The Prokaryotes pp 3891-3906 | Cite as

Prokaryotic Symbionts of Marine Invertebrates

  • Horst Felbeck
  • Daniel L. Distel


The symbiosis of prokaryotic organisms with eukaryotic taxa is a widespread phenomenon that has had profound impact on the physiology, ecology, and evolution of the host organisms. Although these symbioses range from relatively loose coexistence to highly interdependent intracellular associations, in this chapter we will mainly discuss symbionts and symbioses of the latter type, as exemplified by the symbiotic associations of chemoautotrophic bacteria with marine invertebrates. We will also discuss the symbioses of methane-oxidizing bacteria with marine invertebrates and the symbioses of cellulolytic/nitrogen-fixing bacteria with wood-boring marine bivalves (ship-worms).


Host Tissue Marine Invertebrate Hydrothermal Vent Carbon Isotope Ratio Symbiotic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alayse-Danet, A. M., D. Desbruyeres, and F. Gaill. 1987. The possible nutritional of detoxification role of the epibiotic bacteria of Alvinellid polychaetes: Review of current data. Symbiosis 4: 51–62.Google Scholar
  2. Anderson, A. E., J. J. Childress, and J. A. Favuzzi. 1987. Net uptake of CO, driven by sulphide and thiosulphate oxidation in the bacterial symbiont-containing clam Solemya reidi. J. Exp. Biol. 133: 1–31.Google Scholar
  3. Arp, A. J., and J. J. Childress. 1983. Sulfide binding by the blood of the hydrothermal vent vestimentiferan tube worm Riftia pachyptila. Science 219: 295–297.PubMedCrossRefGoogle Scholar
  4. Belkin, S., Nelson, D. C., and H. W. Jannasch. 1986. Symbiotic assimilation of CO, in two hydrothermal vent animals, the mussel Bathymodiolus thermophilus and the tube worm Riftia pachyptila. Biol. Bull. 170: 110–121.CrossRefGoogle Scholar
  5. Bosch, C., and P. P. Grasse. 1984. Cycle partiel des bacteries chimioautotrophes symbiotiques et leurs rapports avec les bacteriocytes chez Riftia pachyptila Jones (Pogonophhore Vestimentifere). I. Le trophosome et les bacteriocytes. C. R. Acad. Sci. Paris (ser. III) 299: 413–419.Google Scholar
  6. Brooks, J. M., M. C. Kennicutt II, C. R. Fisher, S. A. Macko, K. Cole, J. J. Childress, R. R. Bidigare, and R. D. Vetter. 1987. Deep-sea hydrocarbon seep communities: Evidence for energy and nutritional carbon sources. Science 238: 1138–1142.PubMedCrossRefGoogle Scholar
  7. Cary, C., B. Fry, H. Felbeck, and R. D. Vetter. 1989. Multiple trophic resources for a chemoautotrophic community at a cold water brine seep at the base of the Florida Escarpment. Mar. Biol. 100: 411–418.CrossRefGoogle Scholar
  8. Cary, S. C., C. R. Fisher, and H. Felbeck. 1988. Mussel growth supported by methane as sole carbon and energy source. Science 240: 78–80.PubMedCrossRefGoogle Scholar
  9. Cary, S. C., R. D. Vetter, and H. Felbeck. 1989. Habitat characterization and nutritional strategies of the endosymbiont-bearing bivalve Lucinoma aequizonata. Mar. Ecol. Prog. Ser. 55: 31–45.CrossRefGoogle Scholar
  10. Cavanaugh, C. M. 1985. Symbiosis of chemolithotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Biol. Soc. Wash. Bull. 6: 373–388.Google Scholar
  11. Cavanaugh, C. M., S. L. Gardiner, M. L. Jones, H. W. Jan-nasch, and J. B. Waterbury. 1981. Prokaryotic cells in the hydrothermal vent tube worm. Science 213: 340–342.PubMedCrossRefGoogle Scholar
  12. Cavanaugh, C. M., P. R. Levering, J. S. Maki, R. Mitchell, and M. E. Lidstrom. 1987. Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature 325: 346–348.CrossRefGoogle Scholar
  13. Childress, J. J., C. R. Fisher, J. M. Brooks, M. C. Kennicutt II, R. Bidigare, and A. E. Anderson. 1986. A methanotrophic marine molluscan (Bivalvia, Mytilidae) Symbiosis: Mussels fueled by Gas. Science 233: 1306–1308.PubMedCrossRefGoogle Scholar
  14. Conway, N., J. McDowell-Capuzzo, and B. Fry. 1989. The role of endosymbiotic bacteria in the nutrition of Solemya velum: evidence from stable isotope analysis of endosymbionts and host. Limnol. Oceanogr. 34: 249–255.CrossRefGoogle Scholar
  15. de Burgh, M. E. 1985. Evidence for a physiological gradient in the vestimentiferan trophosome: size-frequency analysis of bacterial populations and trophosome chemistry. Can. J. Zool. 64: 1095–1103.CrossRefGoogle Scholar
  16. de Burgh, M. E., K. S. Juniper, and C. L. Singla. 1989. Bacterial symbiosis in northeast Pacific vestimentifera: A TEM survey. Mar. Biol. 101: 97–105.Google Scholar
  17. Desbruyeres, D., F. Gaill, L. Laubier, and Y. Fouquet. 1985. Polychaetous annelids from hydrothermal vent ecosystems: An ecological overview. Bull. Biol. Soc. Wash. 6: 103–116.Google Scholar
  18. Distel, D. L. 1990. Detection, identification, and phylogenetic analysis of endosymbiotic bacteria using ribosomal RNA sequences. p. 339–342. In: P. Nardon, V. Gianinazzi-Pearson, A. M. Grenier, and D. C. Smith (ed.), Endocytobiology IV. Institut National de la Recherche Agronomique, Paris.Google Scholar
  19. Distel, D. L., and H. Felbeck. 1987. Endosymbiosis in the lucinid clams Lucinoma aequizonata, Lucinoma annulata and Lucina floridana: a reexamination of the functional morphology of the gills as bacteria-bearing organs. Mar. Biol. 96: 79–86.CrossRefGoogle Scholar
  20. Distel, D. L., and H. Felbeck. 1988a. Pathways of inorganic carbon fixation in the endosymbiont bearing lucinid clam Lucinoma aequizonata: Part 1. Purification and characterization of the endosymbiotic bacteria. J. Exp. Zool. 247: 11–22.CrossRefGoogle Scholar
  21. Distel, D. L., and H. Felbeck. 1988b. Pathways of inorganic carbon fixation in the endosymbiont bearing lucinid clam Lucinoma aequizonata: Part 2. Analysis of the individual contributions of host and symbiont to inorganic carbon assimilation. J. Exp. Zool. 247: 1–10.CrossRefGoogle Scholar
  22. Distel, D. L., D. J. Lane, G. J. Olsen, S. J. Giovannoni, B. Pace, N. R. Pace, D. A. Stahl, and H. Felbeck. 1988. Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16 S rRNA sequences. J. Bacteriol. 170: 2506–10.PubMedPubMedCentralGoogle Scholar
  23. Edwards, D. B. 1989. DNA:DNA homology studies of the bacterial symbionts of the tube worm Riftia pachyptila from widely separated hydrothermal vent sites. 89th Annual Meeting of the American Society for Microbiology, p. 225.Google Scholar
  24. Erseus, C. 1984. Taxonomy and phylogeny of the gutless Phallodrilinae (Oligochaeta, Tubificidae), with descriptions of one new genus and twenty-two new species. Zool. Scripta. 13: 239–272.CrossRefGoogle Scholar
  25. Felbeck, H. 1981. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science 213: 336–338.PubMedCrossRefGoogle Scholar
  26. Felbeck, H. 1983. Sulfide oxidation and carbon fixation by the gutless clam Solemya reidi: an animal-bacteria symbiosis. J. Comp. Physiol. 152: 3–11.Google Scholar
  27. Felbeck, H., J. J. Childress, and G. N. Somero. 1981. Calvin-Benson cycle and sulfide oxidation enzymes in animals from sulfide-rich habitats. Nature 293: 291–293.CrossRefGoogle Scholar
  28. Felbeck, H., G. Liebezeit, R. Dawson, and O. Giere. 1982. CO. fixation in tissues of marine oligochaetes (Phallodrilus leukodermatus and P. planus) containing symbiotic, chemoautrophic bacteria. Mar. Biol. 75: 187–191.CrossRefGoogle Scholar
  29. Felbeck, H., and G. N. Somero. 1983. Primary production in deep-sea hydrothermal vent organisms: roles of sulfide-oxidizing bacteria. TIBS. 7: 210–204.Google Scholar
  30. Fiala-Medioni, A., H. Felbeck, J. Childress, C. Fisher, and R. Vetter. 1990. Lysosomic resorption of bacterial symbionts in deep-sea bivalves, p. 335–338. In: P. Nardon, V. Gianinazzi-Pearson, A. M. Grenier, and D. C. Smith (ed.), Endocytobiology IV. Institut National de la Recherche Agronomique, Paris.Google Scholar
  31. Fiala-Medioni, A., C. Metivier, A. Henry, and M. Le Pen-nec. 1986. Ultrastructure of the gill filament of an hydrothermal-vent Mytilidae. Mar. Biol. 92: 65–72.CrossRefGoogle Scholar
  32. Fisher, C. R., and J. J. Childress. 1986. Translocation of fixed carbon from symbiotic bacteria to host tissues in the gutless bivalve Solemya reidi. Mar. Biol. 93: 59–68.CrossRefGoogle Scholar
  33. Fisher, C. R., J. J. Childress, R. S. Oremland, and R. R. Bidigare. 1987. The importance of methane and thiosulphate in the metabolism of the bacterial symbionts of two deep-sea mussels. Mar. Biol. 96: 59–71.CrossRefGoogle Scholar
  34. Fisher, C. R., Childress, J. J., and N. Sanders. 1988. The role of vestimentiferan hemoglobin in providing an environment suitable for chemoautotrophic sulfide-oxidizing endosymbionts. Symbiosis 5: 229–246.Google Scholar
  35. Gaill, E, D. Desbruyeres, and L. Laubier. 1988. Morphological relationships between the “Pompeii worms” and their epibiotic bacteria. Oceanol. Acta 8: 147–154.Google Scholar
  36. Gallager, S. M., R. D. Turner, and C. J. Berg. 1981. Physiological aspects of wood consumption, growth, and reproduction in the shipworm Lyrodus pedicellatus Quatrefages. J. exp. mar. Biol. Ecol. 52: 63–77.CrossRefGoogle Scholar
  37. Giere, O. 1985. Structure and position of bacterial endosymbionts in the gill filaments of Lucinidae from Bermuda (Mollusca, Bivalvia). Zoomorphology 105: 296–301.CrossRefGoogle Scholar
  38. Giere, 0., and C. Langheld. 1987. Structural organization, transfer and biological fate of endosymbiotic bacteria in gutless oligochaetes. Mar. Biol. 93: 641–650.CrossRefGoogle Scholar
  39. Giere, 0., C. O. Wirsen, C. Schmidt, and H. W. Jannasch. 1988. Contrasting effects of sulfide and thiosulfate on symbiotic COZ assimilation of Phallodrilus leukodermat us (Annelida). Mar. Biol. 97: 413–419.CrossRefGoogle Scholar
  40. Green, R. V., and S. N. Freer. 1986. Growth characteristics of a novel nitrogen-fixing cellulolytic bacterium. Appl. Environ. Microbiol. 52: 982–986.Google Scholar
  41. Hand, S. C. 1987. Trophosome ultrastructure and the characterization of isolated bacteriocytes from invertebrate-sulfur bacteria symbioses. Biol. Bull. 173: 260–276.CrossRefGoogle Scholar
  42. Herry, A., M. Diouris, and M. Le Pennec. 1989. Chemoautrotrophic symbionts and translocation of fixed carbon from bacteria to host tissues in the littoral bivalve Loripes lucinalis (Lucinidae). Mar. Biol. 101: 305–312.CrossRefGoogle Scholar
  43. Jannasch, H. W. 1985. The chemosynthetic support of life and the microbial diversity at the deep-sea hydrothermal vents. Proc. R. Soc. Lond. B225: 227–297.Google Scholar
  44. Jannasch, H. W., and M. J. Mottl. 1985. Geomicrobiology of deep-sea hydrothermal vents. Science 229: 717–725.PubMedCrossRefGoogle Scholar
  45. Jannasch, H. W., and D. C. Nelson. 1984. Recent progress in microbiology of hydrothermal vents. Current perspectives in microbial ecology. American Society for Microbiology, Washington, D.C..Google Scholar
  46. Jones, M. L. 1985. On the Vestimentifera, new phylum: Six new species, and other taxa, from hydrothermal vents and elsewhere. Bull. Biol. Soc. Wash. 6: 117–158.Google Scholar
  47. Jones, M. L. 1988. The Vestimentifera, their biology, systematic and evolutionary patterns. Oceanol. Acta. 8: 69–82.Google Scholar
  48. Nelson, D. C., J. B. Waterbury, and H. W. Jannasch. 1984. DNA base composition and genome size of the prokaryotic symbiont in Riftia pachyptila (Pogonophora). FEMS Microbiol. Lett. 24: 267–271.Google Scholar
  49. Okutani, T., and S. Ohta. 1988. A new gastropod mollusk associated with hydrothermal vents in the Mariana back-arc basin, western Pacific. Venus 47: 1–9.Google Scholar
  50. Popham, J. D., and M. R. Dickson. 1973. Bacterial associations in the teredo Bankia australis (Lamellibranchia, Mollusca). Mar. Biol. 19: 338–340.CrossRefGoogle Scholar
  51. Powell, M. A., and G. N. Somero. 1986. Adaptations to sulfide by hydrothermal vent animals: Sites and mechanisms of detoxification and metabolism. Biol. Bull. 171: 274–290.CrossRefGoogle Scholar
  52. Rau, G. H. 1981a. Hydrothermal vent clam and tubeworm 13C/12C: Further evidence of nonphotosynthetic food sources. Science 213: 338–340.PubMedCrossRefGoogle Scholar
  53. Rau, G. H. 1981b. Low 15N/14N in hydrothermal vent an- imals: ecological implications. Nature 289: 484–485.CrossRefGoogle Scholar
  54. Rau, G. H. 1985. 13C/12C and 15N/14N in hydrothermal vent organisms: Ecological and biogeochemical implications. Bull. Biol. Soc. Wash. 6: 243–248.Google Scholar
  55. Reid, R. G. B., and D. G. Brand. 1986. Sulfide-oxidizing symbiosis in Lucinaceans: implications for bivalve evolution. Veliger 29: 3–24.Google Scholar
  56. Ruby, E. G., and H. W. Jannasch, 1982. The physiological characteristics of Thiomicrospira sp. strain L12 isolated from deep sea hydrothermal vents. J. Bacteriol. 149: 161–165.PubMedPubMedCentralGoogle Scholar
  57. Ruby, E. G., H. W. Jannasch, and W. G. Deuser. 1987. Fractionation of stable carbon isotopes during chemoautotrophic growth of sulfur-oxidizing bacteria. Appl. Envir. Micro. 53: 1940–1945.Google Scholar
  58. Schmaljohann, R. 1987. Endosymbiosen zwischen methylotrophen Bakterien und marinen Invertebraten. Forum Mikrobiologie 10: 166–171.Google Scholar
  59. Schmaljohann, R., and H. J. Flügel. 1987. Methane-oxidizing bacteria in pogonophora. Sarsia. 72: 91–98.Google Scholar
  60. Southward, A. J., E. C. Southward, P. R. Dando, R. L. Barrett, and R. Ling. 1986. Chemoautotrophic function of bacterial symbionts in small pogonophoran. J. Mar. Bio. Ass. UK. 66: 415–437.CrossRefGoogle Scholar
  61. Southward, A. J., E. C. Southward, P. R. Dando, G. H. Rau, H. Felbeck, and H. Flügel. 1981. Bacterial symbionts and low 13C/12C ratios in tissues of Pogonophora indicate unusual nutrition and metabolism. Nature 293: 616–620.CrossRefGoogle Scholar
  62. Southward, E. C. 1982. Bacterial symbionts in Pogonophora. J. mar. biol. Ass. U. K. 62: 889–906.CrossRefGoogle Scholar
  63. Southward, E. C. 1987. Contribution of symbiotic chemoautotrophs to the nutrition of benthic invertebrates, p. 83–118. In: M. A. Sleigh (ed.), Microbes in the sea. Ellis Horwood Ltd., Chichester, U.K.Google Scholar
  64. Stahl, D. A., D. J. Lane, G. J. Olsen, and N. R. Pace. 1984. Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science 224: 409–11.PubMedCrossRefGoogle Scholar
  65. Stein, J. L., S. C. Cary, J. J. Childress, R. R. Hessler, S. Ohta, R. D. Vetter, and H. Felbeck. 1988. Chemoautotrophic symbiosis in a hydrothermal vent gastropod. Biol. Bull. 174: 373–378.CrossRefGoogle Scholar
  66. Trytek, R. E., and W. V. Allen. 1980. Synthesis of essential amino acids by bacterial symbionts in the gills of the shipworm Bankia setacea (Tryon). Comp. Biochem. Physiol. 67A: 419–427.CrossRefGoogle Scholar
  67. Vetter, R. D. 1985. Elemental sulfur in the gills of three species of clams containing chemoautrophic symbiotic bacteria: a possible inorganic energy storage compound. Mar. Biol. 88: 33–42.CrossRefGoogle Scholar
  68. Waterbury, J. B., C. B. Calloway, and R. D. Turner. 1983. A cellulolytic-nitrogen fixing bacterium cultured from the Gland of Deshayes in shipworms ( Bivalvia: Teredinidae). Science 221: 1401–1403.Google Scholar
  69. Waterbury, J. B., D. L. Distel, and B. Kamicker. Teredinibacter turnerii: A novel Gram-negative bacterial genus capable of nitrogen fixation and cellulose degradation. (in press.)Google Scholar
  70. Wilmot, D. B., and R. D. Vetter 1990. The bacterial symbiont from the hydrothermal vent tubeworm Riftia pachyptila is a sulfide specialist. Mar. Biol. 106: 273–283.CrossRefGoogle Scholar
  71. Wood, A. R, and D. P. Kelly. 1989. Methylotrophic and autotrophie bacteria isolated from Lucinid and Thyasirid bivalves containing symbiotic bacteria in their gills. J. Mar. Biol. Ass. U.K. 69: 165–179.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Horst Felbeck
  • Daniel L. Distel

There are no affiliations available

Personalised recommendations