbiol. 10: 284–292.Google Scholar
  16. Cerruti, A. 1938. Le condizioni oceanografiche e biologiche del Mar Piccolo di Taranto durante l’agosto del 1938. Bolletino di Pesca. Piscicoltura ed Idrobiologia 14: 71 1751.Google Scholar
  17. Claus, D., and Schaab-Engels. Ch. (ed.). 1977. German collection of microorganisms, catalogue of strains. Munich: Gesellschaft für Strahlen-und Umweltforschung mbH.Google Scholar
  18. Cohen, Y., Krumbein. W. E., and Shilo, M. 1977. Solar Lake (Sinai) 2 Distribution of photosynthetic microorganisms and primary production. Limnology and Oceanography 22: 609–620.Google Scholar
  19. Cohn. F. 1875. Untersuchungen über Bakterien II. Beiträge zur Biologie der Pflanzen 1: 141–207.Google Scholar
  20. Cooper, R. C. 1963. Photosynthetic bacteria in waste treatment. Developments in Industrial Microbiology 4: 95103.Google Scholar
  21. Cooper, R. C., Oswald, W. J., Bronson, J. C. 1965. Treatment of organic industrial wastes by lagooning, p. 351–363. In: Proceedings, 20th Industrial Waste Conference, Engineering Bulletin Purdue Univ. Engin. Extens, Ser. No. 118.Google Scholar
  22. Cooper. D. E., Rands, M. B., and Woo. C.-P. 1975. Sulfide reduction in fellmongery effluent by red sulfur bacteria Journal of the Water Pollution Control Federation 47: 2088–2100.Google Scholar
  23. Cviie, V. 1955. Red water in the lake “Malo Jezero” (island of Mljet). Acta Adriatica 6: 1–15.Google Scholar
  24. Cviié, V. 1960. Apparition d’ “eau rouge” dans le Veliko Jezero (Ile de Mljet). Rapports et Procès-Verbeaux des Reunions de la Commission Internationale de l’Exploration Scientifique de la Mer Mediterranée 15: 79–81.Google Scholar
  25. Czeczuga, B. 1968a. Primary production of the purple sulfuric bacteria Thiopedia rosea Winogr. (Thiorhodaceae). Photosynthetica 2: 161–166.Google Scholar
  26. Czeczuga, B. 1968b. Primary production of the green hydrosulfuric bacteria Chlorobium limicola Nads. (Chlorobacteriaceae). Photosynthetica 2: 11–15.Google Scholar
  27. Dahl, C., and Trüper, H. G. 1989. Comparative enzymology of sulfite oxidation in Thiocapsa roseopersicina strains 6311, Ml and BBS under chemotrophic and phototrophic conditions. Z. Naturforsch. 44c: 617–622.Google Scholar
  28. Drews, G. 1989. Energy transduction in phototrophic bacteria, p. 461–480. In: Schlegel, H. G., and Bowien, B. (ed.), Autotrophic bacteria. Science Tech Publ., Madison, WI. and Springer-Verlag, New York.Google Scholar
  29. Düggeli, M. 1924. Hydrobiologische Untersuchungen im Pioragebiet. Bakteriologische Untersuchungen am Ritomsee. Schweizerische Zeitschrift für Hydrologie 2: 65–205.Google Scholar
  30. Ehrenberg, Chr. G. 1838. Die Infusionsthierchen als vollkommene Organismen. Leipzig: Voss.Google Scholar
  31. Eichler, B., and Pfennig, N. 1986. Characterization of a new platelet-forming purple sulfur bacterium, Amoebobacter pedioformis sp. nov. Archives of Microbiology 146: 295–300.Google Scholar
  32. Eichler, B., and Pfennig, N. 1988. A new purple sulfur bacterium from stratified freshwater lakes, Amoebobacter purpureus sp. nov. Archives of Microbiology 149: 395–400.Google Scholar
  33. Eimhjellen, K. E. 1967. Photosynthetic bacteria and carotenoids from a sea sponge Halichondrium panicea. Acta Chemica Scandinavica 21: 2280–2281.Google Scholar
  34. Eimhjellen, K. E. 1970. Thiocapsa pfennigii sp. nov. a new species of the phototrophic sulfur bacteria. Archiv für Mikrobiologie 73: 193–194.Google Scholar
  35. Eimhjellen, K. E., Steensland, H., and Traetteberg, J. 1967. A Thiococcus sp. nov. gen., its pigments and internal membrane system. Archiv für Mikrobiologie 59: 82–92.PubMedGoogle Scholar
  36. Ensign, J. C. 1977. Biomass production from animal waste by photosynthetic bacteria, p. 455–479. In: Schlegel, H. G., and Barnea, J. (ed.), Microbial energy conversion. E Goltze KG, Göttingen.Google Scholar
  37. Fenchel, T. 1969. The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa. Ophelia 6: 1–182.Google Scholar
  38. Fillipi, G. M., and Vennes, J. W. 1971. Biotin production and utilization in a sewage treatment lagoon. Appl. Microbiol. 22: 49–54.PubMedPubMedCentralGoogle Scholar
  39. Fischer, U. 1977. Die Rolle von Cytochromen im Schwefelstoffwechsel phototropher Schwefelbakterien. Doctoral thesis, University of Bonn.Google Scholar
  40. Fischer, U. 1984. Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic sulfur bacteria, p. 383–407. In: Müller, A. and Krebs, B. (ed.), Sulfur, its significance for chemistry, for the geo-, bio-and cosmophere and echnology. Elsevier, Amsterdam.Google Scholar
  41. Fischer, U. and Trüper, H. G. 1977. Cytochrome c-550 of Thiocapsa roseopersicina: Properties and reduction of sulfide. FEMS Microbiology Letters 1: 87–90.Google Scholar
  42. Fowler, V. J., Pfennig, N., Schubert, W., and Stackebrandt, E. 1984. Towards a phylogeny of phototrophic purple sulfur bacteria-16S rRNA oligonucleotide cataloging of 11 species of Chromatiaceae. Archives of Microbiology 139: 382–387.Google Scholar
  43. Fuller, R. C., Smillie, R. M., Sisler, E. C. and Kornberg, H. L. 1961. Carbon metabolism in Chromatium. Journal of Biological Chemistry 236: 2140–2149.PubMedGoogle Scholar
  44. Gaffron, H. 1935. Über die Kohlensäureassimilation der roten Schwefelbakterien II. Biochemische Zeitschrift 279: 1–33.Google Scholar
  45. Genovese, S. 1963. The distribution of the HZS in the lake of Faro (Messina) with particular regard to the presence of “red water,” p. 194–204. In: Oppenheimer, C. H. (ed.), Symposium on Marine Microorganisms. Springfield Illinois: Charles C Thomas.Google Scholar
  46. Giesberger, G. 1947. Some observations on the culture, physiology and morphology of some brown-red Rhodospirillum-species. Antonie van Leeuwenhock Journal of Microbiology and Serology 13: 135–148.Google Scholar
  47. Gietzen, J. 1931. Untersuchungen über marine Thiorhodaceen Zentralblatt fur Bakteriologie, Parasitenkunde und Infektionskrankheiten Abt. 283: 183–218.Google Scholar
  48. Gitlitz, P. H. and Krasna, A. J. 1975. Structural and catalytical properties of hydrogenase from Chromatium. Biochemistry 14: 2561–2568.PubMedGoogle Scholar
  49. Gloyna, E. F. 1971. Waste stabilization ponds. World Health Organization Monograph Series No. 60. Geneva: World Health Organization.Google Scholar
  50. Göbel, E. 1978. Direct measurement of pure absorbance spectra of living phototrophic microorganisms. Biochimica et Biophysica Acta 538: 593–602.PubMedGoogle Scholar
  51. Gogotov, I. N. 1978. Relationships in hydrogen metabolism between hydrogenase and nitrogenase in phototrophic bacteria. Biochimie 60: 267–275.PubMedGoogle Scholar
  52. Gogotov, I. N. 1984. Hydrogenase of purple bacteria: properties and regulation of synthesis. Archives of Microbiology 140: 86–90.Google Scholar
  53. Gogotov, I. N. 1986. Hydrogenases of phototrophic microorganisms. Biochimie 68: 181–187.PubMedGoogle Scholar
  54. Gorlenko, V. M. 1968. Photosynthetizing sulphur bacteria from reservoirs of South Crimea. [In Russian, with English summary.] Mikrobiologiya 37: 745–748.Google Scholar
  55. Gorlenko, V. M. 1974. Oxidation of thiosulphate by Amoebobacter roseus in the darkness under microaerophilic conditions. [In Russian, with English summary.] Mikrobiologiya 43: 729–731.Google Scholar
  56. Gorlenko, V. M., Vainstein, M. B., and Kachalkin, V. I. 1978. Microbiological characteristic of lake Mogilnoye. Archiv für Hydrobiologie 81: 475–492.Google Scholar
  57. Gorlenko, V. M., Krasilnikova, E. N., Kikina, O. G., and Tatarinova, N. Y. 1979. The new motile purple sulfur bacterium Lamprobacter modestohalophilus nov. gen., nov. sp. with gas vacuoles. (In Russian.) Izv. Akad. Nauk S.S.S.R. Ser. Biol. 5: 755–767.Google Scholar
  58. Gorlenko, V. M., Dubinina, G. A., and Kuznetsov, S. I. 1983. The ecology of aquatic microorganisms. Stuttgart: E. Schweizerbarth’sche Verlagsbuchhandlung.Google Scholar
  59. Guerrero, R., Mas, J., and Pedros-Alió, C. 1984 Buoyant density changes due to intracellular content of sulfur in Chromatium warmingii and Chromatium vinosum. Archives of Microbiology 137: 350–356.Google Scholar
  60. Guerrero, R., Pedros-Alió, C., Esteve, I., and Mas, J. 1987. Communities of phototrophic sulfur bacteria in lakes of the Spanish Mediterranean region. Acta Academiae Aboensis 47: 125–151.Google Scholar
  61. Hallenbeck, P. C. 1987. Molecular aspects of nitrogen fixation by photosynthetic prokaryotes. Critical Reviews in Microbiology 14: 1–48.PubMedGoogle Scholar
  62. Hashwa, E. A., and Trüper, H. G. 1978. Viable phototrophic sulfur bacteria from the Black Sea bottom. Helgoländer Wissenschaftliche Meeresuntersuchungen 31: 249–253.Google Scholar
  63. Hatzikakidis, A. D. 1952. Periodike erythrotes ton ydaton tes limnothalasses tou Aitolikou. Anatypon ek ton praktikon tou Ellenikou Ydrobiologikou Institoutou Akademias Athenon 6: 21–52.Google Scholar
  64. Hatzikakidis, A. D. 1953. Epochiakai ydrologikai ereynai eis tas limnothalassas Mesologgiou kai Aitolikou. Anatypon ek ton praktikon tou Ellenikou Ydrobiologikou Institoutou Akademias Athenon 6: 85–143.Google Scholar
  65. Hauser, B., and Michaelis, H. 1975. Die Makrofauna der Watten. Strände, Riffe und Wracks um den Hohen Knechtsand in der Wesermündung, Forschungsstelle für Insel-und Küstenschutz. Norderney, Jahresbericht 1974, 26: 85–119.Google Scholar
  66. Heldt, H. J. 1952. Eaux rouges. Bulletin de la Societé des Sciences Naturelles de Tunisie 5: 103–106.Google Scholar
  67. Hensel, G. and Trüper, H. G. 1981. O-Acetylserine sulfhydrylase and S-sulfocysteine synthase activities of Chromatium vinosum. Archives of Microbiology 130: 228–233.Google Scholar
  68. Hoffmann, C. 1942. Beiträge zur Vegetation des Farbstreiten-Sandwattes. Kieler Meeresforschungen 4: 85–108.Google Scholar
  69. Holm, H. W., and Vennes, J. W. 1970. Occurrence of purple sulfur bacteria in a sewage treatment lagoon. Applied Microbiology 19: 988–996.PubMedPubMedCentralGoogle Scholar
  70. Imhoff, J. F. 1976. Phototrophe Bakterien salzhaltiger Standorte: Ökologische und taxonomische Aspekte. Diploma Thesis. University of Bonn.Google Scholar
  71. Imhoff J F., and Trüper. H. G. 1976. Marine sponges as habitats of anaerobic phototrophic bacteria. Microbial Ecology 3: 1–9.PubMedGoogle Scholar
  72. Imhoff, J. E, and Trüper, H. G. 1980. Chromatium purpuratum sp. nov., a new species of the Chromatiaceae. Zentralblatt für Bakteriologie, Abt. 1 Orig., Reihe C 1: 61–69.Google Scholar
  73. Irgens, R. L. 1983. Thioacetamide as a source of hydrogen sulfide for colony growth of purple sulfur bacteria. Current Microbiol. 8: 183–186.Google Scholar
  74. Isachenko, B. L. 1914. Studies of bacteria of the Arctic Ocean. Citedin: Gorlenko Vainstein and Kachalkin, 1978.Google Scholar
  75. Jannasch, H. W. 1957. Die bakterielle Rotfärbung der Salzseen des Wadi Natrun. Archiv für Hydrobiologie 53: 425–433.Google Scholar
  76. Jannasch, H. W., Trüper, H. G., and Tuttle, J. H. 1974. Microbial sulfur cycle in Black Sea, p. 419–425. In: Degens, E. T., Ross, D. A., (ed.), The Black Seageology, chemistry and biology. Tulsa, Oklahoma: American Association of Petroleum Geologists (Memoir 20 ).Google Scholar
  77. Kämpf, C., and Pfennig, N. 1980. Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Archives of Microbiology 127: 125–135.Google Scholar
  78. Kaiser. P. 1966. Contribution à l’étude de l’écologie des bactéries photosynthétiques. Annales de l’Institut Pasteur 111: 733–749.Google Scholar
  79. Kobayashi, M., and Kurata, S. 1978. The mass culture and cell utilization of photosynthetic bacteria. Process Biochem. 13: 27–30.Google Scholar
  80. Kobayashi, M., and Tchan, Y. T. 1973. Treatment of industrial waste solutions and production of useful byproducts using a photosynthetic bacterial method. Water Research 7: 1219–1224.Google Scholar
  81. Kobayashi, M., and Tchan, Y. T. 1978. Formation of dimethylnitrosamine in polluted environment and the role of photosynthetic bacteria. Water Research 12: 199–201.Google Scholar
  82. Kobayashi, M., Kobayashi, M., and Nakanishi, H. 1971. Construction of a purification plant for polluted water using photosynthetic bacteria. J. Ferment. Technol. 49: 817–825.Google Scholar
  83. Kolkwitz, R. 1909. Schizomycetes. Kryptogamenflora der Mark Brandenburg, vol. 5:1–186. Leipzig: Verlag von Gebrüder Borntraeger.Google Scholar
  84. Kondratieva, E. N. 1965. Photosynthetic bacteria. Jerusa- lem, Israel: Program for Scientific Translations.Google Scholar
  85. Kondratieva, E. N. 1979. Interrelation between modes of carbon assimilation and energy production in phototrophic purple and green bacteria, p. 117–175. In: Quayle, J. R. (ed.), International Review of Biochemistry Microbial Biochemistry, vol. 21. University Park Press, Baltimore.Google Scholar
  86. Kondratieva, E. N. and Gogotov, I. N. 1981. Molecular hydrogen in microbial metabolism. Nauka, Moscow. 343 pp.Google Scholar
  87. Kondratieva, E. N. and Gogotov, I. N. 1983. Production of molecular hydrogen in microorganisms. Advances in Biochemical Engineering/Biotechnology 28: 139–191.Google Scholar
  88. Kondratieva, E. N., Petushkova, Yu. P., Zhukov, V. G. 1975. Growth and oxidation of sulphur compounds by Thiocapsa roseopersicina in the darkness. [In Russian, with English summary.] Mikrobiologiya 44: 389–394.Google Scholar
  89. Kondratieva, E. N., Zhukov, V. G., Ivanovsky, R. N., Petushkova, Yu. R, and Monosov, E. Z. 1976. The capacity of phototrophic sulfur bacterium Thicopasa roseopersincia for chemosynthesis. Archives of Microbiology 108: 287–292.PubMedGoogle Scholar
  90. Koppenhagen, V. 1981. Metal-free corrinoids and metal-insertion, p. 105–149. In: Dolphin, D. (ed.).Vitamin B12, vol. 2, John Wiley and Sons, New York.Google Scholar
  91. Koppenhagen, V., Schlingmann, G., Scher, W., and Dresow, B. 1981. Extracellular metabolites from phototrophic bacteria as possible intermediates in the biosynthesis of vitamin B12, p. 247–252. In: Moo-Young, M. (ed.), Advances in Biotechnology. Pergamon Press, New York.Google Scholar
  92. Krasilnikova, E. N. 1976. Anaerobic metabolism of Thiocapsa roseopersicina. (In Russian, with English summary) Mikrobiologiya 45: 372–376.Google Scholar
  93. Krasilnikova, E. N., Ivanovskii, R. N., and Kondratieva, E. N. 1983. Growth of purple bacteria utilizing acetate under anaerobic conditions in darkness. Mikrobiologiya (English translation edition) 52: 189–194.Google Scholar
  94. Krasilnikova, E. N., Petushkova, Yu. R, and Kondratieva, E. N. 1975. Growth of purple sulfur bacterium Thiocapsa roseopersicina under anaerobic conditions in the darkness. (In Russian with English summary). Mikrobiologiya 44: 700–703.Google Scholar
  95. Kriss. A. E., and Rukina, E. A. 1953. Purple sulfur bacteria in deep sulfurous water of the Black Sea. [In Russian] Doklady Akademii Nauk SSSR 93: 1107–1110.Google Scholar
  96. Kützing. Fr. T. 1883. Beiträge zur Kenntnis über die Entstehung and Metamorphose der niederen vegetabilischen Organismen, nebst einer systematischen Zusammenstellung der hierher gehörigen niedern Algenformen. Linnaea 8: 335–384.Google Scholar
  97. Kuznetsov. S. I. 1970. The microflora of lakes and its geochemical activity. Austin London: University of Texas Press.Google Scholar
  98. Lankester. R. 1873. On a peach-colored bacterium-Bacterium rubescens n.s. Quarterly Journal of Microscopic Science 13: 408–425.Google Scholar
  99. Lapage, S. R, Sneath, P. H. A., Lessel, E. F., Skerman, V. B. D., Seeliger, H. R. R., and Clark, W. A. (ed.). 1975. International code of nomenclature of bacteria. Washington DC.: American Society for Microbiology.Google Scholar
  100. Larsen, H. 1952. On the culture and general physiology of the green sulfur bacteria. Journal of Bacteriology 64: 187–196.PubMedPubMedCentralGoogle Scholar
  101. Lauterborn, R. 1915. Die sapropelische Lebewelt. Verhandlungen der naturhistorisch-medizinischen Vereinigung zu Heidelberg. Neue Folge. vol. 13: 395–481.Google Scholar
  102. Leyendecker, W. 1983. Charakterisierung der partikelgebundenen APS-Reduktase aus Chromatium warmingii Stamm 6512. Diploma thesis, University of Bonn.Google Scholar
  103. Lindholm, T. 1987. Ecology of photosynthetic prokaryotes with special reference to meromictic lakes and coastal lagoons. ABO Academy Press, Abo Finland.Google Scholar
  104. Madigan, M. T. 1986. Chromatium tepidum sp. nov., a thermophilic photosynthetic bacterium of the family Chromatiaceae. International Journal of Systematical Bacteriology 36: 222–227.Google Scholar
  105. Malik, K. A. 1990a. Use of activated charcoal for the preservation of anaerobic phototrophic and other sensitive bacteria by freeze-drying. J. Microbiol. Meth. 12: 117–124.Google Scholar
  106. Malik, K. A. 1990b. A simplified liquid-drying method for the preservation of microorganisms sensitive to freezing and freeze-drying. J. Microbiol. Meth. 12: 125–132.Google Scholar
  107. Mandel, M., Leadbetter, E. R., Pfennig, N., and Trüper. H. G. 1971. Deoxyribonucleic acid base compositions of phototrophic bacteria. International Journal of Systematic Bacteriology 21: 222–230.Google Scholar
  108. Matheron, R. 1976. Contribution à l’étude écologique, systématique et physiologique des Chromatiaceae et des Chlorobiaceae isolées de sediments marins. Doctoral Thesis. University of Aix-Marseille.Google Scholar
  109. Matheron. R., and Baulaigue, R. 1972. Bactéries photosynthétiques sulfureuses marines. Assimilation des substances organiques et minérales, et influence de la teneur en chlorure de sodium du milieu de culture sur leur développement. Archiv für Mikrobiologie 86: 291–304.PubMedGoogle Scholar
  110. May, D. S., and Stahl, J. B. 1967. The ecology of Chromatium in sewage ponds. Bulletin No. 303, Sanitary Engineering Section Report No. 36, Coll. Engin. Res. Div., Washington State Univ., Pullman WA.Google Scholar
  111. Mitsui, A. 1979. Biosaline research: The use of photosynthetic marine organisms in food and feed production, p. 177–215. In: Hollaender, A., Aller, I. C., Epstein, E., San Pietro, A., and Zaborsky, O. (ed.), The biosaline concept. Plenum Press, New York.Google Scholar
  112. Miyoshi, M. 1897. Studien über die Schwefelrasenbildung und die Schwefelbakterien der Thermen von Yumoto bei Nikko. Centralblatt für Bakteriologie. Parasitenkunde u. Infektionskrankheiten Abt. 23: 526–527.Google Scholar
  113. Molisch, H. 1907. Die Purpurbakterien nach neuen Untersuchungen. Jena: Gustav Fischer Verlag.Google Scholar
  114. Nicholson, J. A. M., Stolz, J. E, and Pierson, B. K. 1987. Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiology Ecology 45: 343–364.Google Scholar
  115. Overmann, J., and Pfennig, N. 1989. Pelodictyon phaeoclathratiforme sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies. Archives of Microbiology 152: 401–416.Google Scholar
  116. Pfennig, N. 1962. Beobachtungen über das Schwärmen von Chromatium okenii. Archiv für Mikrobiologie 42: 9095Google Scholar
  117. Pfennig, N. 1965. Anreicherungskulturen für rote and grüne Schwelfelbakterien. Zentralblatt für Bakteriologic. Parasitenkunde. Infektionskrankheiten und Hygiene, Abt. 1, Suppl. 1:179–189, 503–504.Google Scholar
  118. Pfennig, N. 1967. Photosynthetic bacteria. Annual Review of Microbiology 21: 285–324.PubMedGoogle Scholar
  119. Pfennig, N. 1970. Dark growth of phototrophic bacteria under microaerophilic conditions. Journal of General Microbiology 61: 11–111.Google Scholar
  120. Pfennig, N. 1978. Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12 requirimg member of the family Rhodospirillaceae. International Journal of Systematic Bacteriology 28: 283–288.Google Scholar
  121. Pfennig, N. 1989. Ecology of phototrophic purple and green sulfur bacteria, p. 97–116. In: Schlegel, H. G., Bowien, B. (ed.), Autotrophic bacteria. Science Tech Publ. Madison WI.: and Springer-Verlag New York.Google Scholar
  122. Pfennig, N., and Lippert. K. D. 1966. Über das Vitamin B1,-Bedürfnis phototropher Schwefelbakterien. Archiv für Mikrobiologie 55: 245–256.Google Scholar
  123. Pfennig, N., and Trüper, H. G. 1971. New nomenclatural combinations in the phototrophic sulfur bacteria. International Journal of Systematic Bacteriology 21: 11–14.Google Scholar
  124. Pfennig, N., and Trüper, H. G. 1974. The phototrophic bacteria, pp. 24–64. In: Buchanan, R. E., and Gibbons, N. E. (ed.), Bergey’s manual of determinative bacteriology, 8th ed. Baltimore: Williams and Wilkins.Google Scholar
  125. Pfennig, N., and Trüper, H. G. 1977. The Rhodospirillales (phototrophic or photosynthetic bacteria, p. 119–130. In: Laskin, A. I., and Lechevalier, H. A. (ed.), CRC Handbook of microbiology, vol. I, organismic microbiology, 2nd ed. Cleveland: CRC Press.Google Scholar
  126. Puchkova, N. N., and Gorlenko. V. M. 1976. New brown chlorobacterium Prosthecochloris phaeoasteroidea. [In Russian, with English summary.] Mikrobiologiya 45: 655–660.Google Scholar
  127. Roelofsen, P. A. 1935. On the metabolism of the purple sulfur bacteria. Proceedings of the Royal Academy of Sciences, Amsterdam 37: 660–669.Google Scholar
  128. Ruttner, F. 1962. Grundriß der Limnologie, 3rd ed., pp. 171–172. Berlin: De Gruyter.Google Scholar
  129. Sahl, H. G. and Trüper, H. G. 1977. Enzymes of CO, fixation in Chromatiaceae. FEMS Microbiology Letters 2: 129–132.Google Scholar
  130. Schedel, M., Vanselow, M., and Trüper, H. G. 1979. Siroheme sulfite reductase isolated from Chromatiuni vinosum. Archives of Microbiology 121: 29–36.Google Scholar
  131. Schegg, E. 1971. Produktion und Destruktion in der trophogenen Schicht. Schweizerische Zeitschrift für Hydrologie 33: 427–532.Google Scholar
  132. Schlegel, H. G., and Pfennig. N. 1961. Die Anreicherungskultur einiger Schwefelpurpurbakterien. Archiv für Mikrobiologie 38: 1–39.PubMedGoogle Scholar
  133. Schlegel, H. G. and Schneider, K. (ed). 1978. Hydrogenases: their catalytic activity, structure and function. E. Goltze, Göttingen. 453 pp.Google Scholar
  134. Schrammeck, J. 1934. Untersuchungen über die Phototaxis der Purpurbakterien. Beiträge zur Biologic der Pflanzen 22: 315–380.Google Scholar
  135. Schulz, E. 1937. Das Farbsteifensandwatt und seine Fauna, eine ökologisch biozönotische Untersuchung an der Nordsee. Kieler Meeresforschungen 1: 359–378.Google Scholar
  136. Schulz, E., and Meyer, H. 1939. Weitere Untersuchungen über das Farbstreifensandwatt. Kieler Meeresforschungen 3: 321–336.Google Scholar
  137. Schwenn, J. D. and Biere, M. 1979. APS-reductase activity in the chromatophores of Chromatium vinosum strain D. FEMS Microbiology Letters 6: 19–22.Google Scholar
  138. Siefert, E., and Pfennig, N. 1984. Convenient method to prepare neutral sulfide solution for cultivation of phototrophic sulfur bacteria. Archives of Microbiology 139: 100–101.Google Scholar
  139. Sletten, O., and Singer, R. H. 1971. Sulfur bacteria in red lagoons. Journal of the Water Pollution Control Federation 43: 2118–2122.Google Scholar
  140. Smith, A. J. 1965. The discriminative oxidation of the sulphur atoms of thiosulphate by a photosynthetic sulphur bacterium-Chromatium strain D. Biochemical Journal 94: 27 P.Google Scholar
  141. Smith, A. J. 1966. The role of tetrathionate in the oxidation of thiosulfate by Chromatium sp. strain D. Journal of General Microbiology 42: 371–380.PubMedGoogle Scholar
  142. Sorokin, Yu. I. 1970. Interrelations between sulfur and carbon turnover in a meromictic lake. Archiv für Hydrobiologie 66: 391–446.Google Scholar
  143. Stackebrandt, E., Fowler, V. J. Schubert, W. and Imhoff, J. E. 1984. Towards a phylogeny of phototrophic purple sulfur bacteria-the genus Ectothiorhodospira. Archives of Microbiology 137: 366–370.Google Scholar
  144. Stal, L. J., van Gemerden, H., and Krumbein, W. 1985. Structure and development of a benthic marine microbial mat. FEMS Microbiology Ecology 31: 111–125.Google Scholar
  145. Steenbergen, C. L. M. and Korthals, H. J. 1982. Distribution of phototrophic microorganisms in the anaerobic and microaerophilic strata of Lake Vechten (The Netherlands). Pigment analysis and role in primary production. Limnology and Oceanography 27: 883–895.Google Scholar
  146. Steudel, R. 1985. Neue Entwicklungen in der Chemie des Schwefels und des Selens. Nova Acta Leopoldina, Neue Folge 59: 231–246.Google Scholar
  147. Steudel, R. 1989. On the nature of the “elemental sulfur” (S°) produced by sulfur-oxidizing bacteria-a model for S° globules, p. 289–304. In: Schlegel, H. G., Bowien, B. (ed.), Autotrophic bacteria, Science Tech Publ. Madison WI: and Springer-Verlag NY.Google Scholar
  148. Steudel, R., Holdt, G., Göbel, T., and Hazeu, W. 1987. Chromatographische Trennung höherer Polythionate S„62- (n=3chrw(133)22) und deren Nachweis in Kulturen von Thiobacillus ferrooxidans; molekulare Zusammensetzung bakterieller Schwefelausscheidungen. Angewandte Chemie 99: 143–146.Google Scholar
  149. Stirn, J. 1971. Ecological consequences of marine pollution. Revue Internationale d’Oceanographic Medicale 24: 13–46.Google Scholar
  150. Strekus, T., Antanaitis, B. C., and Krasna, A. J. 1980. Characterization and stability of hydrogenase from Chromatium. Biochimica et Biophysica Acta 116: 1–9.Google Scholar
  151. Strzeszewski, B. 1913. Beitrag zur Kenntnis der Schwefelflora in der Umgebung von Krakau. Bulletin de l’Academie des Sciences de Cracovie, Serie 8, 309–334.Google Scholar
  152. Suckow, R. 1966. Schwefelmikrobengesellschaften der See-und Boddengewässer von Hiddensee. Zeitschrift für Allgemeine Mikrobiologie 6: 309–315.Google Scholar
  153. Szafer, W. 1910. Zur Kenntnis der Schwefelflora in der Umgebung von Lemberg. Bulletin de L’Academic des Sciences de Cracovie, Serie 8, 161–167.Google Scholar
  154. Taga, N. 1967. Microbial coloring of sea water in tidal pool, with special reference of massive development of phototrophic bacteria, p. 219–229. In: Information Bulletin on Planetology in Japan. Commemoration Number of Dr. Y. Matsue’s Sixtieth Birthday.Google Scholar
  155. Takahashi, M., and Ichimura, S. 1968. Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnology and Oceanography. 13: 644–655.Google Scholar
  156. Then, J. 1984. Beiträge zur Sulfidoxidation durch Ectothiorhodospira abdelmalekii und Ectothiorhodospira halochloris. Doctoral thesis, University of Bonn.Google Scholar
  157. Then, J. and Trüper, H. G. 1983. Sulfide oxidation in Ectothiorhodospira abdelmalekii. Evidence for the catalytic role of cytochrome c- 551. Archives of Microbiology 135: 254–258.Google Scholar
  158. Then, J. and Trüper, H. G. 1984. Utilization of sulfide and elemental sulfur by Ectothiorhodospira halochioris. Archives of Microbiology 139: 295–298.Google Scholar
  159. Thiele, H. H. 1968. Sulfur metabolism in Thiorhodaceae. V. Enzymes of sulfur metabolism in Thiocapsa floridana and Chromatium species. Antonie van Leeuwenhoek Journal of Microbiology and Serology 34: 350–356.Google Scholar
  160. Tindall, B. J., and Grant, W. D. 1986. The anoxygenic phototrophic bacteria, p. 115–155. In: Barnes, E. M., and Mead, G. C. (ed.), Anaerobic bacteria in habitats other than man. Oxford: Blackwell Science Publishing.Google Scholar
  161. Toohey, J. I. 1971. Purification of descobalt corrins from photosynthetic bacteria, p. 71–75. In: McCormick, D. B., and Wright, L. D. (ed.), Methods in enzymology, vol. 18. Academic Press, New York.Google Scholar
  162. Trüper, H. G. 1964. CO2 Fixierung und Intermediärstoffwechsel bei Chromatium okenii Perty. Archiv fur Mikrobiologie 49: 23–50.Google Scholar
  163. Trüper, H. G. 1970. Culture and isolation of phototrophic sulfur bacteria from the marine environment. Helgoländer wissenschaftliche Meeresuntersuchungen 20: 616.Google Scholar
  164. Trüper, H. G. 1981a. Photolithotrophic sulfur oxidation, p. 199–211. In: Bothe, H. and Trebst, A. (ed.), Biology of Inorganic Nitrogen and Sulfur. Springer-Verlag, Berlin.Google Scholar
  165. Trüper, H. G. 1981b. Versatility of carbon metabolism in the phototrophic bacteria, p. 116–121. In: Dalton, H. (ed.), Microbial growth on C compounds. Heyden, LondonGoogle Scholar
  166. Trüper, H. G. 1984. Phototrophic bacteria and their sulfur metabolism, p. 367–382. In: Müller, A. and Krebs, B. (ed.), Sulfur its significance for chemistry for the geo bio-and cosmophere and technology. Elsevier, Amsterdam.Google Scholar
  167. Trüper, H. G. 1989. Physiology and biochemistry of phototrophic bacteria, p. 267–282. In: Schlegel, H. G., and Bowien, B. (ed.), Autotrophic bacteria. Science Tech Publ Madison WI: and Springer-Verlag New York.Google Scholar
  168. Trüper, H. G. and Fischer, U. 1982. Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis. Philosophical Transactions of the Royal Society B 298: 529–542.Google Scholar
  169. Trüper, H. G., and Genovese. S. 1968. Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro (Messina, Sicily). Limnology and Oceanography 13: 225–232.Google Scholar
  170. Trüper, H. G. and Peck, H. D. Jr. 1970. Formation of adenylysulfate in photosynthetic bacteria. Archiv für Mikrobiologie 73: 125–142.PubMedGoogle Scholar
  171. Trüper, H. G. and Pfennig, N. 1966. Sulphur metabolism in Thiorhodaceae III Storage and turnover of thiosulphate sulphur in Thiocapsa floridana and Chromatium species. Antonie van Leeuwenhoek Journal of Microbiology and Serology 32: 261–276.Google Scholar
  172. Trüper, H. G. and Rogers, L. A. 1971. Purification and properties of adenylysulfate reductase from the phototrophic sulfur bacterium Thiocapsa roseopersicina. Journal of Bacteriology 108: 1112–1121.PubMedPubMedCentralGoogle Scholar
  173. Trüper, H. G., and Yentsch. C. S. 1967. Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria. Journal of Bacteriology 94: 1255–1256.PubMedPubMedCentralGoogle Scholar
  174. Ulbricht, H. 1984. Aspekte des Energiegewinns durch Substratphosphorylierung im Zuge der Sulfitoxidation bei Chromaticeae und Thiobacillus denitrificans. Doctoral thesis, University of Bonn.Google Scholar
  175. Utermöhl. H. 1925. Limnologische Phytoplanktonstudien. Archiv fur Hydrobiologie, Suppl. 5: 1–527.Google Scholar
  176. van Gemerden, H. 1968a. Utilization of reducing power in growing cultures of Chromatium. Arch. Mikrobiol. 64: 111–117.PubMedGoogle Scholar
  177. van Gemerden, H. 1968b. On the ATP generation by Chro- matium in darkness. Arch. Mikrobiol. 64: 118–124.PubMedGoogle Scholar
  178. van Gemerden, H. 1974. Coexistence of organisms competing for the same substrate: An example among the purple sulfur bacteria. Microbial Ecology 1: 19–23.Google Scholar
  179. van Gemerden, H., and Beeftink, H. H. 1983. Ecology of phototrophic bacteria, p. 146–185. In: Ormerod, J. G. (ed.), The phototrophic bacteria: Anaerobic life in the light. Oxford: Blackwell Science Publishing.Google Scholar
  180. van Gemerden, H., Montesinos, E., Mas, J., and Guerrero, R. 1985. Diel cycle of metabolism of phototrophic purple sulfur bacteria in Lake Cisó (Spain). Limnology and Oceanography 30: 932–943.Google Scholar
  181. van Niel, C. B. 1931. On the morphology and physiology of the purple and green sulphur bacteria. Archiv fur Mikrobiologie 3: 1–112.Google Scholar
  182. van Niel, C. B. 1971. Techniques for the enrichment, isolation, and maintenance of the photosynthetic bacteria, p. 3–28. In: San Pietro, A. (ed.), Methods in enzymology, vol. 23, part A. New York London: Academic Press.Google Scholar
  183. Vignais, P. M., Colbeau, A., Willison, J. C., and Jouanneau, Y. 1985. Hydrogenase, nitrogenase, and hydrogen metabolism in photosynthetic bacteria. Advances in Microbial Physiology 26: 155–234.PubMedGoogle Scholar
  184. Warming, E. 1875. Om nogle ved Danmarks kyster levende bacterier. Videnskabse Meddelinger Dansk Naturhistorisk Foreninge 20: 3–116.Google Scholar
  185. Wenke, T. L., and Vogt, J. C. 1981. Temporal changes in a pink feedlot lagoon. Appl. Environ. Microbiol. 41: 381–385.PubMedPubMedCentralGoogle Scholar
  186. Winogradsky, S. N. 1888. Zur Morphologie und Physiologie der Schwefelbakterien. Leipzig: Felix.Google Scholar
  187. Yaropolov, A. I., Malovik, V., Izumrudov, V. A., Zorin, N. A., Bachurin, S. O., Gogotov, I. N., and Varfolomeev, S. D. 1982. Immobilization of hydrogenase in semiconductor gels and its use in the electrooxidation of hydrogen at the anode of a biofuel cell. Appl. Biochem. Microbiol. (English translation from Russian) 18: 401–406.Google Scholar
  188. Yegunov, M. 1895. Sulfur bacteria of Odessa estuaries. Archiv Biologicheskii Nauk 1: 378–393.Google Scholar
  189. Zhukov, V. G. 1976. Formation of ribulose-1,5-diphosphate carboxylase by Thiocapsa roseopersicina in different growth conditions. Mikrobiologiya 45: 915–917.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Norbert Pfennig
  • Hans G. Trüper

There are no affiliations available

Personalised recommendations