Advertisement

The Prokaryotes pp 3952-3964 | Cite as

The Genus Zoogloea

  • Patrick R. Dugan
  • Daphne L. Stoner
  • Harvey M. Pickrum

Abstract

Bacteria of the genus Zoogloea have historically been considered members of the family Pseudomonadaceae but have been differentiated from other obligately aerobic, Gram-negative, nonsporeforming, rod-shaped bacteria that grow in aquatic habitats on the basis of their production of a characteristic gelatinous matrix. The “zoogloeal matrix” surrounds clumps of cells found in natural aquatic habitats or when grown in unshaken liquid culture in the laboratory (Butterfield, 1935; Butterfield et al., 1937; Wattie, 1943). The name Zoogloea, which was derived from the Greek word meaning animal glue, refers to the primary trait, the zoogloeal matrix, that is used to distinguish Zoogloea from other metabolically similar bacteria.

Keywords

Activate Sludge Biological Oxygen Demand Pyruvic Acid Extracellular Polysaccharide Polysaccharide Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Amin, P. M. and S. V. Ganapati. 1967. Occurrence of Zoogloea colonies and protozoans at different stages of sewage purification. Appl. Microbiol. 15: 17–21.PubMedPubMedCentralGoogle Scholar
  2. Busch, P. L. and W. Stumm. 1968. Chemical interactions in the aggregation of bacteria bioflocculation in waste treatment. Environ. Sci. Technol. 2: 49–53.CrossRefGoogle Scholar
  3. Butterfield, C. T. 1935. Studies of sewage purification. II. A zoogloea-forming organism found in activated sludge. U.S. Pub. Health Rep. 50: 671–684.CrossRefGoogle Scholar
  4. Butterfield, C. T., C. C. Ruchhoft and P. D. McNamee. 1937. Studies of sewage purification. VI. Biochemical oxidation by sludges developed by pure cultures of bacteria isolated from activated sludge. U.S. Pub. Health Rep. 52: 387–391.CrossRefGoogle Scholar
  5. Butterfield, C. T. and E. Wattie. 1941. Studies of sewage purification. XV. Effective bacteria in purification by trickling filters. U.S. Pub. Health Rep. 56: 2445–2464.CrossRefGoogle Scholar
  6. Chorpenning, F. W., D. H. Schmidt, H. B. Stamper and P. R. Dugan. 1978. Antigenic relationships among floc-forming Pseudomonadaceae. Ohio J. of Science 78: 29–33.Google Scholar
  7. Crabtree, K. and E. McCoy. 1967. Zoogloea ramigera Itsigsohn, identification and description. Request for an opinion as to the status of the generic name Zoogloea. International Journal of Systematic Bacteriology 17: 110.Google Scholar
  8. Crabtree, K., E. McCoy, W. C. Boyle, and G. A. Rohlich. 1965. Isolation, identification and metabolic role of the sudanophilic granules of Zoogloea ramigera. Appl. Microbiol. 13: 218–226.PubMedPubMedCentralGoogle Scholar
  9. Davis, J. T., H. H. Chen, R. Moore, Y. Nishitani, S. Masamune, A. J. Sinskey, and C. T. Walsh. 1987b. Biosynthetic thiolase from Zoogloea ramigera. II. Inactivation with halacetyl CoA analogs. J. Biol. Chem. 262: 90–96.PubMedGoogle Scholar
  10. Davis, J. T., R. N. Moore, B. Imperiali, A. J. Pratt, K. Kobayashi, S. Masamune, A. J. Sinskey, C. T. Walsh, T. Fukui and K. Tomita. 1987a. Biosynthetic thiolase from Zoogloea ramigera. I. Preliminary characterization and analysis of proton transfer reaction. J. Biol. Chem. 262: 82–89.Google Scholar
  11. Deinema, M. H., L. F. T. M. Zevenhuizen. 1971. Formation of cellulose fibrils by Gram-negative bacteria and their role in bacterial flocculation. Arch. Microbiol. 78: 42–57.Google Scholar
  12. Dugan, P. R. 1970. Removal of mine water ions by microbial polymers, p. 279–283. In: Proc. 3rd Symp. Coal Mine Drainage Research. Mellon Institute, Pittsburgh, PA.Google Scholar
  13. Dugan, P. R. 1975. Bioflocculation, and the accumulation of chemicals by floc–forming organisms. Report EPA–600/2–75–032. Cincinnati, Ohio: U.S. Environmental Protection Agency Office of Research and Development.Google Scholar
  14. Dugan, P. R. 1987. The function of microbial polysaccharides in bioflocculation and biosorption of mineral ions. p. 337–350. In: Y. A. Attia (ed.), flocculation in biotechnology and separation systems. Proc. Int. Symp. Floccul. Biotech. Separ. Sys. San Francisco, CA, July 28-August 1, 1986. Elsevier, New York.Google Scholar
  15. Dugan, P. R. and D. G. Lundgren. 1960. Isolation of the floc-forming organism Zoogloea ramigera and its culture in complex and synthetic media. Appl. Microbiol. 8: 357–361.PubMedPubMedCentralGoogle Scholar
  16. Dugan, P. R., R. M. Pfister and J. I. Frea. 1971. Implications of microbial polymer synthesis in waste water treatment and lake eutrophication. p. 20/1–20/10. Proceedings of the 5th International Water Pollution Research Conference I II. Pergamon Press, New York.Google Scholar
  17. Dugan, P. R. and H. M. Pickrum. 1973. Removal of mineral ions from water by microbially produced polymers, p. 1019–1038. In: Proc. 27th Ann. Purdue Ind. Waste Conf., West Lafayette, Indiana Engineering Bulletin of Purdue University.Google Scholar
  18. Easson, D. D., Jr., O. P. Peoples, C. K. Rha and A. J. Sinskey. 1987a. Engineering of biopolymer flocculants: A recombinant DNA approach, p. 369–381. In: Y. Attia (ed.), flocculation in biotechnology and separation systems. Elsevier Science Publishers Amsterdam.Google Scholar
  19. Easson, D. D., Jr., A. J. Sinskey and O. P. Peoples. 1987b. Isolation of Zoogloea ramigera I-16-M exopolysaccharide biosynthetic genes and evidence for instability within this region. J. Bact. 169: 4518–4524.PubMedPubMedCentralGoogle Scholar
  20. Farrah, S. R. and R. F. Unz. 1975. Fluorescent-antibody study of natural finger-like zoogloea. Appl. Microbiol. 30: 132–139.PubMedPubMedCentralGoogle Scholar
  21. Farrah, S. R. and R. F. Unz. 1976. Isolation of exocellular polymer from Zoogloea strains MP6 and 106 and from activated sludge. Appl. Environ. Microbiol. 32: 33–37.PubMedPubMedCentralGoogle Scholar
  22. Finstein, M. S. 1967. Growth and flocculation in a Zoogloea culture. Appl. Microbiol. 15: 962–963.PubMedPubMedCentralGoogle Scholar
  23. Franzen, L.-E. and A. B. Noberg. 1984. Structural investigation of the acidic polysaccharide secreted by Zoogloea ramigera 115. Carbohydrate Res. 128: 111–117.CrossRefGoogle Scholar
  24. Friedman, B. A. and P. R. Dugan. 1968a. Concentration and accumulation of metallic ions by the bacterium Zoogloea. Develop. Industrial Microbiol. 9: 381–388.Google Scholar
  25. Friedman, B. A., and P. R. Dugan. 1968b. Identification of Zoogloea species and the relationship to zoogloeal matrix and floc formation. J. Bacteriol. 95: 1903–1909.PubMedPubMedCentralGoogle Scholar
  26. Friedman, B. A., P. R. Dugan, R. M. Pfister and C. C. Remsen. 1968. Fine structure and composition of the zoogloeal matrix surrounding Zoogloea ramigera. J. Bacteriol. 96: 2144–2153.PubMedPubMedCentralGoogle Scholar
  27. Friedman, B. A., P. R. Dugan, R. M. Pfister and C. C. Rem-sen. 1969. Structure of exocellular polymers and their relationship to bacterial flocculation. J. Bacteriol. 98: 1328–1334.PubMedPubMedCentralGoogle Scholar
  28. Fukui, T., A. Yoshimoto, M. Matsumota, S. Hosokawa, T. Saito, H. Nishikawa and K. Tomita. 1976. Enzymatic synthesis of poly-ß-hydroxybutyrate in Zoogloea ramigera. Arch. Microbiol. 110: 149–156.PubMedCrossRefGoogle Scholar
  29. Ganapati, S. V., P. M. Amin and D. J. Parika. 1967. Studies on Zoogloea colonies from stored raw sewage. Water and Sewage Works 114: 389–392.Google Scholar
  30. Holmes, P. A. 1985. Applications of PHB-A microbially produced biodegradable thermoplastic. Phys. Technol. 16: 32–36.CrossRefGoogle Scholar
  31. Ikeda, F., H. Shuto, T. Saito, T. Fukui and K. Tornita. 1982. An extracellular polysaccharide produced by Zoogloea ramigera 115. Eur. J. Biochem. 123: 437–445.PubMedCrossRefGoogle Scholar
  32. Joyce, G. H. and P. R. Dugan. 1970. The role of floc-forming bacteria in BOD removal from waste water. Develop. Indus. Microbiol. 11: 377–386.Google Scholar
  33. Joyce, G. and P. R. Dugan. 1972. Ester synthesis by Zoogloea ramigera 115 grown in the presence of ethanol. Appl. Microbiol. 23: 547–552.PubMedPubMedCentralGoogle Scholar
  34. Kuhn, S and R. M. Pfister. 1989. Adsorption of mixed metals and cadmium by calcium-alginate immobilized Zoogloea ramigera. Applied Microbiology and Biotechnology 31: 619–625.Google Scholar
  35. Kuhn, S. and R. M. Pfister. 1990. Accumulation of cadmium by immobilized Zoogloea ramigera 115. Jour. of Industrial Microbiol. (in press)Google Scholar
  36. McKinney, R. E. and M. P. Horwood. 1952. Fundamental approach to the activated sludge process. I. Floc-producing bacteria. Sewage and Industrial Wastes 24: 117–560.Google Scholar
  37. McKinney, R. E. and R. G. Weichlein. 1953. Isolation of floc-producing bacteria from activated sludge. Appl. Microbiol. 1: 259–261.PubMedPubMedCentralGoogle Scholar
  38. Nishimura, T., T. Saito, and K. Tornita. 1978. Purification and properties of ß-ketothiolase from Zoogloea ramigera. Arch. Microbiol. 116: 21–27.PubMedCrossRefGoogle Scholar
  39. Norberg, A. B. and S.-V. Enfors. 1982. Production of extra-cellular polysaccharide by Zoogloea ramigera. Appl. Environ. Microbiol. 44: 1231–1237.PubMedPubMedCentralGoogle Scholar
  40. Norberg, A. B. and H. Persson. 1984. Accumulation of heavy-metal ions by Zoogloea ramigera. Biotech. Bioeng. 26: 239–246.CrossRefGoogle Scholar
  41. Norberg, A. and S. Rydin. 1984. Development of a continuous process for metal accumulation by Zoogloea ramigera. Biotech. Bioeng. 26: 265–268.CrossRefGoogle Scholar
  42. Parsons, A. and P. R. Dugan. 1971. Production of extra-cellular polysaccharide matrix by Zoogloea ramigera. Appl. Microbiol. 21: 657–661.PubMedPubMedCentralGoogle Scholar
  43. Peoples, O. P., S. Masamune, C. T. Walsh, and A. J. Sinskey. 1987. Biosynthetic thiolase from Zoogloea ramigera III. Isolation and characterization of the structural gene. J. Biol. Chem. 262: 97–102.PubMedGoogle Scholar
  44. Peter, G. and K. Wuhrmann. 1971. Contribution to the problem of bioflocculation in the activated sludge process. p. II 1/1–1/9. Proc. 5th Int. Water Poll. Res. Conf.Google Scholar
  45. Pickrum, H. M. 1972. Removal of heavy metal ions from water by floc-forming microorganisms. M.S. Thesis. Ohio State University, Columbus, Ohio.Google Scholar
  46. Pickrum, H. M. 1975. Isolation, purification and characterization studies in a deoxyribonucleic acid polymerase from the floc-forming bacterium Zoogloea ramigera isolate I-16-M. Ph.D. Dissertation. Ohio State University, Columbus, Ohio.Google Scholar
  47. Sag, Y. and T. Kutsai. 1989a. Application of adsorption isotherms to chromium adsorption on Z. ramigera. Biotechnology Lett. 11: 141–144.CrossRefGoogle Scholar
  48. Sag, Y. and T. Kutsai. 1989b. The use of Zoogloea ramigera in waste water treatment containing Cr(VI) and Cd(II) ions. Biotechnology Lett. 11: 145–148.CrossRefGoogle Scholar
  49. Saito, T., T. Fukui, E Ikeda, Y. Tanaka, and K. Tornita. 1977. An NADP-linked acetacetyl CoA reductase from Zoogloea ramigera. Arch. Microbiol. 114: 211–217.PubMedCrossRefGoogle Scholar
  50. Schildkraut, C. L., J. Marmur, and P. Doty. 1962. Determination of the base composition of deoxyribonucleic acid form its buoyant density in CsCI. Journal of Molecular Biology 4: 430–443.PubMedCrossRefGoogle Scholar
  51. Sinskey, A., S. Jamas, D. Easson Jr. and C. Rha. 1986. Biopolymers and modified polysachharides, p. 73–114. In: S. K. Harlander and T. P. Labuza (ed.), Biotechnology in food processing. Noyes Publication, New Jersey.Google Scholar
  52. Stauffer, K. R., J. G. Leeder, and S. S. Wang. 1980. Characterization of zooglan 115, an exocellular glycan of Zoogloea ramigera-115. J. Food Science 45: 946–952.CrossRefGoogle Scholar
  53. Tago, Y. and K. Aida. 1977. Exocellular mucopolysaccharide closely related to bacterial floc-formation. Appl. and Environ. Microbiol. 34: 308–314.Google Scholar
  54. Tezuka, Y. 1973. A Zoogloea bacterium with gelatinous mucopolysaccharide matrix. J. Water Pollut. Control Fed. 45: 531–536.Google Scholar
  55. Tornita, K., T. Saito, and T. Fukui. 1983. Bacterial metabolism of poly-ß-hydroxybutyrate, p. 353–366. In: D. L. F. Lennon, E. W. Stratman, and R. N. Zahlten (ed.), Biochemistry of metabolic processes. Elsevier, New York.Google Scholar
  56. Unz, R. F. 1974. Bacterial Zoogloea formation. Report EPA–670/2–74–018. Office of Research and Development. Cincinnati, Ohio. U.S. Environmental Protection Agency.Google Scholar
  57. Unz, R. E 1984. Genus IV. Zoogloea Itzigoshn 1868, 30, p. 214–219. In: N. R. Krieg and J. G. Holt (ed.), Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore.Google Scholar
  58. Unz, R. F. and N. C. Dondero. 1967a. The predominant bacteria in natural zoogloeal colonies. I. Isolation and identification. Can. J. Microbiol. 13: 1671–1682.Google Scholar
  59. Unz, R. F. and N. C. Dondero. 1967b. The predominant bacteria in natural zoogloeal colonies. H. Physiology and nutrition. Can. J. Microbiol. 13: 1683–1691.CrossRefGoogle Scholar
  60. Unz, R. F. and S. R. Farrah. 1972. Use of aromatic compounds for growth and isolation of Zoogloea. Appl. Microbiol. 23: 524–530.PubMedPubMedCentralGoogle Scholar
  61. Unz, R. F. and S. R. Farrah. 1976a. Observations on the formation of wastewater zoogloeae. Water Res. 10: 665–671.CrossRefGoogle Scholar
  62. Unz, R. F. and S. R. Farrah. 1976b. Exopolymer production and flocculation by Zoogloea MP6. Appl. Environ. Microbiol. 31: 623–626.PubMedPubMedCentralGoogle Scholar
  63. Wallen, L. L. and E. N. Davis. 1972. Biopolymers of acti- vated sludge. Environ. Sci. Technol. 6: 161–164.CrossRefGoogle Scholar
  64. Wattie, E. 1943. Cultural characteristics of zoogloeal-forming bacteria isolated from activated sludge and trickling filters. Sewage Works Journal 15: 476–479.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Patrick R. Dugan
  • Daphne L. Stoner
  • Harvey M. Pickrum

There are no affiliations available

Personalised recommendations