The Prokaryotes pp 3917-3933 | Cite as

Thermophilic, Aerobic, Hydrogen-Oxidizing (Knallgas) Bacteria

  • Michel Aragno


Geothermal fluids and gases often contain significant concentrations of molecular hydrogen (≥1% v/v). This suggests that hot springs and other geothermal manifestations might harbor thermophilic, aerobic, hydrogen-oxidizing (Knallgas) bacteria. It is therefore surprising how few attempts were made before 1980 to isolate thermophilic hydrogen bacteria from these environments (Goto et al., 1977), although they were found in cold nongeothermal habitats (McGee et al., 1967; Emnova and Romanova, 1977; Aragno, 1978; Schenk and Aragno, 1979).


Thermal Water Geothermal Field Carotenoid Pigment Geothermal Fluid Geothermal Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alfredsson, G. A., Ingason, A., and Kristjansson, J. K. 1986. Growth of thermophilic, obligately autotrophic hydrogen-oxidizing bacteria on thiosulfate. Lett. Appl. Microbiol. 2: 21–24.CrossRefGoogle Scholar
  2. d’Amore, F., and Nuti, S. 1977. Notes on the chemistry of geothermal gases. Geothermica 6: 39–45.CrossRefGoogle Scholar
  3. Aragno, M. 1978. Enrichment, isolation and preliminary characterization of a thermophilic, endospore-forming hydrogen bacterium. FEMS Microbiol. Lett. 3: 13–15.Google Scholar
  4. Aragno, M. 1981. Responses of microorganisms to temperature, p. 339–369. In: Lange, O. L. et al. (ed.), Encyclopedia of plant physiology N, ser. 12A. Physiological plant ecology I. Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
  5. Bonjour, E 1988. Hydrogénobactéries des milieux géothermaux et volcaniques: taxonomie et écologie. PhD thesis, University of Neuchâtel, Switzerland.Google Scholar
  6. Bonjour, E, and Aragno, M. 1984. Bacillus tusciae, a new species of thermoacidophilic, facultatively chemolithoautotrophic hydrogen-oxidizing sporeformer from a geothermal area. Arch. Microbiol. 139: 397–401.Google Scholar
  7. Bonjour, E, and Aragno, M. 1986. Growth of thermophilic obligatorily chemolithoautotrophic hydrogen-oxidizing bacteria related to Hydrogenobacter with thiosulfate and elemental sulfur as electron and energy source. FEMS Microbiol. Lett. 35: 11–16.Google Scholar
  8. Bonjour, E, Graber, A., and Aragno, M. 1988. Isolation of Bacillus schlegelii, a thermophilic hydrogen-oxidizing aerobic autotroph from geothermal and nongeothermal environments. Microb. Ecol. 16: 331–338.PubMedCrossRefGoogle Scholar
  9. Brock, T. D. 1978. Thermophilic microorganisms and life at high temperature. Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
  10. Castenholz, R. W. 1969. Thermophilic blue-green algae and the thermal environment. Bacteriol. Rev. 33: 476–504.PubMedPubMedCentralGoogle Scholar
  11. Conrad, R. 1988. Biogeochemistry and ecophysiology of atmospheric CO and HZ. Adv. Microb. Ecol. 10: 231–283.CrossRefGoogle Scholar
  12. Conrad, R., Aragno, M., and Seiler, W. 1983a. Production and consumption of hydrogen in a eutrophic lake. Appl. Environ. Microbiol. 45: 502–510.PubMedPubMedCentralGoogle Scholar
  13. Conrad, R., Aragno, M., and Seiler, W. 1983b. The inability of hydrogen bacteria to utilize atmospheric hydrogen is due to threshold and affinity for hydrogen. FEMS Microbiol. Lett. 18: 207–210.Google Scholar
  14. Conrad, R., Bonjour, E, and Aragno, M. 1985. Aerobic and anaerobic microbial consumption of hydrogen in geothermal spring water. FEMS Microbiol. Lett. 29: 201–205.Google Scholar
  15. Conrad, R., and Seiler, W. 1979. The role of hydrogen bacteria during the decomposition of hydrogen by soil. FEMS Microbiol. Lett. 6: 143–145.Google Scholar
  16. Conrad, R., and Seiler, W. 1981. Decomposition of atmospheric hydrogen by soil microorganisms and soil enzymes. Soil. Bio. Biochem. 13: 43–49.CrossRefGoogle Scholar
  17. Davis, D. H., Doudoroff, M., Stanier, R. Y., and Mandel, M. 1969. Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int. J. Syst. Bacteriol. 19: 375–390.CrossRefGoogle Scholar
  18. Dugnani, L., Wyrsch, I., Gandolla, M., and Aragno, M. 1986. Biological oxidation of hydrogen in soils flushed with a mixture of HZ, CO„ OZ and NZ. FEMS Microbiol. Ecol. 38: 347–351.Google Scholar
  19. Egorova, A. A., and Deryugina, Z. P. 1963. The sporeforming thermophilic thiobacterium Thiobacillus thermophila Imschenetskii nov. spec. Microbiology 32: 376–381.Google Scholar
  20. Emnova, E. E. 1978. RNA extraction from Pseudomonas thermophila cells. Microbiology 46: 505–509.Google Scholar
  21. Emnova, E. E., and Romanova, A. K. 1977. Hydrogenase activity of the thermophilic hydrogen-oxidizing bacterium Pseudomonas thermophilus (sic). Microbiology 46: 505–509.Google Scholar
  22. Emnova, E. E., and Romanova, A. K. 1982. Metabolism of the thermophilic hydrogen bacterium Pseudomonas thermophila K-2. Biol. Bull. Acad. Sci. USSR 2: 185–196.Google Scholar
  23. Emnova, E. E., Romanova, A. K., and Kotelev, V. V. 1982. Malate dehydrogenase EC- preparation from the thermophilic hydrogen bacterium Pseudomonas thermophila. Appl. Biochem. Microbiol. 18: 190–193.Google Scholar
  24. Emnova, E. E., Romanova, A. K., and Zhilina, T. N. 1979. Localization of hydrogenase in cells of the thermophilic hydrogen bacterium Pseudomonas thermophila. Microbiology 48: 61–67.Google Scholar
  25. Emnova, E. E., and Zavarzin, G. A. 1977. Additional characteristics of a thermophilic hydrogen bacteria Hydrogenomonas thermophilus. Microbiology 46: 321–324.Google Scholar
  26. Emnova, E. E., and Zavarzin, G. A. 1979. Composition of the respiratory chain of the thermophilic hydrogen bacterium Pseudomonas thermophila. Microbiology 48: 122–123.Google Scholar
  27. Goto, E., Kodama, T., and Minoda, Y. 1977. Isolation and culture conditions of thermophilic hydrogen bacteria. Agric. Biol. Chem. 41: 685–690.CrossRefGoogle Scholar
  28. Goto, E., Kodama, T., and Minoda, Y. 1978. Growth and taxonomy of thermophilic hydrogen bacteria. Agric. Biol. Chem. 42: 1305–1308.CrossRefGoogle Scholar
  29. Gunter, B. D., and Musgrave, B. C. 1966. Gas chromatographic measurements of hydrothermal emanations at Yellowstone National Park. Geochim. Cosmochim. Acta 30: 1175–1189.CrossRefGoogle Scholar
  30. Hudson, J. A., Daniel, R. M., and Morgan, H. W. 1988. Isolation of a strain of Bacillus schlegelii from geothermally heated antarctic soil. FEMS Microbiol. Lett. 51: 57–60.Google Scholar
  31. Ishii, M., Igarashi, Y., and Kodama, T. 1987a. Purification and some properties of cytochrome c552 from Hydrogenobacter thermophilus. Agric. Biol. Chem. 51: 1695–1697.CrossRefGoogle Scholar
  32. Ishii, M., Igarashi, Y., and Kodama, T. 1987b. Colony for- mation of Hydrogenobacter thermophilus on a plate so- lidified with gelrite. Agric. Biol. Chem. 51: 3139–3142.CrossRefGoogle Scholar
  33. Ishii, M., Itoh, S., Kawasaki, H., Igarashi, Y., and Kodama, T. 1987c. The membrane-bound hydrogenase reduces cytochrome c552 in Hydrogenobacter thermophilus strain TK-6. Agr. Biol. Chem. 51: 1825–1831.CrossRefGoogle Scholar
  34. Ishii, M., Kawasumi, T., Igarashi, Y., Kodama, T., and Min-oda, Y. 1983. 2-methylthio-1,4-naphtoquinone, a new quinone from an extremely thermophilic hydrogen bacterium. Agric. Biol. Chem. 47: 167–170.Google Scholar
  35. Jannasch, H. W., and Mottl, M. J. 1985. Geomicrobiology of deep-sea hydrothermal vents. Science 229: 717–725.PubMedCrossRefGoogle Scholar
  36. Jannasch, H. W, and Nelson, D. C. 1984. Recent progress in the microbiology of hydrothermal vents, p. 170–176. In: Klug, M. J. and Reddy, C. A. (ed.), Current perspectives in microbial ecology. Am. Soc. Micro., Washington, DC.Google Scholar
  37. Kawasumi, T., Igarashi, Y., Kodama, T., and Minoda, Y. 1980. Isolation of strictly thermophilic and obligately autotrophic hydrogen bacteria. Agric. Biol. Chem. 44: 20–25.Google Scholar
  38. Kawasumi, T., Igarashi, Y., Kodama, T., and Minoda, Y. 1984. Hydrogenobacter thermophilus n. gen. n. spec., an extremely thermophilic aerobic hydrogen-oxidizing bacterium. Int. J. Syst. Bacteriol. 34: 5–10.Google Scholar
  39. Kita, I., Matsuo, S., and Wakita, H. 1982. HZ generation by reaction between H2O and crushed rock: an experimental study on H2 degasing from the active fault zone. J. Geophys. Res. 87: 10789–10795.CrossRefGoogle Scholar
  40. Kostrikina, N. A., Emnova, E. E., Biryuzova, V. I., and Romanova, A. K. 1981. Ultrastructural organization of the thermophilic hydrogen bacterium Pseudomonas thermophila. Microbiology 50: 187–191.Google Scholar
  41. Krasilya, I. I., Kotelev, V. V., and Shakun, L. A. 1973. Hydrogen bacteria strain Hydrogenomonas thermophilus K-2 as a biomass producer. USSR Inventor’s Certificate 291175, Bull. no. 31, p. 79.Google Scholar
  42. Kristjansson, J., Ingason, A., and Alfredsson, G. A. 1985. Isolation of thermophilic autotrophic hydrogen-oxidizing bacteria, similar to Hydrogenobacter thermophilus, from icelandic hot springs. Arch. Microbiol. 140: 321–325.CrossRefGoogle Scholar
  43. Krüger, B., and Meyer, O. 1984. Thermophilic bacilli growing with carbon monoxide. Arch. Microbiol. 139: 321–325.Google Scholar
  44. Kryukov, V. R., and Bodnar, I. V. 1987. Uptake of hydrogen in a low concentration by cell-free extracts. Microbiology 56: 11–15.Google Scholar
  45. Kryukov, V. R., Savel’eva, N. D., and Pusheva, M. A. 1983. Calderobacterium hydrogenophilum n.gen. n.spec., an extremely thermophilic hydrogen bacterium and its hydrogenase activity. Microbiology 52: 611–618.Google Scholar
  46. Kuznetsov, B. A., Emnova, E. E., Barabanova, N. M., Biryukova, V. I., Kostrikina, N. A., and Romanova, A. K. 1984. Electrochemically active sites of membranes of the hydrogen bacterium Pseudomonas thermophila. Biochemistry 49: 184–193.Google Scholar
  47. Lysenko, A. M., Savel’eva, N. D., and Kryukov, V. R. 1985. Some peculiarities of the reassociation of DNA of extremely thermophilic hydrogen bacteria. Biochemistry 50, 1090–1094.Google Scholar
  48. McGee, J. M., Brown, L. R., and Tischer, R. G. 1967. A high temperature hydrogen-oxidizing bacterium-Hydrogenomonas thermophilus (sic) n. sp. Nature 214: 715–716.PubMedCrossRefGoogle Scholar
  49. Mikulik, K., Qiao, C. L., Petrik, T., Pusheva, M. A., and Zavarzin, G. A. 1988. Elongation factor Tu of the extreme thermophilic hydrogen oxidizing bacterium Calderobacterium hydrogenophilum. Biochem. Biophys. Res. Comm. 155: 384–391.PubMedCrossRefGoogle Scholar
  50. Nishihara, H., Igarashi, Y., and Kodama, T. 1989. Isolation of an obligately chemolithoautotrophic, halophilic and aerobic hydrogen-oxidizing bacterium from marine environment. Arch. Microbiol. 152: 39–43.CrossRefGoogle Scholar
  51. Nishihara, H., Igarashi, Y., and Kodama, T. 1990. A new isolate of Hydrogenobacter, an obligately chemolithoautotrophic, thermophilic, halophilic and aerobic hydrogen-oxidizing bacterium from seaside saline hot springs. Arch. Microbiol 153: 294–298.CrossRefGoogle Scholar
  52. Panichi, C., and Gonfiantini, R. 1978. Environmental isotopes in geothermal studies. Geothermics 6: 143–161.CrossRefGoogle Scholar
  53. Panichi, C., Celati, R., Noto, P., Squarci, P., Taffi, L., and Tongiorgi, E. 1974. Oxygen and hydrogen isotopes studies of the Larderello (Italy) geothermal system, p. 3–28. In: Techniques in groundwater hydrology, vol. 2. IAEA, Vienna.Google Scholar
  54. Pinkwart, M., Schneider, K., and Schlegel, H. G. 1983. The hydrogenase of a thermophilic, hydrogen-oxidizing bacterium. FEMS Microbiol. Lett. 17: 137–141.Google Scholar
  55. Pusheva, M. A., Berezin, V. I., Savel’eva, N. D., and Kryukov, V. R. 1987. Hydrogenase from the extremely thermophilic hydrogen bacterium Calderobacterium hydrogenophilum. Prikl. Biokhim Mikrobiol. 23: 185–191.Google Scholar
  56. Pusheva, M. A., and Savel’eva, N. D. 1982. The hydrogenase activity of a new thermophilic hydrogen bacterium. Mikrobiologiya 51: 896–900.Google Scholar
  57. Pusheva, M. A., Sukhikh, A. R, Borodulina, N. R, and Savel’eva, N. D. 1988. Characteristics of cytochromes of the extreme thermophilic obligate autotrophic hydrogen bacterium Calderobacterium hydrogenophilum. Microbiology 57: 572–576.Google Scholar
  58. Romanova, A. K., and Emnova, E. E. 1980. Functional characteristics of membrane preparations from cells of the thermophilic hydrogen bacterium Pseudomonas thermophila. Microbiology 49: 357–360.Google Scholar
  59. Romanova, A. K., Emnova, E. E., and Zykalova, K. A. 1980. Influence of temperature and pH on the activity of ribulose-1,5-diphosphate carboxylase of the thermophilic hydrogen bacterium Pseudomonas thermophila. Microbiology 49: 139–142.Google Scholar
  60. Romanova, A. K., Zykalova, K. A., Kostrikina, N. A., Em-nova, E. E., and Biryuzova, V. I. 1982. Carboxysomes of the thermophilic hydrogen bacterium Pseudomonas thermophila. Microbiology 51: 247–252.Google Scholar
  61. Savel’eva, N. D., Kryukov, V. R., and Pusheva, M. A. 1982. An obligate thermophilic hydrogen bacterium. Microbiology 51: 615–619.Google Scholar
  62. Schenk, A., and Aragno, M. 1979. Bacillus schlegelii, a new species of thermophilic, facultatively chemolithoautotrophic bacterium oxidizing molecular hydrogen. J. Gen. Microbiol. 115: 333–342.Google Scholar
  63. Schink, B., Lupton, E S., and Zeikus, J. G. 1983. Radioas-say for hydrogenase activity in viable cells and documentation of aerobic hydrogen consuming bacteria living in extreme environments. Appl. Environ. Microbiol. 45: 1491–1500.PubMedPubMedCentralGoogle Scholar
  64. Shiba, H., Kawasumi, T., Igarashi, Y., Kodama, T., and Minoda, Y. 1984. Effect of organic compounds on the growth of an obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6. Agric. Biol. Chem. 48: 2809–2814.CrossRefGoogle Scholar
  65. Shiba, H., Kawasumi, T., Igarashi, Y., Kodama, T., and Minoda, Y. 1985. The carbon dioxide assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic aerobic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus. Arch. Microbiol. 141: 198–203.CrossRefGoogle Scholar
  66. Skerman, V. B. D., McGowan, V., and Sneath, P. H. A. 1980. Approved list of bacterial names. Int. J. Syst. Bacteriol. 30: 225–420.CrossRefGoogle Scholar
  67. Tischer, R. G., Wang, A. W., and Hassan, F. K. 1975. Induction of colony formation in Hydrogenomonas thermophilus. J. Miss. Acad. Sci. 19: 118–121.Google Scholar
  68. Walther-Mauruschat, A., Aragno, M., Mayer, F., and Schlegel, H. G. 1977. Micromorphology of Gram-negative hydrogen bacteria. II. Cell envelope, membranes and cytoplasmic inclusions. Arch. Microbiol. 114: 101–110.PubMedCrossRefGoogle Scholar
  69. Wang, A. W., and Tischer, R. G. 1975. Macromolecular structure in the cell wall of Hydrogenomonas thermophilus. J. Miss. Acad. Sci. 19: 121–125.Google Scholar
  70. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., ‘Candler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E., Stackebrandt, E., Starr, M. P., and Trüper, H. G. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463–464.Google Scholar
  71. Woese, C. 1987. Bacterial evolution. Microbiol. Rev. 51: 221–271.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Michel Aragno

There are no affiliations available

Personalised recommendations